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Abstract

We design a 1.75-approximation algorithm for a special
case of scheduling parallel machines to minimize the
makespan, namely the case where each job can be
assigned to at most two machines, with the same
processing time on either machine. (This is a special
case of so-called restricted assignment, where the set of
eligible machines can be arbitrary for each job.) We
also show that even for this special case it is NP -hard
to compute better than 1.5 approximation.

This is the first improvement of the approximation
ratio 2 of Lenstra, Shmoys, and Tardos [Approximation
algorithms for scheduling unrelated parallel machines,
Math. Program., 46:259–271, 1990], for any special case
with unbounded number of machines. Our lower bound
yields the same ratio as their lower bound which works
for restricted assignment, and which is still the state-of-
the-art lower bound even for the most general case.

1 Introduction

Graph balancing. Suppose we are given an undi-
rected multigraph (i.e., there may be multiple edges con-
necting any two vertices and also loops) with weights on
the edges. We are asked to orient the edges so that the
load of each vertex is small, where the load is the sum
of the weights of the incoming edges. More exactly, our
objective is to minimize the maximum of the loads of
all vertices. We call this problem Graph Balancing.

It is obvious that Graph Balancing is NP -hard:
Already if the graph contains only two vertices and
parallel edges, an exact solution would solve Subset

Sum, one of the basic NP -complete problems.
Thus the main question, and the topic of the paper

is: How well is it possible to approximate Graph

Balancing?
Previous work and motivation. As a motivat-

ing example, consider an airline company that runs
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Czech Republic, ebik@math.cas.cz, marek.krcal@seznam.cz,
sgall@math.cas.cz. Partially supported by Institutional Re-
search Plan No. AV0Z10190503, by Inst. for Theor. Comp. Sci.,
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many connections between many airports. The com-
pany management wants to (re)assign a home airport
for every connection (naturally there are always two
possibilities). Each connection creates certain load on
the airport, which may be different for different planes
(flights). The goal is to balance the load among the
airports, more exactly to minimize the maximal load
among the airports.

Our main motivation is a classical problem of
scheduling unrelated parallel machines to minimize
makespan. In this problem, we are given an n×m ma-
trix of non-negative numbers. Its entry pji denotes the
amount of time which machine i needs to process job j.
We also allow pji = ∞ as a shortcut denoting that job j
cannot be processed by machine i. (∞ may be replaced
by a sufficiently large number, of course.) The output
is a schedule which is described by an assignment of the
n jobs to the m machines. The objective is to minimize
the makespan, i.e., the length of the schedule, defined
as the maximum among all machines i of the sum of pji

over all jobs j assigned to i.
A special case considered in literature is that of

restricted assignment. Here we require that in each
row j all entries are either ∞ or equal to the same
value pj . Thus each job has some fixed processing
time, but it is also restricted to be scheduled on
some machine from a given subset. In this context,
the vertices in an instance of Graph Balancing

correspond to machines and the edges correspond to
jobs that can be assigned to one of their endpoints.
Thus Graph Balancing corresponds to the special
case of scheduling with restricted assignment where each
job can be scheduled on one of at most two machines.

Lenstra et al. [9] gave a beautiful 2-approximation
algorithm based on linear programming for the gen-
eral problem and proved that approximating it with
ratio better than 1.5 is NP -hard, even for restricted
assignment. The problem of finding a better than 2-
approximation algorithm (or improve the lower bound)
is one of the most prominent open problems in the area
of approximation algorithms for scheduling [11], it is
also covered in textbooks, e.g. [13]. Despite of that and
all the research related to this problem, there have been
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no improvement of the bounds for an unbounded num-
ber of machines, not even in any special case like re-
stricted assignment.

Our results. Our main result is an 1.75-
approximation algorithm for Graph Balancing, see
Section 3. Similarly as Lenstra et al. [9], we use an
integer programming formulation of the problem and
its linear relaxation as a lower bound on the optimum.
However, even in our special case, the integrality gap
of the formulation from [9] is 2, and thus it is not suf-
ficient to use their linear program with perhaps a more
careful rounding. We enhance the integer program by
introducing new constraints. This in turn forces us to
design the rounding procedure much more carefully. In
addition, in our relaxation, there are possibly exponen-
tially many new constraints, and we need to do some
additional work to solve this linear program.

We also show that it is NP -hard to approximate
Graph Balancing with approximation ratio smaller
than 1.5, see Section 4. This matches the state-of-the-
art lower bound for the general problem of scheduling
on unrelated machines. The lower bound of 1.5 from
Lenstra et al. [9] for scheduling of unrelated machines
does not apply to our problem, as it uses jobs that can
be assigned to many machines, not only two. Our proof
uses a direct reduction from (a variant of) 3-SAT. In
our opinion, it is actually even simpler than the original
proof which reduces from 3-dimensional matching [9].

Our results for Graph Balancing are the first
non-trivial improvement of an approximation factor for
any special case of scheduling on unrelated machines
after almost 20 years since the work of Lenstra et al. [9].
Even though our special case is quite restricted, we
find the problem interesting on its own. Also our lower
bound shows that the restricted problem is still hard.

Other related results. Another prominent spe-
cial case of the scheduling problem is that of uniformly
related machines. Here each machine has a speed si

and pji is given as pj/si (in other words, the input ma-
trix has rank 1). In this case the problem becomes sig-
nificantly easier and a polynomial time approximation
scheme is known [5].

For the case of unrelated machines, polynomial
time approximation schemes are known for a fixed
number of machines [6, 7]. For an unbounded number
of machines, the 2-approximation algorithm can be
actually slightly improved to 2−1/m, see [12]. Another
line of research is to obtain a 2-approximation without
solving a linear program using flow algorithms, see [4]
and references therein. There is also a large amount of
work on heuristics with no guarantee on the worst case
approximation ratio.

One approach, recently popular, to attack the

bound of 2-approximability of scheduling on unrelated
machines, is to study the lp norm of the vector of ma-
chine loads. In this context, makespan corresponds to
the l∞ norm. For any p < ∞ it is possible to achieve a
better than 2 approximation, and in fact it is possible
to achieve this simultaneously for all norms, see [2, 8].
Another objective studied for scheduling unrelated ma-
chines is that of maximizing the minimum machine com-
pletion time, also known as fair allocation or Santa
Claus problem, see [3, 1] for recent interesting approxi-
mation algorithms.

2 Preliminaries

2.1 Problem formulation
From now on, we restrict ourselves to the special

case of restricted assignment where each job is allowed
to be assigned to one of at most two machines. If a
job can be assigned to one machine only, its assignment
is determined. We can omit all such jobs and replace
them by one quantity for each machine, which we call a
dedicated load of that machine.

We use a weighted multigraph G = (V, E,p,q) to
capture instances of our problem. Vertices V correspond
to the machines, edges E to the jobs with a choice
of two machines, the weights pe ≥ 0, e ∈ E, are
their processing times, and finally the weights qv ≥ 0,
v ∈ V are the dedicated loads. The desired output is
an orientation of edges, which is defined as a mapping
γ : E → V such that γ(e) is incident with e for each
e ∈ E. The load of v is qv plus the sum of all pe of edges
e oriented towards v, i.e., with γ(e) = v. We minimize
the maximal load.

We consider the set of edges E to be an abstract
set, to distinguish the parallel edges. However, we abuse
notation, and still use the notation v ∈ e for “the vertex
v is incident to the edge e”. Similarly, we slightly abuse
“subgraph” and use H ⊆ G to mean H is a multigraph
whose edges are some subset of edges of G, with or
without weights, sometimes even directed as is clear
from context. In particular, if we talk about a directed
cycle in G, it has to be a subgraph, oriented by one of
two cyclic orientations; this includes also the case of a
2-cycle.

Now the problem is formally stated as follows:

Problem Graph Balancing

Input: A weighted multigraph G = (V, E,p,q) with
edge weights pe ≥ 0 for each e ∈ E and vertex
weights qv ≥ 0 for each v ∈ V .
Output: An orientation of edges γ : E → V , where
γ(e) ∈ e for each e ∈ E.

Objective: Minimize maxv∈V

(

qv +
∑

e:γ(e)=v pe

)



Using binary search and scaling in a standard way,
we can reduce the optimization problem to its decision
version, where we test if there exists an orientation with
the maximal load at most 1. Similarly, finding a 1.75-
approximation can be reduced to the following relaxed
version of the decision problem:

Problem Graph Balancing Approximation

(GBapx)
Input: A weighted multigraph G = (V, E,p,q)
Output:
either output FAIL, if for every orientation γ there
is v ∈ V with qv +

∑

e:γ(e)=v pe > 1,
or output an orientation γ such that for each v ∈ V :
qv +

∑

e:γ(e)=v pe ≤ 1.75.

Note that if the optimum is in (1, 1.75], both answers
are allowed. If there is an edge e with pe > 1, we can
immediately answer FAIL to (GBapx). Hence from now,
w.l.o.g., we focus on the problem (GBapx) on instances
with pe ≤ 1 for all edges e ∈ E.

2.2 2-approximation and rotations
We now describe the 2-approximation algorithm of

Lenstra, Shmoys, and Tardos [9] in our restricted case.
Our improved algorithm follows the same scheme and
uses some of the same building blocks.

Again, it is sufficient to describe a relaxed decision
procedure. Consider the following linear program, also
called the assignment linear program:

Linear program (LP1)
Find values xev ≥ 0 for each e ∈ E and v ∈ e,
subject to:
For each e ∈ E, u, v ∈ e :

xeu + xev = 1 (Edge e)
For each v ∈ V :

qv +
∑

e:v∈e xevpe ≤ 1 (Load at v)

The feasible integral solutions of (LP1) are in one-to-one
correspondence with orientations γ with maximal load
at most 1. The algorithm starts by finding a feasible
fractional solution x of (LP1) if one exists; otherwise
it outputs FAIL. Now it repeatedly takes an arbitrary
cycle C in G with all edges with non-integral values xeu,
orients it in an arbitrary direction and applies procedure
Rotate(C,x) described formally later. This procedure
modifies the solution x so that it is still feasible and
the number of integral values in x increases. Eventually
we arrive at a solution where edges with non-integral
values form a forest. We take any one-to-one orientation
of these edges, i.e., we root each tree component at
an arbitrary vertex and orient its edges away from the

root. We define the orientation of the remaining edges
to agree with x, i.e., γ(e) = v if xev = 1. The output
orientation has maximal load at most 2, as each vertex
has load at most 1 from the single edge assigned to
it by the orientation of the forest and at most 1 from
the edges determined by the integral part of the linear
program solution. The procedure Rotate is described
in Algorithm 1 box (on the next page).

Obviously, Rotate is efficient; it needs only a linear
number of arithmetic operations. All the sums xeu+xev

and
∑

e:v∈e xevpe stay unchanged. Furthermore, all
values xeu stay non-negative and at least one xeu

becomes 0, while once a variable is equal to 0 it does not
change. Together this implies that the whole algorithm
is sound and terminates after at most a linear number of
applications of Rotate. The computationally hardest
part is to find a feasible solution of the linear program;
this is also done in polynomial time using standard
ellipsoid or interior point methods.

The rounding process has freedom in its choice of
cycles that are to be rotated. This might seem to be
a weak place of the algorithm. However, even in our
restricted case the integrality gap of our linear program
is 2, see Section 3.3. This means that there are instances
where (LP1) is feasible, but any integral solution has
maximal load arbitrarily close to 2. Thus, a more careful
rounding cannot help on its own. A more careful choice
of cycles to be rotated is a part of our approximation
algorithm. However, as a main new part, we need
to introduce a stronger linear program with the same
integral solutions, and use a more complicated rounding
process.

2.3 Notations and preprocessing
Given a weighted multigraph G = (V, E,p,q), let

EB = {e ∈ E | pe > 0.5} be the set of big edges and
GB = (V, EB) the subgraph with only the big edges.
Given also a fractional assignment x, let Ex = {e ∈ E |
0 < xeu < 1 for some u ∈ e} be the set of fractionally
assigned edges and Gx = (V, Ex) the corresponding
subgraph. Composing the notations, GB

x
= (Gx)B =

(V, EB ∩ Ex) is the subgraph of fractionally assigned
big edges. Given a tree T = (V, E), we call a leaf pair a
pair of a leaf (vertex of degree 1) and the incident edge.
Finally, L(T ) = {(v, e) ∈ V × E | deg(v) = 1, v ∈ e} is
the set of all the leaf pairs of T .

In order for the maximal load to be at most one,
the orientation γ restricted to GB = (V, EB) has to
be one-to-one. This gives us interesting consequences:
Consider a component of GB that has a cycle. Every
one-to-one orientation of the edges on the cycle has in its
range every vertex of the cycle. Hence for any edge e of
that component not in the cycle, the only possibility is



Algorithm 1 Procedure Rotate

Procedure Rotate takes as input a feasible solution x of (LP1) and a directed cycle C in G and returns a
modified solution x

procedure Rotate(x, C)
for all edges e in C, where e is directed from u to v do

δe := xeupe

δ := mine∈C δe

for all edges e in C, where e is directed from u to v do
xeu := xeu − δ/pe

xev := xev + δ/pe
return x

to orient γ(e) away from the cycle. Thus we can remove
that edge and add its weight to the dedicated load of
that vertex. This also implies that if there are two cycles
in the component, no orientation γ is feasible. Hence
we can preprocess our instance so that the subgraph
GB is a disjoint union of trees and cycles. We omit the
details since later we will replace this preprocessing by
a different trick.

3 The 1.75-approximation algorithm

What are other consequences of the fact that γ has to be
one-to-one on EB? Let us consider an arbitrary subtree
T of the graph GB of big edges. Since every tree has
one more vertex than is the number of edges, the image
of a one-to-one orientation γ can miss at most one of
the vertices. In particular, if we consider the leaf pairs,
all but one edges have to be oriented towards the leaves.
Thus any integral solution of (LP1) has to satisfy

∑

(v,e)∈L(T )

xevpe ≥





∑

(v,e)∈L(T )

pe



 − 1

for all trees T ⊆ GB. We add this constraint to our
linear program:

Linear program (LP2)
Find values xev ≥ 0 for each e ∈ E and v ∈ e,
subject to:
For each e ∈ E, u, v ∈ e:

xeu + xev = 1 (Edge e)
For each v ∈ V :

qv +
∑

e:v∈e xevpe ≤ 1 (Load at v)
For each tree T ⊆ GB :

∑

(v,e)∈L(T ) xevpe ≥
∑

(v,e)∈L(T ) pe − 1 (Tree T )

Note that we are adding constraint (Tree T ) for
any tree T , which does not need to be the whole
component. Here we might have justifiable misgivings
about polynomiality of number of constraints (Tree T ).

However, for a given vector x, in polynomial time we
can verify all the constraints or find a constraint which
is violated: This is done using the tree structure of
the constraints and dynamic programming. Using this
as a separation oracle, we can still solve the linear
program in polynomial time using the ellipsoid method.
We omit the details at this point, since in the end
we find an initial feasible solution of (LP2) by solving
a stronger linear program (LP3) with polynomial size
and, moreover, at the same time (LP3) guarantees the
proper structure of GB and thus it also replaces the
preprocessing described earlier.

We postpone the description of (LP3) to Section 3.2.
Now in Section 3.1 we describe the rounding procedure.

3.1 The rounding procedure
In the 2-approximation algorithm, we first did all

the rotations, obtained a solution with GB
x

being a
forest and then defined the orientation on all the edges.
In our case, the procedure is more complicated and
alternates the rotations steps with the steps where we
decide orientation of an edge or even some tree-like part
of the graph.

Summarizing the assumptions, we have now a
weighted multigraph G = (V, E,p,q) such that pe ≤ 1
for all e ∈ E. We also have a feasible solution x of
(LP2) such that each component of GB

x
(the graph of

not decided and big edges) is a cycle or a tree. Our goal
is to find an orientation γ with maximal load at most
1.75. This is the specification of the procedure Round

described in Algorithm 2 box. Note that during the
procedure, as the solution x is changed, the graphs Gx

and GB
x

change as well.
The step (Rotation) is well defined: Since there is no

leaf in Gx in this case, the walk of the (FindCycle) can
always continue. Every vertex is visited at most once,
so it stops after a linear number of iterations. Each
(Main While) iteration removes at least one edge from
Gx and never adds an edge to it. Since we use only easy
graph-algorithmic subroutines and procedure Rotate



Algorithm 2 Procedure Round

procedure Round(G = (V, E,p,q),x)
while Gx has an edge do ⊲ (Main While)

if Gx has a leaf pair (v, e) then
Let u be the vertex u ∈ e, u 6= v.
if xeupe ≤ 0.75 then ⊲ (Leaf Assignment)

(xev , xeu) := (1, 0)
else ⊲ (Tree Assignment)

Let T = (V ′, E′) be the component of GB
x

containing e
[e ∈ GB

x
in this case, and T has to be a tree since v is a leaf]

for all e′ ∈ E′, v′, u′ ∈ e′ such that v′ is on the path from v to u′ in T do
(xe′v′ , xe′u′) := (0, 1)

else ⊲ (Rotation)
Find a directed cycle C in the following way:
Start a walk in an arbitrary vertex and repeat ⊲ (FindCycle)

Append a new edge to the end of the walk; if possible, choose a big edge
until the walk contains a cycle, denote it C.
Rotate(x, C)

Let γ(e) := v for all pairs (e, v) with xev = 1
return γ

that was already shown to be polynomial, the whole
procedure Round runs in polynomial time. Finally,
since the (Main While) cycle ends only when Gx = ∅,
the final assignment x is integral and the output γ
indeed is an orientation.

It remains to show that the final load of each
vertex is at most 1.75. We prove the following stronger
theorem, which describes the invariants maintained
during procedure Round.

Theorem 3.1. Before and after each iteration of
(Main While) during procedure Round for every vertex
v ∈ V :

(a) The load of v is at most 1.75.
(b) If v is incident to any edge in Gx, it has load at

most 1.25.
(c) If v is incident to a big edge in Gx (i.e., any

edge in GB
x
), it has load at most 1.

(d) For every tree T that is a subgraph of GB
x
, the

constraint (Tree T ) is not violated.

Proof. At the beginning, all the conditions are true,
since x is a feasible solution of (LP2). We show that
all the conditions are preserved during each iteration of
(Main While) by case analysis. In each case, we verify
the conditions (a)–(c) for any vertex whose load changed
and (d).

(Leaf Assignment): If pe ≤ 0.5 then the load of v
goes up from at most 1.25 guaranteed by (b) before this
iteration to at most 1.75. Otherwise before this step
the vertex v is incident to a big edge, thus by (c) it has

load at most 1 before this iteration and due to the case
condition the load increases to at most 1.75. Thus in
both cases after this step, v satisfies (a); (b) and (c)
are void, as v is now isolated in Gx. The loads of other
vertices do not increase, which guarantees (a) to (c).
Edge e is no longer in Gx, thus no constraint (Tree T )
can be violated and (d) holds.

(Tree Assignment): Before this step every vertex of
the maximal tree T containing e is incident to a big
edge of Gx, hence by (c) it has load at most 1. Let us
consider any vertex u′ of T after the step. If u′ = v its
load has decreased. If u′ 6= v, there is a path P ⊆ T
from u′ to v, starting by an edge e′. Since P is also a
subtree of GB

x
, we can use the constraint (Tree P ):

xevpe + xe′u′pe′ ≥ pe + pe′ − 1

Using this in the first inequality below and the case
condition xeupe > 0.75 in the last inequality we obtain

xe′u′pe′ ≥ pe − xevpe + pe′ − 1

= xeupe + pe′ − 1

> 0.75 + pe′ − 1 = pe′ − 0.25

It follows that the load of u′ increases by pe′−xe′u′pe′ <
0.25. Thus (a) and (b) holds for u′. Because of
maximality of T , u′ is not incident to a big edge after
the step and (c) is void.

No vertices outside T increase their loads. Also,
since all the maximal tree T is removed from Gx, no
constraint (Tree T ) is violated and (d) holds.



(Rotation): By the analysis of Rotate we know that
every vertex keeps its load, thus (a) to (c) are preserved.

Take an arbitrary tree T ⊆ GB
x

. To prove (d), we
need to prove that (Tree T ) is preserved. If (v, e) is a
leaf pair in T , then xev is changed in Rotate iff e ∈ C.
More precisely, it increases by δ if e is directed from v
and it decreases by δ if e is directed towards v. Thus
(Tree T ) seems to be problematic if there are more leaf
pairs oriented from the leaf. We extend T to a certain
tree T ′ and show that both (Tree T ′) and (Tree T ) are
preserved. A typical case is when T ∩ C is a directed
path which starts by a leaf pair but then ends at some
vertex t which is not a leaf of T . Then we add to T ′

the edge by which C continues from t; due to the choice
of the cycle in (FindCycle) this edge is big. In general,
T ∩C may have several disjoint paths and we may need
to add one edge for each path.

Formally, for any vertex t in C, let et be the edge
of C starting at t. Let W be set of all vertices t ∈ T ∩C
such that et is not in T and t is not a leaf vertex of T .
Finally, let T ′ = T ∪ {et | t ∈ W}. We claim that any
edge et ∈ T ′ \ T is big. Since t is not a leaf in T , there
is an edge in GB

x
which could be chosen by (FindCycle)

at t, as there are at least two big edges incident to t and
at most one of them is already on the path. Therefore
the chosen edge et is big. Also, if the component of GB

x

containing T is a cycle, then W = ∅, as (FindCycle)
follows the whole cycle once it reaches any of its vertices.
We now see that T ′ is a tree, as whenever T ′ 6= T , it
is a connected subgraph of a tree component of GB

x
. It

also follows that all the new edges et are leaf edges of
T ′ oriented towards their leaf vertices in the orientation
of C and that all the leaves in T are also leaves in T ′.
By the construction of T ′, the number of leaf pairs in T ′

oriented to the leaf vertex in the orientation of C is at
least the number of leaf pairs of T ′ oriented away from
the leaf. By the previous discussion, this guarantees
that (Tree T ′) is maintained during Rotate, and after
this step we have

∑

(v,e)∈L(T ′)

xevpe ≥
∑

(v,e)∈L(T ′)

pe − 1.

The inequalities xevpe ≤ pe are always true; we subtract
them for all (v, e) ∈ L(T ′) \ L(T ) and obtain

∑

(v,e)∈L(T )

xevpe ≥
∑

(v,e)∈L(T )

pe − 1.

This means that (Tree T ) also holds and the proof of
the case and also of the theorem is complete.

3.2 Solving the linear program
We can replace constraints (Tree T ) by a polyno-

mial set of new constraints. Consider an arbitrary ver-

tex v and the set of big edges incident to it. In an inte-
gral solution, at most one of them can be assigned to v,
hence the sum of xev over the star of big edges can be
at most one. Thus the following linear program has the
same set of integral solutions as (LP1) and (LP2) and
thus is a valid LP-relaxation of Graph Balancing.

Linear program (LP3)
Find values xev ≥ 0 for each e ∈ E and v ∈ e,
subject to:
For each e ∈ E, u, v ∈ e:

xeu + xev = 1 (Edge e)
For each v ∈ V :

qv +
∑

e:v∈e xevpe ≤ 1 (Load at v)
For each vertex v:

∑

e∈EB :v∈e xev ≤ 1 (Star v)

Theorem 3.2. Any solution x of (LP3) is also a solu-
tion of (LP2). Moreover, graph GB

x
is a disjoint union

of cycles and trees.

Proof. For a given solution of x of (LP3) we need to
verify the constraints (Tree T ) for any subtree T =
(V ′, E′) of GB . Take the sum of constraints (Edge e)
over all edges e of T and subtract the sum of constraints
(Star v) over all non-leaf vertices v of T to get

∑

(v,e)∈L(T )

xev =
∑

e∈E′,v∈e

xev −
∑

v∈V ′
:

deg(v)>1

∑

e∈E′
:

v∈e

xev

≥ |L(T )| − 1

Now we can use this inequality and xev ≤ 1 to verify
the constraint (Tree T ):

∑

(v,e)∈L(T )

xevpe =
∑

(v,e)∈L(T )

xev −
∑

(v,e)∈L(T )

xev(1 − pe)

≥ |L(T )| − 1 −
∑

(v,e)∈L(T )

(1 − pe)

=
∑

(v,e)∈L(T )

pe − 1

To prove the second part of the theorem, consider
any subgraph H of GB consisting of a cycle with an
edge e incident to one vertex on the cycle. Take again
a sum of constraints (Edge e) over all edges e of H and
subtract a sum of constraints (Star v) over all non-leaf
vertices v of H . We obtain xev ≥ 1 where (v, e) is the
leaf pair of H . Hence the edge e cannot be in GB

x
as it

is integral, and the proof is complete.

Let us formulate the algorithm for (GBapx).



Algorithm 3 LP-Balance

Algorithm LP-Balance has a weighted multigraph G
on input and either returns FAIL or outputs orientation
γ with maximal load at most 1.75.

Find a feasible solution x of (LP3) using some poly-
nomial algorithm (ellipsoid or interior point method).
if no feasible solution exists then return FAIL
return Round(G,x)

Theorem 3.3. Algorithm LP-Balance solves the re-
laxed decision problem (GBapx). Thus there exists a
polynomial 1.75-approximation algorithm for the opti-
mization problem Graph Balancing.

Proof. The set of integral feasible solutions for (LP3) is
in one-to-one correspondence with solutions of (GBapx)
with maximal load at most 1. Thus if there is no
feasible solution, the answer FAIL is correct. If there
is a feasible solution, Theorems 3.2 and 3.1 guarantee
that the output is an orientation with maximal load
1.75. Finally, a 1.75-approximation algorithm for the
optimization problem is obtained by a binary search on
the optimal makespan and scaling.

3.3 Integrality gaps and relations of linear pro-
grams

We have used three linear programs, (LP1), (LP2),
and (LP3). All of them have the same integral solutions,
but the set of fractional feasible solutions is decreasing.

The original linear program (LP1) has integrality
gap 2 even in our special case. An example is a long
path of edges of weight 1− ε with each endpoint having
a dedicated load of 1. If the length of the path is more
than 1/ε, it is easy to see that (LP1) is feasible, while
the best orientation has maximal load 2 − 2ε.

The constraints (Tree T ) are designed to avoid this
example, and the stronger constraints (Star v) avoid it
as well. Nevertheless, the integrality gap of both (LP2)
and (LP3) is 1.75. Consider a graph with three long
disjoint path with odd number of edges, all connecting
the same two vertices u and v. The weights of edges on
the paths alternate between 1 and 0.5 − ε, so that the
edges incident to u and v have weight 1. In addition,
there is a dedicated load of 0.25 on any vertex. Again,
for sufficiently long paths, both (LP2) and (LP3) are
feasible, as the new constraints are non-trivial only in
the neighborhood of u and v. Any orientation has to
assign at least two edges to the same vertex, which
creates a load of at least 1.75. Thus to improve the
approximation ratio, it is not sufficient to use our linear
programs.

To compare our linear programs, (LP3) is the
strongest one and has polynomial size, so it is more

suitable for finding the initial solution. However it
cannot be used directly in our rounding procedure. The
reason is that the sum

∑

e:v∈e xev used in (LP3) is not
preserved by Rotate, but the sums of pexev used in
(LP2) are preserved.

4 The lower bound

Theorem 4.1. Solving Graph Balancing with ap-
proximation ratio better than 1.5 is NP -hard.

Proof. We prove NP -hardness by a reduction from from
the following variant of 3-SAT: We are given a formula
in CNF (conjunctive normal form), with clauses of size
at most 3, with at most 3 occurrences of each variable,
and with at most 2 occurrences of each literal (a variable
or its negation). The NP -completeness of this problem
goes back (at least) to [10]. In fact the reduction is easy:
Given a general 3-CNF, we replace each occurrence
of each variable xi by a new variable xi1, . . . , xik for
some k, and add new clauses for a chain of implications
xi1 ⇒ xi2, xi2 ⇒ xi3, . . . , xi(k−1) ⇒ xik, xik ⇒ xi1

(written as disjunctions ¬xi1 ∨xi2, . . . ). Obviously, the
new formula is satisfiable if and only if φ is. Every new
variable occurs only three times and every literal occurs
only twice.

The graphs in the reduction will use half-integral
weights and dedicated loads, i.e., for all e, pe ∈ { 1

2 , 1}
and for all v, qv ∈ {0, 1

2 , 1}. (In fact the reduction can
be easily modified to not use the dedicated loads.) Thus
the load of each v is also half-integral. The reduction
is constructed so that it is NP -hard to decide if there
exists orientation such that the maximal load is 1. If
not, then half-integrality of pe and qv implies that the
maximal load is at least 3

2 . This gives the desired
inapproximability bound.

In the rest of the proof, we denote by dv the
weighted degree of vertex, i.e., dv = qv +

∑

e:v∈e pe.

The reduction: Given a 3-CNF(3) formula ϕ, we
construct a graph G(ϕ) as follows. There are vertices
for each literal, i.e., each variable is represented by two
vertices vx and v¬x. There are also vertices vα for
each clause α in ϕ. The two vertices corresponding to
each variable are connected with edge ex = {vx, v¬x}
of weight pex

= 1. (The intended meaning is that
the orientation of ex represents the false value. I.e., if
γ(ex) = v¬x, then x is true and vice versa.) Each clause
vertex vα is connected to vertices vl corresponding to
all of its literals l. The weight of each such edge
eαl = {vα, vl} is peαl

= 1
2 . The dedicated load qvα

is
set so that dvα

= 3
2 , i.e., we put qvα

= 0 for clauses with
three literals, qvα

= 1
2 for clauses with two literals, and

qvα
= 1 for clauses with a single literal.
We claim that ϕ is satisfiable if and only if G(ϕ)

has an orientation γ with maximal load 1.



Satisfiability: Suppose we have an orientation γ with
maximal load 1. We set variables in ϕ so that x is true
if γ(ex) = v¬x and x is false otherwise. Consider an
arbitrary clause α. Since dvα

= 3
2 , there is at least one

literal l in α such that γ(eαl) = vl. Let x be the variable
in this literal l. Then γ(ex) 6= vl, because peαl

+pex
> 1.

So our edge eαl demonstrates that l and α are both
satisfied by the assignment x as defined above.

Orientability: Now we are given a satisfying assign-
ment of our formula. We orient every edge ex so that
γ(ex) = v¬x if x is true and γ(ex) = vx otherwise.
We orient edges eαl so that γ(eαl) = vl if l is true,
and γ(eαl) = vα otherwise. Each vertex vl has load at
most 1, as its load consists either of the single edge of
weight 1 if l is false or of at most two edges of weight
1/2 if l is true. Each clause α is satisfied by at least
one literal, so there is an edge eαl with weight 1/2 sat-
isfying γ(eαl) 6= vα. Thus the load of vα is at most
dvα

− 1/2 = 1.

Open problems

The main open problem is to improve the 2-
approximation algorithm for unrelated machines. This
seems to be a very hard problem, and we do not see how
to extend our methods. Obviously, one approach would
be to extend our result to some larger class of the re-
stricted assignment problem, corresponding for example
to k-uniform hypergraphs in place of graph.

Another interesting way to extend our result would
be the case of unrelated graph balancing, by which we
mean the case when the load (weight) of an edge is
not the same for both endpoints. Even simpler but
nontrivial generalization of Graph Balancing is the
case with uniform speeds: every vertex has its speed
and the load of an edge with some weight is given by
the ratio of the edge weight and the vertex speed, for
all allowed assignments.

Even for the case of graphs there is the remaining
gap between 1.5 and 1.75. It would be nice to have a
tight(er) bound.

Acknowledgments. We are grateful to Yossi Azar for
discussions concerning this problem.
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