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Žižkova 22, CZ61662 Brno, Czech Republic

rehak@math.muni.cz

Abstract

The purpose of this paper is twofold. First, we want to initiate a
study of regular variation on time scales by introducing this concept
in such a way that it unifies and extends well studied continuous and
discrete cases. Some basic properties of regularly varying functions
on time scales will be established as well. Second, we give conditions
under which certain solutions of linear second order dynamic equations
are regularly varying. Open problems and possible directions for a
future research are discussed, too.

Keywords: Time scale; regularly varying function; Karamata function; reg-
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1 Introduction

The concept of regular variation has been shown to be extremely useful in
many fields of mathematics, both, in the continuous and the discrete setting,
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see e.g. [2, 5, 6, 8, 9, 12, 13, 14, 15, 16]. In this paper we introduce the con-
cept of regular variation for real functions defined on an arbitrary time scale
T. It will be shown that our definition is a generalization and unification of
the continuous and the discrete case, in a certain sense. From this point of
view, our paper can be understood as the one which wants to initiate study
of this important concept in a general time scale setting. Recall that in ad-
dition to the classical differential and difference calculi, the calculus on time
scales includes as a special case also the so-called quantum calculus, see e.g.
[11]. In the second part of this paper, we provide information about asymp-
totic behavior of positive decreasing solutions of linear second order dynamic
equations (which include an one-dimensional Schrödinger differential equa-
tion). We give sufficient and necessary conditions under which the solutions
are regularly (or slowly) varying. For related results concerning linear second
order differential and difference equations see [14] and [15], respectively.

The paper is organized as follows. First we recall basic facts about time
scales. Then we define regularly varying functions on time scales and prove
some of its important properties. In particular, we establish a representation
theorem for such functions using the fact that they are related to solutions of
certain linear first order dynamic equations. Connections of regularly varying
functions with positive solutions of linear second order dynamic equations will
be shown in Section 4. Open problems and possible directions for a future
research are discussed in the last section.

2 Preliminaries

In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies
continuous and discrete analysis. A time scale T is an arbitrary nonempty
closed subset of the real numbers R. We define the forward jump operator
σ by σ(t) := inf{s ∈ T : s > t}, and the graininess µ of the time scale T
by µ(t) := σ(t) − t. A point t ∈ T is said to be right-dense, right-scattered,
if σ(t) = t, σ(t) > t, respectively. We denote fσ := f ◦ σ. Throughout this
paper we assume that T is a time scale which is unbounded above. For a
function f : T → R the delta derivative is defined by

f∆(t) := lim
s→t,σ(s) 6=t

fσ(s)− f(t)

σ(s)− t
.
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Here are some useful formulas involving delta derivative: fσ = f + µf∆,
(fg)∆ = f∆g + fσg∆ = f∆gσ + fg∆, (f/g)∆ = (f∆g − fg∆)/ggσ, where f, g
are delta differentiable and ggσ 6= 0 in the last formula. A function f : T → R
is called rd-continuous provided it is continuous at all right-dense points in
T and its left-sided limits exist (finite) at all left-dense points in T (left-dense
and left-scattered points are defined similarly as their “right counterparts”).
The classes of real rd-continuous functions and real rd-continuously delta
differentiable functions on a time scale interval I will be denoted by Crd(I)
and by C1

rd(I), respectively. For a, b ∈ T and a delta differentiable function

f , the Newton integral is defined by
∫ b

a
f∆(t) ∆t = f(b) − f(a). Note that

every rd-continuous function has an antiderivative. For the concept of the
Riemann delta integral and the Lebesgue delta integral see [4, Chapter 5].
Note that we have

σ(t) = t, µ(t) ≡ 0, f∆ = f ′,

∫ b

a

f(t) ∆t =

∫ b

a

f(t) dt, when T = R,

while

σ(t) = t+ 1, µ(t) ≡ 1, f∆ = ∆f,

∫ b

a

f(t) ∆t =
b−1∑
t=a

f(t), when T = Z,

and

σ(t) = qt, µ(t) = (q − 1)t, f∆ = Dqy := (y(qt)− y(t))/(qt− t),∫ t

1

f(s) ∆s =
n−1∑
j=0

f(qj)µ(qj), t = qn, when T = qN0 := {qk : k ∈ N0}

with q > 1 We say that a function p : T → R is regressive provided 1 +
µ(t)p(t) 6= 0 for t ∈ T. The set of all regressive and rd-continuous functions
f : T → R is denoted by R = R(T). Define the set of positively regressive
functions R+ = R+(T) as the set consisting of those p ∈ R satisfying 1 +
µ(t)p(t) > 0 for t ∈ T. Define the generalized exponential function ep(t, s) as
the unique solution ep(·, t0) of the initial value problem y∆ = p(t)y, y(t0) = 1,
where p ∈ R. In fact, ep(t, s) is defined by means of a cylinder transformation,
e.g. in [3], but here we prefer a simpler equivalent definition. By an interval
[a, b], where a, b ∈ T, we mean the set {t ∈ T : a ≤ t ≤ b}, if it is not
said otherwise; similarly we define other types of time scale-intervals. The
monographs [3, 4] are very good sources for searching many other information
concerning time scales and dynamic equations on time scales.
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3 Regular variation on time scales

We start with the definition of the central concept.

Definition 1. A positive function f ∈ Crd([a,∞)) is said to be regularly
varying of index ϑ, ϑ ∈ R, if there exists a positive function α ∈ C1

rd([a,∞))
satisfying

f(t) ∼ Cα(t) and lim
t→∞

tα∆(t)

α(t)
= ϑ, (1)

C being a positive constant. If ϑ = 0, then f is said to be slowly varying.

The totality of regularly varying functions of index ϑ is denoted byRV(ϑ).
The totality of slowly varying functions is denoted by SV.

The next statement is a representation theorem. Clearly, it suffices if
the conditions in the theorem hold eventually (for large t). Without loss of
generality we can assume that they are satisfied on the interval [a,∞).

Theorem 1. A positive function f ∈ Crd([a,∞)) belongs to RV(ϑ) if and
only if it has the representation

f(t) = ϕ(t)eδ(t, a), (2)

where ϕ ∈ Crd([a,∞)) is a positive function tending to a positive constant
and δ ∈ Crd([a,∞)) satisfies δ ∈ R+ = R+([a,∞)) and limt→∞ tδ(t) = ϑ.

Proof. “Only if”: Let f ∈ RV(ϑ). Then there is δ ∈ Crd([a,∞)) such that
δ = α∆/α and limt→∞ tδ(t) = ϑ. Moreover, α satisfies the first order linear
dynamic equation α∆ = δ(t)α, and so it has the form α(t) = α0eδ(t, a) with
α0 > 0. Since α is positive, eδ(t, a) is positive as well, and hence δ ∈ R+.
From the first condition in (1) we now have that there is a positive function
ϕ tending to a positive constant such that (2) holds.

“If”: Let (2) hold with δ ∈ R+ and limt→∞ tδ(t) = ϑ. Put α(t) = eδ(t, a).
Then α is a positive function such that limt→∞ tα

∆(t)/α(t) = limt→∞ tδ(t) =
ϑ. Since f(t) ∼ Cα(t), where C = limt→∞ ϕ(t), f ∈ RV(ϑ).

Remark 1. If T = R, then (2) reduces to

f(t) = ϕ(t) exp

{∫ t

a

ψ(s)

s
ds

}
, (3)
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where limt→∞ ϕ(t) = C > 0 and limt→∞ ψ(t) = ϑ. If T = Z, then (2) reduces
to

ft = ϕt

t−1∏
j=a

(
1 +

ψj

j

)
, (4)

where limt→∞ ϕt = C > 0 and limt→∞ ψt = ϑ. In both these cases the
obtained formulas coincide with the known representation formula in the
continuous case (see [16]), resp. in the discrete case (see [15]). Hence our
definition can be understood as a generalization and unification of that in
the continuous and the discrete case, in a certain sense.

The next defined normalized regular variation will be of particular interest
in our subsequent theory.

Definition 2. A positive function f ∈ C1
rd([a,∞)) is said to be normalized

regularly varying of index ϑ, ϑ ∈ R, if it satisfies

lim
t→∞

tf∆(t)

f(t)
= ϑ.

If ϑ = 0, then f is said to be normalized slowly varying.

The totality of normalized regularly varying functions of index ϑ is de-
noted by NRV(ϑ). The totality of normalized slowly varying functions is
denoted by NSV .

It is easy to see that f ∈ NRV(ϑ) if and only if it has the representation
(2), where ϕ(t) is replaced by a positive constant C, i.e.,

f(t) = Ceδ(t, a). (5)

Let f ∈ NRV(ϑ). Then f∆(t) T 0 if and only if δ(t) T 0 for t ∈ [a,∞)

in the representation (5). This follows from the inequality f∆(t)/f(t) = δ(t).
Further note that if δ(t) ≥ 0, then clearly δ ∈ R+. If f ∈ NSV is decreas-
ing, then for δ from (5) being in R+ it is sufficient to assume µ(t) = O(t).
Indeed, if µ(t)/t is bounded and limt→∞ tδ(t) = 0, then limt→∞ µ(t)δ(t) = 0.
Similarly, if f ∈ NRV(ϑ) (with ϑ < 0) is decreasing, then for δ ∈ R+ it is
sufficient to assume µ(t) = o(t).
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4 Regularly varying decreasing solutions of

second order linear dynamic equations

Consider the linear dynamic equation

y∆∆ − p(t)yσ = 0, (6)

where p ∈ Crd([a,∞)) is positive. Basic properties of (6) can be found e.g.
in [3] or [7]. By a solution we will mean a nontrivial solution. Recall that a
solution y of (6) is called nonoscillatory if yyσ > 0 eventually. Otherwise,
it is called oscillatory. In view of the Sturm type separation theorem, one
solution of (6) is oscillatory if and only if every solution is so. Hence we may
speak about (non)oscillation of equation (6). Since y∆∆ = 0 is nonoscillatory
(such an equation is readily explicitly solvable), then (6) is nonoscillatory as
well by the Sturm type comparison theorem. Moreover, if M denotes the set
of all (nontrivial) solutions of (6), then any y ∈ M is eventually monotone
and belongs to one of the two classes

M+ = {y ∈ M : ∃T ∈ [a,∞) such that y(t)y∆(t) > 0 for t ∈ [T,∞)},
M− = {y ∈ M : y(t)y∆(t) < 0 for t ∈ [a,∞)}.

These classes are nonempty. Basic asymptotic properties of solutions of (6)
in the class M− was studied in [1] (in fact, there was studied a more general
equation than (6), namely a quasilinear dynamic equation). In our paper we
study asymptotic properties from a different (and somehow deeper) point of
view — we establish necessary and sufficient conditions under which positive
decreasing solutions of (6) are normalized slowly/regularly varying. Note
that considering just positive elements of M− is without loss of generality, in
view of the homogeneity of the solution space.

One of the main tools used in the subsequent proofs is based on the
Riccati like transformation. Note that the below described technique works
no matter what the sign of p is. If y is a solution of (6) with y(t)yσ(t) > 0 for
large t, say t ∈ [a,∞), (in particular, (6) is nonoscillatory), then w defined
by w = y∆/y satisfies the Riccati dynamic equation

w∆(t)− p(t) +
w2(t)

1 + µ(t)w(t)
= 0 (7)

with w ∈ R+ for t ∈ [a,∞). The opposite implication holds as well, and this
technique is usually referred to as the Riccati technique.

6



In the next two theorems we give conditions guaranteeing the existence
of regularly varying solutions of (6). We will see that the index of regular
variation depends on the value of the limit of certain expression involving
the coefficient p.

Theorem 2. Let y be any positive decreasing solution of (6) and µ(t) = O(t).
Then y ∈ NSV if and only if

lim
t→∞

t

∫ ∞

t

p(s) ∆s = 0. (8)

Proof. “Only if”: Let y ∈ NSV be a positive decreasing solution of (6) on
[a,∞). Set w = y∆/y. Then w(t) < 0 and satisfies (7) with w ∈ R+ for
t ∈ [a,∞). Since y ∈ NSV , we have limt→∞ tw(t) = 0 and limt→∞w(t) = 0.
First we show that ∫ ∞

a

w2(t)

1 + µ(t)w(t)
∆t <∞.

In view of µ(t) = O(t), there exists N > 0 such that µ(t)/t ≤ N for t ∈
[a,∞). Since limt→∞ t|w(t)| = 0, there exists M ≤ 1/(2N) such that |w(t)| ≤
M/t for large t, say again t ∈ [a,∞), without loss of generality. Then

µ(t)|w(t)| ≤ µ(t)M

t
≤ µ(t)

2Nt
≤ 1

2

for t ∈ [a,∞). Hence,∫ ∞

a

w2(t)

1 + µ(t)w(t)
∆t ≤

∫ ∞

a

M2/t2

1− µ(t)|w(t)|
∆t

= M2

∫ ∞

a

1

tσ(t)
· 1 + µ(t)/t

t− µ(t)|w(t)|
∆t

≤M2

∫ ∞

a

1

tσ(t)
· 1 +N

1− 1/2
∆t

= 2M2(1 +N)a.

Now, integrating (7) from t to ∞ and multiplying by t we get

−tw(t) + t

∫ ∞

t

w2(s)

1 + µ(s)w(s)
∆s = t

∫ ∞

t

p(s) ∆s. (9)
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Next we show that

lim
t→∞

t

∫ ∞

t

w2(s)

1 + µ(s)w(s)
∆s = 0.

Using the time scale L’Hospital rule and the above derived estimates, we
have

lim
t→∞

∫∞
t

[w2(s)/(1 + µ(s)w(s))] ∆s

1/t
= lim

t→∞

tσ(t)w2(t)

1 + µ(t)w(t)

= lim
t→∞

(tw(t))2 1 + µ(t)/t

1− µ(t)|w(t)|

≤ lim
t→∞

(tw(t))2 1 +N

1− µ(t)M/t

≤ lim
t→∞

(tw(t))2 1 +N

1−MN

≤ 2(1 +N) lim
t→∞

(tw(t))2

= 0

From (9) we now get (8).
“If”: Let y be a positive decreasing solution of (6) for t ∈ [a,∞). We

claim that limt→∞ y
∆(t) = 0. If not, then there is M > 0 such that y∆(t) ≤

−M for t ∈ [a,∞), and so y(t) ≤ y(a)− (t− a)M . Letting t → ∞ we have
limt→∞ y(t) = −∞, a contradiction. Hence integration of (6) from t to ∞
yields y∆(t) = −

∫∞
t
p(s)yσ(s) ∆s. Multiplying this equality by t/y(t) and

using a monotone nature of y we obtain

−ty
∆(t)

y(t)
=

t

y(t)

∫ ∞

t

p(s)yσ(s) ∆s ≤ ty(t)

y(t)

∫ ∞

t

p(s) ∆s = t

∫ ∞

t

p(s) ∆s.

Hence, limt→∞ ty
∆(t)/y(t) = 0 by (8), and so y ∈ NSV .

Remark 2. A closer examination of the proof shows that the condition
µ(t) = O(t) is not needed to prove the “if” part.

Theorem 3. Let y be any positive decreasing solution of (6) and µ(t) = o(t).
Then y ∈ NRV(ϑ) if and only if

lim
t→∞

t

∫ ∞

t

p(s) ∆s = A > 0, (10)

where ϑ is the negative root of the equation λ2 − λ − A = 0, i.e., ϑ =(
1−

√
1 + 4A

)
/2.
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Proof. “Only if”: Let y ∈ NRV(ϑ) be a positive solution of (6) for t ∈
[a,∞). Set w = y∆/y. Then w(t) < 0 and satisfies (7) with w ∈ R+ for t ∈
[a,∞). Since y ∈ NRV(ϑ), we have limt→∞ tw(t) = ϑ and limt→∞w(t) = 0.
We show that ∫ ∞

a

w2(t)

1 + µ(t)w(t)
∆t <∞.

There exists M > 0 such that w(t) ≤M/t. Further, in view of the condition
limt→∞ µ(t)/t = 0, we have µ(t)|w(t)| ≤ Mµ(t)/t ≤ 1/2 for large t, say
t ∈ [a,∞). Hence,∫ ∞

a

w2(t)

1 + µ(t)w(t)
∆t ≤

∫ ∞

a

M2/t2

1− µ(t)|w(t)|
∆t

≤ 2M2

∫ ∞

a

1

t2
∆t

= 2M2

∫ ∞

a

1

tσ(t)

(
1 +

µ(t)

t

)
∆t

≤ 2M2

(
1 +

1

2M

)∫ ∞

a

1

tσ(t)
∆s

= (2M2 +M)a.

Thus as in the previous proof we get (9). Further we show that

lim
t→∞

t

∫ ∞

t

w2(s)

1 + µ(s)w(s)
∆s = ϑ2.

Using the time scale L’Hospital rule and the above derived estimates, since

lim
t→∞

µ(t)|w(t)| ≤ lim
t→∞

Mµ(t)

t
= 0,

we have

lim
t→∞

∫∞
t

[w2(s)/(1 + µ(s)w(s))] ∆s

1/t
= lim

t→∞

tσ(t)w2(t)

1 + µ(t)w(t)

= lim
t→∞

(tw(t))2 1 + µ(t)/t

1− µ(t)|w(t)|
= ϑ2.

From (9), limt→∞ t
∫∞

t
p(s) ∆s = −ϑ+ ϑ2 = A.
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“If”: Let y be a positive decreasing solution of (6) for t ∈ [a,∞). Similarly
as in the previous proof, we have limt→∞ y

∆(t) = 0. Set η(t) = ty∆(t)/y(t).
Then

0 < −η(t) =
t

y(t)

∫ ∞

t

p(s)yσ(s) ∆s ≤ t

∫ ∞

t

p(s) ∆s,

and so η is bounded. Further, η satisfies the modified Riccati dynamic equa-
tion (

η(t)

t

)∆

− p(t) +
η2(t)/t2

1 + µ(t)η(t)/t
= 0 (11)

with η(t)/t ∈ R+ for t ∈ [a,∞). Since η is bounded, we have limt→∞ η(t)/t =
0, and so integration of (11) from t to ∞ yields

−η(t)
t

=

∫ ∞

t

p(s) ∆s−
∫ ∞

t

η2(s)/s2

1 + µ(s)η(s)/s
∆s. (12)

Let us write condition (10) as

t

∫ ∞

t

p(s) ∆s = A+ ε1(t) = ϑ2 − ϑ+ ε1(t), (13)

where limt→∞ ε1(t) = 0. Multiplying (12) by t with the use of (13) we get

−η(t) = ϑ2 − ϑ+ ε1(t)− t

∫ ∞

t

η2(s)/s2

1 + µ(s)η(s)/s
∆s. (14)

Denote

ε2(t) = t

∫ ∞

t

η2(s)

(
1

s2 + µ(s)η(s)s
− 1

sσ(s)

)
.

Since η is bounded and µ(t) = o(t), using the time scale L’Hospital rule we
have

lim
t→∞

ε2(t) = lim
t→∞

η2(t)

(
tσ(t)

t2 + µ(t)η(t)t
− tσ(t)

tσ(t)

)
= lim

t→∞
η2(t)

(
1 + µ(t)/t

1 + η(t)µ(t)/t
− 1

)
= 0.

Hence,

t

∫ ∞

t

η2(s)/s2

1 + µ(s)η(s)/s
∆s = t

∫ ∞

t

η2(s)

sσ(s)
∆s+ ε2(t),
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where limt→∞ ε2(t) = 0. Thus from (14) we obtain

−η(t) = ϑ2 − ϑ− t

∫ ∞

t

η2(s)

sσ(s)
∆s+ ε(t),

where ε(t) = ε1(t)− ε2(t). Consequently,

−η(t) = ϑ2 − ϑ− tG(t)

∫ ∞

t

1

sσ(s)
∆s+ ε(t),

where m(t) ≤ G(t) ≤M(t) with m(t) = infs≥t η
2(s), M(t) = sups≥t η

2(s), or

G(t)− η(t) = ϑ2 − ϑ+ ε(t). (15)

We claim that limt→∞ η(t) = ϑ. Recall that −η is a bounded positive func-
tion. First we assume that there exists limt→∞(−η(t)) = L ≥ 0. Then from
(15) we get L2 + L = ϑ2 − ϑ. If L > −ϑ, then ϑ2 = L2 + L + ϑ > L2,
contradiction. Similarly we get contradiction if L < −ϑ. Next we assume
that lim inft→∞(−η(t)) = L∗ < L∗ = lim supt→∞(−η(t)). Introduce L1 by

L1 =
√

lim inf
t→∞

G(t).

Clearly, 0 ≤ L∗ ≤ L1. We distinguish the following three cases that give an
exhaustive description of the whole situation.

(a) L∗ ≤ L1 < −ϑ : Then from (15), L2
1 + L∗ = ϑ2 − ϑ. But we have

L∗ + ϑ < 0, hence ϑ2 = L2
1 + L∗ + ϑ < L2

1, contradiction with L1 < −ϑ.
(b) L∗ < L1 ≤ −ϑ : Then from (15), ϑ2 < L2

1, contradiction with L1 ≤
−ϑ.

(c) L1 > −ϑ (or L∗ > −ϑ which implies L1 > −ϑ) : Introduce L2 by

L2 =
√

lim sup
t→∞

G(t).

Then clearly −ϑ < L1 ≤ L2 ≤ L∗ and (15) yields L2
2 + L∗ = ϑ2 − ϑ. But we

have L∗ + ϑ > 0, hence ϑ2 = L2
2 +L∗ + ϑ > L2

2, contradiction with L2 > −ϑ.
This proves that limt→∞ η(t) = ϑ, and the proof of the theorem is com-

plete.

Remark 3. Theorem 2 and Theorem 3 can be unified into one statement,
where A ≥ 0 and ϑ is assumed to be the nonpositive root of λ2 − λ−A = 0.
The condition on the graininess can be expressed e.g. as that there is B > 0
such that lim supt→∞ µ(t)/t ≤ AB.
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5 Concluding remarks

In this last section we indicate some directions for a future research related
to the topic of this paper.

Usually, in the continuous case, a regularly varying function f of index ϑ,
ϑ ∈ R, is defined as one which is positive and measurable on the real interval
[a,∞), and for all λ > 0 it satisfies

lim
t→∞

f(λt)

f(t)
= λϑ. (16)

This definition is due to Karamata [13]. Such functions have the representa-
tion (3) or

f(t) = ϕ(t)tϑ exp

{∫ t

a

ψ̃(s)

s
∆s

}
,

where limt→∞ ψ̃(t) = 0. In the basic theory of regularly varying sequences
two main approaches are known. First, the approach by Karamata [12]
based on a counterpart of the continuous definition: A positive sequence
{ft}, t ∈ {a, a+1, . . . } ⊂ Z is said to be regularly varying of index ϑ, ϑ ∈ R,
if

lim
t→∞

f[λt]

ft

= λϑ (17)

for all λ > 0, where [u] denotes the integer part of u. Second, the approach by
Galambos and Seneta [8] based on a purely sequential definition: A positive
sequence {ft}, t ∈ {a, a+ 1, . . . } ⊂ Z is said to be regularly varying of index
ϑ, ϑ ∈ R, if there exists a positive sequence {αt} satisfying

ft ∼ Cαt and lim
t→∞

t

(
1− αt−1

αt

)
= ϑ, (18)

C being a positive constant. In [5] it was shown that these two definitions
are equivalent. In [15] is was shown that the second condition in (18) can be
replaced by limt→∞ t∆αt/αt = ϑ, cf. (1). Moreover (see [15]), {ft} has the
representation (4) or

ft = ϕtt
ϑ

t−1∏
j=1

(
1 +

ψ̃j

j

)
,

where limt→∞ ψ̃t = 0.
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Taking into account the above facts, it is natural to look for a general
definition for f : T → R in the sense of Karamata, i.e., unifying (16) and
(17). One possible candidate for such a definition could be the condition

lim
t→∞

f(τ(λt))

f(t)
= λϑ,

where τ : R → T is defined as τ(t) = max{s ∈ T : s ≤ t}. Is this definition
equivalent to Definition 1? For this, are some additional conditions needed?
Is there a significant role played by the graininess of T, which is not known
from the “classical” cases? Some of the first computations in this direction
show that there could be. Note that a Karamata type definition could relax
the assumption on the smoothness of f .

In the theory of regular variation in the continuous case, many interesting
properties of regularly varying functions have been established, see [2, 9, 14,
16]. In addition, there is also the theory of rapidly varying functions and of
other similar objects. Although not so deep, an analogous discrete theory
has been developed. As noticed in [5], this development is not generally close
and sometimes far from a simple imitation of arguments of the continuous
considerations. Both these theories have been shown to be extremely useful
in many applications concerning various fields of mathematics. In view of all
these facts, one can claim that the study of regular variation on time scales
promises interesting and nontrivial adventures with receiving useful results
at their ends. One of the purposes of our paper was to initiate such a study.
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