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Abstract. Efficient sufficient conditions are established for the
solvability of the Dirichlet problem

u′′(t) = p(t)u(t) + f(t, u(t)) + h(t) for a ≤ t ≤ b,

u(a) = 0, u(b) = 0,

where h, p ∈ L([a, b];R) and f ∈ K([a, b];R), in the case where
the linear problem

u′′(t) = p(t)u(t), u(a) = 0, u(b) = 0

has nontrivial solutions.
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Introduction

Consider on the set I = [a, b] the second order nonlinear ordinary
differential equation

u′′(t) = p(t)u(t) + f(t, u(t)) + h(t) for t ∈ I (0.1)

with the boundary conditions

u(a) = 0, u(b) = 0, (0.2)

where h, p ∈ L(I; R) and f ∈ K(I; R).
By a solution of the problem (0.1), (0.2) we understand a function

u ∈ C̃ ′(I, R), which satisfies the equation (0.1) almost everywhere on
I and satisfies the conditions (0.2).

Consider also the homogeneous problem

w′′(t) = p(t)w(t) for t ∈ I, (0.3)

w(a) = 0, w(b) = 0. (0.4)

At present, the foundations of the general theory of two-point bound-
ary value problems are already laid and problems of this type are stud-
ied by many authors and investigated in detail (see, for instance, [1],
[4], [5], [8], [12], [13], [14]- [16], [17] and references therein). On the
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2 S. MUKHIGULASHVILI

other hand, in all of these works, only the case when the homogeneous
problem (0.3), (0.4) has only a trivial solution is studied. The case
where the problem (0.3), (0.4) has also a nontrivial solution is still
little investigated and in the majority of articles, the authors study
the case with q constant in the equation (0.1), i.e., when the problem
(0.1), (0.2) and the equation (0.3) are of type

u′′(t) = −λ2u(t) + f(t, u(t)) + h(t) for t ∈ [0, π], (0.5)

u(0) = 0, u(π) = 0, (0.6)

and

w′′(t) = −λ2w(t) for t ∈ [0, π] (0.7)

respectively and λ = 1. (see, for instance, [2], [3], [4], [6]- [11], [14]- [16],
and references therein).

In the present paper, we study the problem (0.1), (0.2) in the case
when the function p ∈ L(I; R) is not necessarily constant, under the
assumption that the homogeneous problem (0.3), (0.4) has the non-
trivial solution with an arbitrary number of zeroes. For the equation
(0.7), this is the case when λ is not necessarily the first eigenvalue of
the problem (0.7), (0.6).

The obtained results are new and generalise some well-known re-
sults(see, [2], [3], [4], [6], [10]).

The following notation is used throughout the paper:
N is the set of all natural numbers. R is the set of all real num-

bers, R+ = [0, +∞[. C(I; R) is the Banach space of continuous
functions u : I → R with the norm ‖u‖C = max{|u(t)| : t ∈ I}.
C̃ ′(I; R) is the set of functions u : I → R which are absolutely con-
tinuous together with their first derivatives. L(I; R) is the Banach
space of Lebesgue integrable functions p : I → R with the norm

‖p‖L =
∫ b

a
|p(s)|ds. K(I; R) is the set of functions f : I → R satisfy-

ing the Carathéodory conditions. i.e., f(·, x) : I → R is a measurable
function for all x ∈ R, f(t, ·) : R → R is a continuous function for
almost all t ∈ I, and for every r > 0 there exists qr ∈ L(I; R+) such
that |f(t, x)| ≤ qr(t) for almost all t ∈ I, |x| ≤ r.

For w : I → R we put: Nw
def
= {t ∈ ]a, b[ : w(t) = 0},

Ω+
w

def
= {t ∈ I : w(t) > 0}, Ω−

w

def
= {t ∈ I : w(t) < 0},

and [w(t)]+ = (|w(t)|+w(t))/2, [w(t)]− = (|w(t)|−w(t))/2 for t ∈ I.

Definition 0.1. Let, A be a finite (empty) subset of I. We say that
f ∈ E(A), if f ∈ K(I; R), and for any measurable set G ⊆ I and the
constant r > 0, we can choose ε > 0 such that if∫

G

|f(s, x)|ds 6= 0 for x ≥ r (x ≤ −r)
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then∫
G\Uε

|f(s, x)|ds−
∫

Uε

|f(s, x)|ds ≥ 0 for x ≥ r (x ≤ −r),

where Uε = I ∩
(
∪n

k=1]tk − ε/2n, tk + ε/2n[
)

if A = {t1, t2, ..., tn},
and Uε = ∅ if A = ∅.

Remark 0.1. If f ∈ K(I; R) then f ∈ E(∅).

Remark 0.2. It is clear that if f(t, x) = f0(t)g0(x), where f0 ∈
L(I; R) and g0 ∈ C(I; R), then f ∈ E(A) for every finite set A ⊂ I.

The example below shows that there exists a function f ∈ K(I; R)
such that f 6∈ E({t1, ..., tk}) for some points t1, ..., tk ∈ I.

Example 0.1. Let f(t, x) = |t|−1/2g(t, x) for t ∈ [0, 1], and f(0, .) ≡ 0,
where g(−t, x) = g(t, x) for t ∈ [−1, 1] and

g(t, x) =

{
x for x ≤ 1/t, t > 0

1/t for x > 1/t, t > 0
.

Then f ∈ K([−1, 1]; R) and it is clear that f 6∈ E({0}) because, for

every ε > 0, if x ≥ 1/ε then
∫ 1

ε
f(s, x)ds −

∫ ε

0
f(s, x)ds = 4(ε−1/2 −

x1/2)− 2 < 0.

1. Main Results

Theorem 1.1. Let w be an arbitrary nonzero solution of the problem
(0.3), (0.4),

Nw = ∅, (1.1)

there exist the constant r > 0, the functions f−, f+ ∈ L(I; R+) and
g, h0 ∈ L(I; ]0, +∞[ ) such that

f(t, x)sgnx ≤ g(t)|x|+ h0(t) for t ∈ I, |x| ≥ r, (1.2)

and
f(t, x) ≤ −f−(t) for x ≤ −r,

f+(t) ≤ f(t, x) for x ≥ r,
(1.3)

on I. Let, moreover, there exist ε > 0 such that

−
∫ b

a

f−(s)|w(s)|ds + ε||γr||L ≤ −
∫ b

a

h(s)|w(s)|ds ≤

≤
∫ b

a

f+(s)|w(s)|ds− ε||γr||L, (1.41)

where

γr(t) = sup{|f(t, x)| : |x| ≤ r}. (1.5)

Then the problem (0.1), (0.2) has at least one solution.
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Example 1.1. It follows from Theorem 1.1 that the equation

u′′(t) = −λ2u(t) + σ|u(t)|αsgnu(t) + h(t) for 0 ≤ t ≤ π (1.6)

where σ = 1, λ = 1, and α ∈ ]0, 1], under the conditions (0.6) has at
least one solution for every h ∈ L([0, π], R).

Theorem 1.2. Let w be an arbitrary nonzero solution of the problem
(0.3), (0.4), condition (1.1) holds, there exist the constant r > 0, the
functions f−, f+ ∈ L(I; R+) and q ∈ K(I; R+) such that q is non-
decreasing in the second argument,

|f(t, x)| ≤ q(t, x) for t ∈ I, |x| ≥ r, (1.7)

f−(t) ≤ f(t, x) for x ≤ −r,

f(t, x) ≤ −f+(t) for x ≥ r,
(1.8)

on I, and

lim
|x|→+∞

1

x

∫ b

a

q(s, x)ds = 0. (1.9)

Let, moreover, there exist ε > 0 such that

−
∫ b

a

f−(s)|w(s)|ds + ε||γr||L ≤
∫ b

a

h(s)|w(s)|ds ≤

≤
∫ b

a

f+(s)|w(s)|ds− ε||γr||L, (1.42)

where γr is defined by (1.5). Then the problem (0.1), (0.2) has at least
one solution.

Example 1.2. From Theorem 1.2 it follows that the problem (1.6),
(0.6) with σ = −1, λ = 1, and α ∈ ]0, 1[ has at least one solution for
any h ∈ L([0, π]; R).

Remark 1.1. In the Theorem 1.i (i = 1, 2), the condition (1.4i) can
be replaced by

−
∫ b

a

f−(s)|w(s)|ds < (−1)i

∫ b

a

h(s)|w(s)|ds <

<

∫ b

a

f+(s)|w(s)|ds,

(1.10i)

because, from (1.10i) there follows the existence of a constant ε > 0
such that the condition (1.4i) is satisfied.

Theorem 1.3. Let i ∈ {0, 1}, w be an arbitrary nonzero solution of
the problem (0.3), (0.4), f ∈ E(Nw), there exist the constant r > 0
such that the function (−1)if is non-decreasing in the second argument
for |x| ≥ r,

(−1)if(t, x)sgnx ≥ 0 for t ∈ I, |x| ≥ r, (1.11)
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Ω+

w

|f(s, r)|ds +

∫
Ω−w

|f(s,−r)|ds 6= 0, (1.12)

and

lim
|x|→+∞

1

|x|

∫ b

a

|f(s, x)|ds = 0. (1.13)

Then there exists δ > 0 such that the problem (0.1), (0.2) has at least
one solution for every h satisfying the condition∣∣∣∣∣

∫ b

a

h(s)w(s)ds

∣∣∣∣∣ < δ. (1.14)

Corollary 1.1. Let the assumptions of Theorem1.3 be satisfied and
let ∫ b

a

h(s)w(s)ds = 0. (1.15)

Then the problem (0.1),(0.2) has at least one solution.

Example 1.3. From Theorem 1.3 it follows that the problem (1.6),
(0.6) with σ ∈ {−1, 1}, λ ∈ N , and α ∈ ]0, 1[ has at least one solution
if h ∈ L([0, π], R) is such that

∫ π

0
h(s)sinλsds = 0.

Theorem 1.4. Let i ∈ {0, 1}, w be an arbitrary nonzero solution of
the problem (0.3),(0.4), f(t, x) = f0(t)g0(x) with f0 ∈ L(I; R+), g0 ∈
C(R; R), there exist the constant r > 0 such that (−1)ig0 is non-
decreasing for |x| ≥ r, and

(−1)ig0(x)sgnx ≥ 0 for |x| ≥ r. (1.16)

Let, moreover,

|g0(r)|
∫

Ω+
w

f0(s)ds + |g0(−r)|
∫

Ω−w

f0(s)ds 6= 0 (1.17)

and

lim
|x|→+∞

|g0(x)| = +∞, lim
|x|→+∞

g0(x)

x
= 0. (1.18)

Then, for every h ∈ L(I; R), the problem (0.1), (0.2) has at least one
solution.

Example 1.4. From the Theorem 1.4 it follows that the equation

u′′(t) = p0(t)u(t) + p1(t)|u(t)|αsgnu(t) + h(t) for t ∈ I, (1.19)

where α ∈ ]0, 1[ and p0, p1, h ∈ L(I; R), under the conditions (0.2) has
at least one solution provided that p1(t) > 0 for t ∈ I.

Theorem 1.5. Let i ∈ {0, 1} and w be an arbitrary nonzero solution
of the problem (0.3),(0.4). Let, moreover, there exist the constants
r > 0, ε0 > 0, and the functions α, f+, f− ∈ L(I; R+) such that the
conditions

(−1)if(t, x) ≤ −f−(t) for x ≤ −r,

f+(t) ≤ (−1)if(t, x) for x ≥ r,
(1.20i)
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sup{|f(t, x)| : x ∈ R} = α(t) (1.21)

hold on I, and let

−
∫ b

a

(f+(s)[w(s)]− + f−(s)[w(s)]+)ds + ε||α||L ≤

≤ (−1)i+1

∫ b

a

h(s)w(s)ds ≤

≤
∫ b

a

(f−(s)[w(s)]− + f+(s)[w(s)]+)ds− ε||α||L.

(1.22i)

Then the problem (0.1), (0.2) has at least one solution.

Remark 1.2. If f 6≡ 0 then the condition (1.22i) (i = 1, 2) of Theorem
1.5 can be replaced by

−
∫ b

a

(f+(s)[w(s)]− + f−(s)[w(s)]+)ds <

< (−1)i+1

∫ b

a

h(s)w(s)ds <

<

∫ b

a

(f−(s)[w(s)]− + f+(s)[w(s)]+)ds.

(1.23i)

because from (1.23i) there follows the existence of a constant ε > 0
such that the condition (1.22i) is satisfied.

Example 1.5. From Theorem 1.5 it follows that the equation

u′′(t) = −λ2u(t) +
|u(t)|α

1 + |u(t)|α
sgnu(t) + h(t) for 0 ≤ t ≤ π, (1.24)

where λ ∈ N and α ∈ ]0, +∞[ , under the conditions (0.6) has at least
one solution if h ∈ L([0, π], R) is such that |h(t)| < 1 for 0 ≤ t ≤ π.

2. Problem (0.5), (0.6).

Throughout this section we will assume that a = 0, b = π, and
I = [0, π]. In view of the fact that the functions ±sinλt are the solu-
tions of the problem (0.7), (0.6), from Theorems 1.1–1.5 the following
corollaries are true

Corollary 2.1. Let λ = 1 and all the assumptions of Theorem 1.1
(resp. Theorem 1.2) except (1.1) be fulfilled with w(t) = sint. Then
the problem (0.5), (0.6) has at least one solution.

Now, note that

Nsinλt =

{
∅ for λ = 1

{πn/λ : n = 1, ..., λ− 1} for λ ≥ 2
.
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Corollary 2.2. Let i ∈ {0, 1}, λ ∈ N , f ∈ E(Nsinλt), there exist
the constant r > 0 such that the function (−1)if is non-decreasing in
the second argument for |x| ≥ r, and let the conditions (1.11)–(1.13)
be fulfilled with w(t) = sinλt. Then there exists δ > 0 such that the
problem (0.5), (0.6) has at least one solution for every h ∈ L(I; R)
satisfying the condition |

∫ π

0
h(s) sin λsds| < δ.

Corollary 2.3. Let i ∈ {0, 1}, λ ∈ N , and let all the assumptions of
Theorem 1.4 be fulfilled with w(t) = sin λt. Then, for any h ∈ L(I; R),
the problem (0.5), (0.6) has at least one solution.

Corollary 2.4. Let i ∈ {0, 1}, λ ∈ N and let there exist the constant
r > 0 such that (1.20i)–(1.22i) be fulfilled with w(t) = sinλt. Then the
problem (0.5), (0.6) has at least one solution.

Remark 2.1. In the Corollary 2.1 (resp. Corollary 2.4), the condition
(1.4i) (resp. (1.22i)) can be changed by the condition (1.10i) (resp.
(1.23i)) with w(t) = sint (resp. w(t) = sinλt).

3. Auxiliary Propositions

Let un ∈ C̃ ′(I; R), ‖un‖C 6= 0 (n ∈ N), w be an arbitrary solution
of the problem (0.3), (0.4), and r > 0. Then, for every n ∈ N , we

define: An,1
def
= {t ∈ I : |un(t)| ≤ r}, An,2

def
= {t ∈ I : |un(t)| > r},

Bn,i
def
= {t ∈ An,2 : sgnun(t) = (−1)i−1sgnw(t)} (i = 1, 2),

Cn,1
def
= {t ∈ An,2 : |w(t)| ≥ 1/n}, Cn,2

def
= {t ∈ An,2 : |w(t)| < 1/n},

Dn
def
= {t ∈ I : |w(t)| > r||un||−1

C + 1/2n},

A±
n,2

def
= {t ∈ An,2 : ±un(t) > r}, B±

n,i

def
= A±

n,2 ∩Bn,i,

C±
n,i

def
= A±

n,2∩Cn,i (i = 1, 2), D±
n

def
= {t ∈ I : ±w(t) > r||un||−1

C +1/2n},
From these definitions it is clear that, for any n ∈ N , we have

An,1 ∩ An,2 = ∅, A+
n,2 ∩ A−

n,2 = ∅, Bn,1 ∩Bn,2 = ∅, Cn,1 ∩ Cn,2 = ∅,

D+
n ∩D−

n = ∅, B+
n,2 ∩B−

n,2 = ∅, C+
n,i ∩ C−

n,i = ∅ (i = 1, 2), (3.1)

An,1 ∪ An,2 = I, A+
n,2 ∪ A−

n,2 = An,2, Bn,1 ∪Bn,2 = An,2 \Nw,

Cn,1 ∪ Cn,2 = An,2, B
+
n,2 ∪B−

n,2 = Bn,2, C±
n,1 ∪ C±

n,2 = A±
n,2,

C+
n,i ∪ C−

n,i = Cn,i (i = 1, 2), D+
n ∪D−

n = Dn.
(3.2)

Lemma 3.1. Let un ∈ C̃ ′(I; R) (n ∈ N), r > 0, w be an arbitrary
solution of the problem (0.3), (0.4) and

||un||C ≥ 2rn for n ∈ N, (3.3)

||vn − w||C ≤ 1/2n for n ∈ N, (3.4)
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where vn(t) = un(t)||un||−1
C . Then there exists n0 ∈ N such that

D+
n0
⊂ A+

n,2, D−
n0
⊂ A−

n,2 for n ≥ n0, (3.5)

C+
n0,1 ⊂ D+

n C−
n0,1 ⊂ D−

n for n ≥ n0. (3.6)

Moreover

lim
n→+∞

mesAn,1 = 0, lim
n→+∞

mesAn,2 = mesI, (3.7)

Cn,1 ⊂ Bn,1, Bn,2 ⊂ Cn,2, (3.8)

B+
n,2 ⊂ C+

n,2, B−
n,2 ⊂ C−

n,2, (3.9)

C+
n,1 ⊂ B+

n,1, C−
n,1 ⊂ B−

n,1, (3.10)

lim
n→+∞

mesCn,1 = lim
n→+∞

mesBn,1 = mesI,

lim
n→+∞

mesCn,2 = lim
n→+∞

mesBn,2 = 0,
(3.11)

|vn(t)| ≤ 1/2n for t ∈ Bn,2, (3.12)

|vn(t)| ≥ 1/2n for t ∈ Cn,1, (3.13)

lim
n→+∞

mes
(
C±

n,1 ∩ Ω±
w

)
= mesΩ±

w . (3.14)

Proof. From the unique solvability of Caushy’s problem for the equa-
tion (0.3) it follows that the set Nw is finite. Consequently we can

assume that Nw = {t1, ..., tk}. Let also t0 = a, tk+1 = b and Tn
def
=

I ∩
(
∪k+1

i=0 [ti − 1/n, ti + 1/n]
)
. We first show that, for every n0 ∈ N ,

there exists n1 > n0 such that

An,1 ⊆ Tn0 for n ≥ n1. (3.15)

Suppose on the contrary that, for some n0 ∈ N , there exists the
sequence t′nj

∈ Anj ,1 (j ∈ N) with nj < nj+1, such that t′nj
6∈ Tn0 for

j ∈ N . Without loss of generality we can assume that limj→+∞ t′nj
=

t′0. Then from the conditions (3.3),(3.4), the definition of the set An,1

and the equality w(t′0) = (w(t′0)−w(t′nj
))+(w(t′nj

)−vnj
(t′nj

))+vnj
(t′nj

),

we get |w(t′0)| = 0, i.e., t′0 ∈ {t0, t1, ..., tk+1}. But this contradicts the
condition t′nj

6∈ Tn0 and thus (3.15) is true. Since lim
n→+∞

mesTn = 0, it

follows from (3.2) and (3.15) that (3.7) is valid.

Let t0 ∈ D+
n0

. Then from (3.4) it follows that un(t0)
||un||C

≥ w(t0) −
|vn(t0) − w(t0)| > r

||un0 ||C
+ 1

2n0
− 1

2n
≥ r

||un0 ||C
for n ≥ n0, and thus

t0 ∈ A+
n,2 for n ≥ n0, i.e., D+

n0
⊂ A+

n,2 for n ≥ n0. The second relation
of (3.5) can be proved analogously. Now suppose that t0 ∈ Cn,1 and
t0 6∈ Bn,1. Then, in view of (3.1) and (3.2), it is clear that t0 ∈ Bn,2,
and thus

|vn(t0)− w(t0)| = |vn(t0)|+ |w(t0)| > 1/n , (3.16)

which contradicts (3.4). Consequently, Cn,1 ⊂ Bn,1 for n ∈ N . This,
together with the relations Cn,2 = An,2\Cn,1, Bn,2 ⊆ An,2\Bn,1, implies
Bn,2 ⊂ Cn,2, i.e., (3.8) holds. The conditions (3.9) and (3.10) follow
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immediately from (3.8). In view of the fact that limn→+∞ mesCn,i =
(2− i)mesI, from (3.8) we gat (3.11). Now, let t0 ∈ Bn,2 and suppose
that |vn(t0)| > 1/2n. Then from (3.4) we obtain the following contra-
diction 1/2n ≥ |vn(t0) − w(t0)| = |vn(t0)| + |w(t0)| > 1/2n + |w(t0)|,
i.e., (3.12) holds. From (3.4) and the definition of the set Cn,1 we
obtain (3.13). Now we will show that

C±
n,1 = {t ∈ An,2 : ±w(t) ≥ 1/n} for n ∈ N. (3.17)

Let there exists t0 ∈ C+
n,1 such that t0 6∈ {t ∈ An,2 : w(t) ≥ 1/n}.

Then from the definition of the sets Cn,1 and C+
n,1 we get that w(t) ≤

−1/n and t0 ∈ A+
n,2. In this case the inequality (3.16) is fullfild, which

contradict (3.4). Therefore C+
n,1 ⊂ {t ∈ An,2 : w(t) ≥ 1/n}. Let now

t0 ∈ {t ∈ An,2 : w(t) ≥ 1/n} and t0 6∈ C+
n,1. Then from the definition

of the set Cn,1 and (3.2) it is clear that t0 ∈ C−
n,1, i.e. t0 ∈ A−

n,2, and
that the inequality (3.16) is fullfild, which contradicts (3.4).Therefore
{t ∈ An,2 : w(t) ≥ 1/n} ⊂ C+

n,1. From the last two inclusions it follows

that (3.17) is valid for C+
n,1. From (3.2) and (3.17) for C+

n,1 it is clear

that (3.17) is true for C−
n,1 too. From (3.17), the definition of the sets

D±
n and (3.3) we obtain (3.6). From the definition of the set Ω±

w and
(3.17) we get C±

n,1 ∩Ω±
w = {t ∈ I : ±w(t) ≥ 1/n} \ (I \An,2) and then

mes(C±
n,1 ∩ Ω±

w) ≥ mes({t ∈ I : ±w(t) ≥ 1/n})−mes(I \ An,2)

where in view of (3.7) the equality lim
n→+∞

mes(I \ An,2) = 0 holds.

From the last two relation and the fact that C±
n,1 ∩ Ω±

w ⊂ Ω±
w , we

obtain (3.14). �

Lemma 3.2. Let i ∈ {1, 2}, r > 0, k ∈ N , w be an arbitrary solution
of the problem (0.3), (0.4), Nw = {t1, ..., tk}, the function f1 ∈ E(Nw)
be non-decreasing in second argument for |x| ≥ r, and let the condi-
tions (3.3) and

f1(t, x)sgnx ≥ 0 for t ∈ I, |x| ≥ r, (3.18)

hold. Then:
a)If G ⊂ I and ∫

G

|f1(s, (−1)ir)w(s)|ds 6= 0, (3.19)

then there exist δ0 > 0 and ε1 > 0 such that

I(G, Uε, x)
def
≡

∫
G\Uε

|f1(s, x)w(s)|ds−
∫
Uε

|f1(s, x)w(s)|ds > δ0, (3.20)

for (−1)ix ≥ r, 0 < ε ≤ ε1 where Uε = I∩
(
∪k

j=1 [tj−ε/2k, tj+ε/2k]
)
.

b)For any r > 0 and δ1 > 0 there exist ε2 > 0 and n0 ∈ N such that

I(D+
n , U+

ε , x) ≥ −δ1 for x ≥ r, (3.211)
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I(D−
n , U−

ε , x) ≥ −δ1 for x ≤ −r, (3.212)

for n ≥ n0 and 0 < ε ≤ ε2, where U±
ε = {t ∈ Uε : ±w(t) ≥ 0}.

Proof. a)For any α ∈ R+, we put G1 = ([a, a + α] ∪ [b− α, b]) ∩G. In
view of the condition (3.19) we can choose α ∈]0, (b− a)/2[ such that
if G2 = G \G1, ta = inf{G2} and tb = sup{G2}, then

a < ta, tb < b, (3.22)

and
∫

G1
|f(s, (−1)ir)w(s)|ds 6= 0,

∫
G2
|f(s, (−1)ir)|ds 6= 0. From these

inequalities, by the conditions (3.18) and f1 ∈ E(Nw) where f1 is
non-decreasing in the second argument, there follows the existence of
δ0 > 0 and ε∗ > 0 such that∫

G2\Uε∗

|f1(s, x)|ds−
∫

Uε∗

|f1(s, x)|ds ≥ 0 for (−1)ix ≥ r, (3.23)∫
G1\Uε∗

|f1(s, x)w(s)|ds > δ0 for (−1)ix ≥ r. (3.24)

Now we put I∗ = [t∗a, t∗b ], where t∗a = a+min(ta,t1)
2

and t∗b = max(tk,tb)+b
2

.
In view of (3.22), we obtain

G2 ⊂ I∗, Nw ⊂ I∗, w(t∗a) 6= 0, w(t∗b) 6= 0. (3.25)

Then it is clear that there exists γ1 > 0 such that for any γ ∈]0, γ1[
the equation |w(t)| = γ, on the set I∗, has only tγ,i, t

∗
γ,i (i = 1, ..., k)

solutions and
tγ,i < ti < t∗γ,i (i = 1, ..., k), (3.26)

|w(t)| ≤ γ for t ∈ Hγ, |w(t)| > γ for t ∈ I∗ \Hγ, (3.27)

where Hγ = ∪k
i=1[tγ,i, t

∗
γ,i], and

limγ→+0tγ,i = limγ→+0t
∗
γ,i = ti (i = 1, ..., k). (3.28)

The relations (3.26) and (3.28) imply that there exist γ ∈ ]0, γ1] and
ε1 ∈]0, ε∗] such that

Uε1 ⊂ Hγ ⊂ Uε∗ . (3.29)

Moreover, from the inclusion G1 ⊂ G it is clear that

G\Uε1 =
[(

G\G1

)
\Uε1

]
∪

(
G1\Uε1

)
,

[(
G\G1

)
\Uε1

]
∩

(
G1\Uε1

)
= ∅,

and thus

I(G, Uε1 , x) =

∫
G1\Uε1

|f1(s, x)w(s)|ds+I(G2, Uε1 , x) for (−1)ix ≥ r.

By virtue of (3.23), (3.25), (3.27), and (3.29), we get

I(G2, Uε1 , x) ≥ γ
( ∫

G2\Hγ

|f1(s, x)|ds−
∫

Hγ

|f1(s, x)|ds
)
≥

≥ γ
( ∫

G2\Uε∗

|f1(s, x)|ds−
∫

Uε∗

|f1(s, x)|ds
)
≥ 0
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for (−1)ix ≥ r. In view of the last two relations, (3.24), and the fact
that Uε1 ⊂ Uε∗ , we conclude that the inequality (3.20) holds.

b) First consider the case when∫
D+

n

|f1(s, x)w(s)|ds = 0 for x ≥ r, n ∈ N. (3.30)

By (3.3) and the definitions of the sets D±
n and U±

ε we get

limn→+∞mes(U±
ε \D±

n ) = 0. (3.31)

Then in view of (3.30) and the fact that for any ε > 0 and n ∈ N

U±
ε = (U±

ε ∩D±
n )∪ (U±

ε \D±
n ), (U±

ε ∩D±
n )∩ (U±

ε \D±
n ) = ∅, (3.32)

we have
∫

U+
ε
|f1(s, x)w(s)|ds =

∫
U+

ε \D+
n
|f1(s, x)w(s)|ds for x ≥ r, n ∈

N , and ε > 0. Thus in view of (3.31) we get
∫

U+
ε
|f1(s, x)w(s)|ds = 0.

From the last equality and (3.30) we conclude that

I(D+
n , U+

ε , x) = 0 for x ≥ r, n ∈ N, ε > 0. (3.33)

Therefore in this case (3.211) is true.
Now, consider the case when for some r1 ≥ r there exists n0 ∈ N

such that ∫
D+

n

|f1(s, x)w(s)|ds 6= 0 for x ≥ r1, n ≥ n0. (3.34)

It is clear that there exist η > 0 and ε2 > 0 such that∫
U+

ε

|f1(s, x)w(s)|ds ≤ δ1 for r ≤ x ≤ r1 + η, ε ≤ ε2,

and then

I(D+
n , U+

ε , x) ≥ −δ1 for r ≤ x ≤ r1 + η, n ≥ n0, ε ≤ ε2. (3.35)

On the other hand, from the fact that f1 is non-decreasing in the
second argument (3.18) and (3.34) it is clear that

∫
D+

n0
|f1(s, r1 +

η)w(s)|ds 6= 0. Therefore from item a) of our lemma with G = D+
n ,

and the inclusions D+
n0
⊂ D+

n , U+
ε ⊂ Uε for n ≥ n0, ε > 0 we get

I(D+
n , U+

ε , x) ≥ δ0 for x ≥ r1 + η, n ≥ n0, ε ≤ ε2. From this in-
equality and (3.35) we obtain (3.211) in second case too. Analogously
one can prove (3.212). �

Lemma 3.3. Let all the conditions of Lemma3.1 be fulfilled and there
exist r > 0 such that the condition (3.18) holds where f1 ∈ K(I; R).
Then

lim
n→+∞

inf

∫ t

s

f1(ξ, un(ξ))sgnun(ξ)dξ ≥ 0 for a ≤ s < t ≤ b. (3.36)
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Proof. Let

γ∗r (t)
def
= sup{|f1(t, x)| : |x| ≤ r} for t ∈ I. (3.37)

Then, according to (3.1), (3.2), and (3.18), we obtain the estimate∫ t

s

f1(ξ, un(ξ))sgnun(ξ)dξ ≥

≥ −
∫

[s,t]∩An,1

γ∗r (ξ)dξ +

∫
[s,t]∩An,2

|f1(ξ, un(ξ))|dξ

for a ≤ s < t ≤ b, n ∈ N . This estimate and (3.7) imply (3.36). �

Lemma 3.4. Let r > 0, un ∈ C̃ ′(I; R) (n ∈ N), w be a nonzero
solution of the problem (0.3), (0.4), the condition (3.3) hold and

|v(i)
n (t)− w(i)(t)| ≤ 1/2n for t ∈ I, n ∈ N, (i = 0, 1) (3.38)

where vn(t) = un(t)||un||−1
C for t ∈ I,

Nw = ∅, (3.39)

and

un(a) = 0, un(b) = 0. (3.40)

Let, moreover, f1 ∈ K(I; R), h1 ∈ L(I; R), there exist the numbers
ε > 0, n0 ∈ N and the functions f+, f− ∈ L(I; R+) such that

f1(t, x) ≤ −f−(t) for x ≤ −r,

f+(t) ≤ f1(t, x) for x ≥ r,
(3.41)

on I, and

−
∫ b

a

f−(s)|w(s)|ds + ε||γ∗r ||L ≤ −
∫ b

a

h1(s)|w(s)|ds ≤

≤
∫ b

a

f+(s)|w(s)|ds− ε||γ∗r ||L, (3.42)

when γ∗ is defined by (3.37) Then there exists n1 ∈ N such that

Mn
def
=

∫ b

a

(h1(s) + f1(s, un(s)))w(s)ds ≥ 0 for n ≥ n1. (3.43)

Proof. It is not difficult to verify that all the assumptions of Lemma3.1
are satisfied. From the unique solvability of Caushy’s problem for the
equation (0.3) and the conditions (0.4) we conclude that w′(a) 6= 0
and w′(b) 6= 0. Therefore in view of (3.38)-(3.40) there exists n2 ∈ N
such that

un(t)sgnw(t) > 0 for n ≥ n2, a < t < b. (3.44)
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Also, by (3.1) and (3.2) we gat the estimate

Mn ≥ −
∫

An,1

γ∗r (s)|w(s)|ds +

∫ b

a

h1(s)w(s)ds+

+

∫
An,2

f1(s, un(s))w(s)ds,

(3.45)

where γ∗r is given by (3.37). Now, note that f− ≡ 0, f+ ≡ 0 if
f1(t, x) ≡ 0. Then by virtue of (3.7), we see that there exist ε >

0 and n1 ∈ N (n1 ≥ n2), such that
∫ b

a
f±(s)|w(s)|ds − ε

2
||γ∗r ||L ≤∫

An,2
f±(s)|w(s)|ds and ε

2
||γ∗r ||L ≥

∫
An,1

γ∗r (s)|w(s)|ds for n ≥ n1. By

these inequalities, (3.3), (3.41), and (3.44), from (3.45) we obtain

Mn ≥ −ε||γ∗r ||L +

∫ b

a

h1(s)|w(s)|ds +

∫ b

a

f+(s)|w(s)|ds

if n ≥ n1 and w(t) ≥ 0. Analogously we obtain

Mn ≥ −ε||γ∗r ||L −
∫ b

a

h1(s)|w(s)|ds +

∫ b

a

f−(s)|w(s)|ds,

for n ≥ n1 and w(t) ≤ 0. From the last two estimates in view of (3.42)
it follows that (3.43) is valid. �

Lemma 3.5. Let r > 0, un ∈ C̃ ′(I; R) (n ∈ N), w be an arbitrary
nonzero solution of the problem (0.3),(0.4), and the conditions (3.3),
(3.18), (3.38), (3.40) hold. Let, moreover the function f1 ∈ E(Nw) be
non-decreasing in the second argument for |x| ≥ r, and∫

Ω+
w

|f1(s, r)|ds +

∫
Ω−w

|f1(s,−r)|ds 6= 0. (3.46)

Then there exist δ > 0 and n1 ∈ N such that if∣∣∣∣∣
∫ b

a

h1(s)w(s)ds

∣∣∣∣∣ < δ, (3.47)

the inequality (3.43) holds.

Proof. It is not difficult to verify that all the assumption of Lemma
3.1 are satisfied. Then by the definition of the sets Bn,1, Bn,2, (3.1),
(3.2), and (3.18) we obtain the estimate∫ b

a

f1(s, un(s))w(s)ds ≥ −
∫

An,1

γ∗r (s)|w(s)|ds + M̂n (3.48)

where

M̂n = −
∫

Bn,2

|f1(s, un(s))w(s)|ds +

∫
Bn,1

|f1(s, un(s))w(s)|ds.
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On the other hand from unique solvability of Cauchy’s problem for
the equation (0.3) it is clear that

w′(a) 6= 0, w′(b) 6= 0, w′(ti) 6= 0 for i = 1, ..., k. (3.49)

In view of (3.14) and (3.46), there exists n2 ≥ n0 such that∫
C+

n2,1

|f1(s, r)w(s)|ds 6= 0 (3.501)

and/or ∫
C−n2,1

|f1(s,−r)w(s)|ds 6= 0. (3.502)

From (3.501) and (3.502) in view of (3.6) it follows that∫
D+

n,1

|f1(s, r)w(s)|ds 6= 0 and /or

∫
D−

n,1

|f1(s,−r)w(s)|ds 6= 0 (3.51)

for n > n2 respectively, i.e., all the assumptions of Lemma 3.2 are
satisfied with G = D+

n and/or G = D−
n . Then there exist 0 < ε0 ≤

min{ε1, ε2}, n3 ≥ n2, and δ0 > 0 such that

I(D+
n , U+

ε0
, x) ≥ δ0 for x ≥ r, n ≥ n3 (3.521)

if (3.501) holds,

I(D−
n , U−

ε0
, x) ≥ δ0 for x ≤ −r, n ≥ n3, (3.522)

if (3.502) holds, and

I(D+
n , U+

ε0
, x) ≥ −δ0/2, for x ≥ r, n ≥ n3,

I(D−
n , U−

ε0
, x) ≥ −δ0/2, for x ≤ −r, n ≥ n3.

(3.53)

On the other hand the definition of the set Uε and (3.17), imply
that there exists n4 > n3, such that

C+
n,2 ⊂ U+

ε0
, C−

n,2 ⊂ U−
ε0

for n ≥ n4. (3.54)

By this inclusion, (3.2), and (3.5) we obtain that for n ≥ n4

C+
n,1 = A+

n,2 \ C+
n,2 ⊃ D+

n0
\ U+

ε0
, C−

n,1 = A−
n,2 \ C−

n,2 ⊃ D−
n0
\ U+

ε0
. (3.55)

Now, suppose Nw 6= ∅, and let there exists n ≥ n4 such that

Bn,2 6= ∅. (3.56)

Then, by taking into account that f1 is non-decreasing in the second
argument for |x| ≥ r, (3.3), (3.12), (3.18) and the definitions of the
sets B+

n,2, B
−
n,2, we obtain

|f1(t, un)| ≤ f1(t,
||un||C

2n
) = |f1(t,

||un||C
2n

)| for t ∈ B+
n,2,

|f1(t, un)| ≤ −f1(t,−
||un||C

2n
) = |f1(t,−

||un||C
2n

)| for t ∈ B−
n,2.

(3.57)
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Analogously from (3.3), (3.13), (3.18), and the definitions of the sets
C+

n,1, C
−
n,1, we obtain the estimates

|f1(t, un(s))| ≥ |f1(t,
||un||C

2n
)| for t ∈ C+

n,1,

|f1(t, un(s))| ≥ |f1(t,−
||un||C

2n
)| for t ∈ C−

n,1.

(3.58)

Then from (3.1), (3.2), (3.9), (3.57) and respectively from (3.1), (3.2),
(3.10), and (3.58) we have∫

Bn,2

|f1(s, un(s))w(s)|ds ≤

≤
∫

C+
n,2

|f1(s,
||un||C

2n
)w(s)|ds +

∫
C−n,2

|f1(s,−
||un||C

2n
)w(s)|ds (3.59)

and respectively ∫
Bn,1

|f1(s, un)w(s)|ds ≥

≥
∫

C+
n,1

|f1(s,
||un||C

2n
)w(s)|ds +

∫
C−n,1

|f1(s,−
||un||C

2n
)w(s)|ds. (3.60)

Then if the condition (3.56) holds, from (3.59), (3.60), (3.521), (3.522),
(3.53), (3.54), and (3.55) we get

M̂n ≥ I(D+
n , U+

ε0
,
||un||C

2n
) + I(D−

n , U−
ε0

,−||un||C
2n

) ≥ δ0

2
. (3.61)

On the other hand, in view of (3.10), (3.18), the definition of the
sets An,2, Bn,1 and the fact that f1 is non-decreasing in the second
argument, we obtain the estimate∫

Bn,1

|f1(s, un(s))w(s)|ds ≥

≥
∫

C+
n,1

|f1(s, r)w(s)|ds +

∫
C−n,1

|f1(s,−r)w(s)|ds. (3.62)

Now, suppose that there exists n ≥ n4 such that

Bn,2 = ∅. (3.63)

Thus from (3.501), (3.502) and (3.62),(3.63) there follows the existence

of δ∗ > 0 such that M̂n ≥ δ∗. From this inequality and (3.61) it follows
that in both cases when (3.56) or (3.63) are fulfilled the inequality

M̂n ≥ δ for n ≥ n4 (3.64)

holds with δ = min{δ0/2, δ
∗}. Then from (3.48) by (3.7) and (3.64),

we see that for any ε > 0 there exists n1 > n4 such that∫ b

a

f1(s, un(s))w(s)ds ≥ δ − ε for n ≥ n1,
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and then

Mn ≥ δ +

∫ b

a

h1(s)w(s)ds− ε for n ≥ n1. (3.65)

If Nw = ∅, then in view of (3.3), (3.38), (3.40) and (3.49), the
condition (3.63) holds, i.e., the inequality (3.65) holds too.

Consequently because ε > 0 is arbitrary, from (3.65) and (3.47) the
inequality (3.43) follows. �

Lemma 3.6. Let, all the conditions of Lemma 3.5, except (3.47), be
satisfied with f1(t, x) = f0(t)g1(x) where f0 ∈ L(I; R+), g1 ∈ C(R; R)

lim
|x|→+∞

|g1(x)| = +∞. (3.66)

Then for any function h1 ∈ L(I; R) the inequality (3.43) holds.

Proof. From the conditions of our Lemma it is clear that the relations
(3.48)–(3.55),(3.57)– (3.60) and (3.62) with f1(t, x) = f0(t)g1(x) are
fulfilled and the function g1 is non-decreasing. Note now that, by the
same way as the equality (3.33) in the Lemma 3.2, from the relations
(3.31) and (3.32) there follows the existence of ε0 and n0 ∈ N such
that

β± ≡
∫

D±
n \U±ε0

f0(s)|w(s)|ds−
∫

U±ε0

f0(s)|w(s)|ds ≥ 0, (3.67)

for n ≥ n0. Now suppose that the condition (3.501) i.e., (3.521) holds
and first consider the case when n ≥ n4 is such that (3.56) is fulfilled.
From (3.521) it follows that |g1(r)| > 0 and β+ > 0. Consequently
in view of the fact that g1 is non-decreasing we get I(D+

n , U+
ε0

, x) ≥
|g1(r)|β+ > 0 for x ≥ r. By virtue of this last inequality and
(3.67) we see that the inequality (3.61) is true with δ = |g1(r)|β+, i.e.,

M̂n ≥ |g1(r)|β+ > 0. Consider, now the case when n ≥ n4 is such
that the condition (3.63) holds. Then by virtue of (3.14) and (3.46)
from (3.62) we see that for arbitrary ε1 > 0 there exists n5 ≥ n4 such

that M̂n ≥ |g1(r)|
∫

Ω+
w

f0(s)ds − ε1 > 0, if n ≥ n5. From the last

two relation and (3.48) in view of (3.7) it follows that in any case
(when (3.56) or (3.63) hold) there exist ε2 > 0 and n1 ≥ n4 such

that
∫ b

a
f1(s, un(s))w(s)ds ≥ β|g1(r)| − ε2 > 0 for n ≥ n1 when

β = min(β+,
∫

Ω+
w

f0(s)ds). From (3.66) and the last inequality it is
clear that for any function h1 we can choose r > 0 such that the
inequality (3.43) will be true. Analogously one can proof (3.43) in the
case when the inequality (3.502) holds. �

Lemma 3.7. Let r > 0, un ∈ C̃ ′(I; R) (n ∈ N), w be an arbitrary
nonzero solution of the problem (0.3),(0.4), and the conditions (3.3),
(3.38), and (3.40) hold. Moreover let there exists n0 ∈ N and the
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functions α, f−, f+ ∈ L(I, R+) such that the condition (3.41) is satis-
fied,

sup{|f1(t, x)| : x ∈ R} = α(t) for t ∈ I, (3.68)

and

−
∫ b

a

(f+(s)[w(s)]− + f−(s)[w(s)]+)ds + ε||α||L ≤

≤ −
∫ b

a

h1(s)w(s)ds ≤

≤
∫ b

a

(f−(s)[w(s)]− + f+(s)[w(s)]+)ds− ε||α||L. (3.69)

Than there exists n1 ∈ N such that the inequality (3.43) holds.

Proof. It is not difficult to verify that all the assumption of Lemma3.1
are satisfied. From (3.1), (3.2), and (3.68) we gat

Mn ≥ −
∫

An,1∪Bn,2

α(s)|w(s)|ds +

∫
Bn,1

f1(s, un)w(s)ds+

+

∫ b

a

h1(s)w(s)ds.

(3.70)

Also, by the definition of the set Bn,1 we obtain

sgnun(t) = sgnw(t) for t ∈ B+
n,1 ∪B−

n,1. (3.71)

Then, by (3.1), (3.2), (3.10), (3.41), and (3.71) from (3.70) we readily
obtain the estimate

Mn ≥ −
∫

An,1∪Bn,2

α(s)|w(s)|ds +

∫
C+

n,1

f+(s)|w(s)|ds+

+

∫
C−n,1

f−(s)|w(s)|ds +

∫ b

a

h1(s)w(s)ds. (3.72)

Now, note that f− ≡ 0, f+ ≡ 0 if f1(t, x) ≡ 0. Then by (3.7), (3.11),
(3.14), and the inclusions C+

n,1 ⊂ Ω+
w , C−

n,1 ⊂ Ω−
w we see that there

exist ε > 0 and n1 ∈ N such that

1

3
ε||α||L ≥

∫
An,1∪Bn,2

α(s)|w(s)|ds∫
Ω±w

f±(s)|w(s)|ds− 1

3
ε||α||L ≤

∫
C±n,1

f±(s)|w(s)|ds
(3.73)

if n ≥ n1. Let w1 be an arbitrary solution of the problem (0.3),(0.4).
First suppose that w(t) ≡ w1(t). By virtue of (3.72) and (3.73) we
obtain

Mn ≥ −ε||α||L +

∫
Ω+

w1

f+(s)|w1(s)|ds+

+

∫
Ω−w1

f−(s)|w1(s)|ds +

∫ b

a

h1(s)w1(s)ds.
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Analogously, if w(t) ≡ −w1(t), we obtain

Mn ≥ −ε||α||L +

∫
Ω+
−w1

f+(s)|w1(s)|ds+

+

∫
Ω−−w1

f−(s)|w1(s)|ds−
∫ b

a

h1(s)w1(s)ds.

Now, by taking into account the fact that the problem (0.3),(0.4) has
only two solutions (different only by sign) and the fact that∫

Ω±w1

l(s)|w1(s)|ds =

∫ b

a

l(s)[w1(s)]±ds,

∫
Ω±−w1

l(s)|w1(s)|ds =

∫ b

a

l(s)[w1(s)]∓ds,

for the arbitrary l ∈ L(I, R), from the last two inequalities and (3.69)
we immediately obtain (3.43). �

Now we consider the definitions of the sets V10((a, b)) introduced
and described in [12] (see [Definition 1.3, p. 2350])

Definition 3.1. We shall say that the function p ∈ L([a, b]) belongs
to the set V10((a, b)), if the initial value problem

u′′(t) = p∗(t)u(t) for t ∈ I, u(a) = 0, u′(a) = 1, (3.74)

for any function satisfying the inequality p(t) ≤ p∗(t) for t ∈ I has no
zeros in the set ]a, b].

Lemma 3.8. Let i ∈ {1, 2}, p ∈ L(I; R), pn(t) = p(t) + (−1)i/n and

wn ∈ C̃ ′(I; R) (n ∈ N) be a solution of the problem

w′′
n(t) = pn(t)wn(t) for t ∈ I, wn(a) = 0, wn(b) = 0. (3.75n)

Then:
a.There exists n0 ∈ N such that the problem (3.75n) has only a zero

solution if n ≥ n0.
b.If i = 2 and Nw = ∅ where w is the solution of the problem

(0.3), (0.4), the inclusion pn ∈ V10((a, b)) for n ∈ N holds.

Proof. a. Let N∗
wn

be the number of zeroes of the function wn on I.
Now, assume to the contrary that there exists the sequence {wn}+∞

n≥n0

of the nonzero solutions of the problem (3.75n).
Then if i = 1, from the fact that pn(t) < pn+1(t) by Sturm’s com-

parison theorem we obtain N∗
wn+1

< N∗
wn

for wn 6≡ 0. From this
inequality there follows the existence of n1 ∈ N such that N∗

wn1
= 2,

i.e., Nwn1
= {a, b}. Then by Sturm’s comparison theorem we see that

wn ≡ 0 for n > n1, and this contradicts our assumption.
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If i = 2, from the fact that pn−1(t) > pn(t) > p(t) by Sturm’s
comparison theorem we obtain

N∗
wn−1

< N∗
wn

n ∈ N, (3.76)

and if w is the solution of the problem (0.3), (0.4)

N∗
wn

< N∗
w n ∈ N. (3.77)

On the other hand from (3.76) it follows that there exists n1 ∈ N such
that N∗

wn
> N∗

w for n > n1 and this contradicts (3.77).
b. Let pn(t) ≤ p∗(t) and u be the solution of the problem (3.74).

Now, assume to the contrary that there exists n ∈ N such that pn 6∈
V10([a, b]). Then there exists t0 ∈]a, b] such that u(t0) = 0. Then in
view of the fact that p(t) < p∗(t) by Sturm’s comparison theorem we
obtain that w, the solution of the problem (0.3), (0.4) has zero in the
interval ]a, t0[. Which contradicts our assumption that Nw = ∅. �

4. Proof of The Main Results

Proof of Theorem 1.1. Let pn(t) = p(t) + 1/n and for any n ∈ N
consider the problem

u′′n(t) = pn(t)un(t) + f(t, un(t)) + h(t) for t ∈ I, (4.1)

un(a) = 0, un(b) = 0. (4.2)

In view of the condition (1.1) and Lemma 3.8 the problem (3.75n) has
only zero solution for n ≥ n0 and the inclusion pn ∈ V10((a, b)) holds.
Also from the conditions (1.3) it follows that 0 ≤ f(t, x)sgnx for t ∈
I, |x| ≥ r. From the last inequality and the inclusion pn ∈ V10((a, b)),
as is well-known (see [12, Theorem 2.2, p.2367]), it follows that the
problem (4.1),(4.2) has at last one solution, suppose un. In view of
the condition (1.2) without loss of generality we can assume that there
exists ε∗ > 0 such that h0(t) ≥ ε∗ on I. Then g(t)|x|+ h0(t) ≥ ε∗ for
x ∈ R, t ∈ I. Consequently it is not difficult to verify that un also is
the solution of the equation

u′′n(t) = (pn(t) + p0(t, un(t))sgnun(t))un(t) + p1(t, un(t)) (4.3)

on the set I where p0(t, x) = f(t,x)g(t)
g(t)|x|+h0(t)

, p1(t, x) = h(t)+ f(t,x)h0(t)
g(t)|x|+h0(t)

.

Now, assume that

limn→+∞||un||C = +∞ (4.4)

and vn(t) = un(t)||un||−1
C . Then on I, for any n ∈ N

v′′n(t) = (pn(t) + p0(t, un(t))sgnun(t))vn(t) +
1

||un||C
p1(t, un(t)), (4.5)

vn(a) = 0 vn(b) = 0, (4.6)

and

||vn||C = 1. (4.7)
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In view of the condition (1.2) the functions p0, p1 ∈ L(I; R) are bounded
respectively by the functions g(t) and h(t) + h0(t). Then from (4.5)
by virtue of (4.4), (4.6) and (4.7) we see that there exists r0 > 0 such
that ||v′n||C ≤ r0. Consequently in view of (4.7), by Arzela-Ascoli
lemma, without loss of generality we can assume that there exists

w0 ∈ C̃ ′(I, R) such that limn→+∞ v
(i)
n (t) = w

(i)
0 (t) (i = 0, 1) uniformly

on I. From the last equality and (4.4) there follows the existence of
the increasing sequence αk ∈ N, k ∈ N such that ||uαk

||C ≥ 2rk and

||v(i)
αk − w

(i)
0 ||C ≤ 1/2k for k ∈ N . Without loss of generality we can

suppose that un ≡ uαn and vn ≡ vαn . In this case we see that un

and vn are the solutions of the problems (4.1), (4.2) and (4.5), (4.6)
respectively with pn(t) = p(t) + 1/αn for t ∈ I, n ∈ N, and that the
inequalities

||un||C ≥ 2rn, ||v(i)
n − w

(i)
0 ||C ≤ 1/2n for n ∈ N, (4.8)

are fullfild. Analogously, because the functions p0, p1 ∈ L(I; R) are
bounded in view of (4.4), without loss of generality we can assume
that there exists the function p̃ ∈ L(I; R) such that

lim
n→+∞

1

||un||jC

∫ t

a

pj(s, un(s))sgnun(s)ds = (1− j)

∫ t

a

p̃(s)ds (4.9j)

uniformly on I for (j = 0, 1). By virtue of (4.7)–(4.9j) (j = 0, 1) from
(4.5) we obtain

w′′
0(t) = (p(t) + p̃(t))w0(t), (4.10)

w0(a) = 0, w0(b) = 0, (4.11)

||w0||C = 1. (4.12)

From the conditions (1.3), and (4.8) it is clear that all the assump-
tions of Lemma 3.3 with f1(t, x) = f(t, x) are satisfied, and then from

(4.9j) (j = 0) we obtain
∫ t

s
p̃(ξ)dξ ≥ 0 for a ≤ s < t ≤ b, i.e.,

p̃(t) ≥ 0 for t ∈ I. (4.13)

Now, assume that p̃ 6≡ 0 and w is a solution of the problem (0.3), (0.4).
Then using Sturm’s comparison theorem, for the equations (0.3) and
(4.10), from (4.13) we see that there exists the point t0 ∈]a, b[ such
that w(t0) = 0 which contradicts (1.1), i.e., our assumption is invalid
and p̃ ≡ 0. Consequently, w0 is a solution of the problem (0.3), (0.4),
i.e.,

w(t) = w0(t) for t ∈ I. (4.14)

Consequently, multiplying the equations (4.1) and (0.3) respectively
on w and −un,and by integrating their sum from a to b, in view of the
conditions (4.2) and (0.4) we obtain

− 1

αn

∫ b

a

w(s)un(s)ds =

∫ b

a

(h(s) + f(s, un(s)))w(s)ds (4.15)
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for n ≥ n0. Then by (4.8) and (4.14) we get∫ b

a

(h(s) + f(s, un(s)))w(s)ds < 0 for n ≥ n0. (4.16)

On the other hand, in view the conditions (1.1)– (1.41), (4.2), and
(4.8) it is clear that all the assumption of Lemma 3.4 with f1(t, x) =
f(t, x), h1(t) = h(t) are fulfilled. Then the inequality (3.43) is true,
which contradicts (4.16). I.e., assumption (4.4) is invalid and there
exists r1 > 0 such that ||un||C ≤ r1 for n ∈ N . Consequently from
(4.1) and (4.2) it is clear that there exists r′1 > 0 such that ||u′n||C ≤
r′1 and |u′′n(t)| ≤ σ(t) for t ∈ I, n ∈ N, where σ(t) = (1 +
|p(t)|)r1 + |h(t)|+ γr1(t). Hence, by the Arzela-Ascoli lemma, without
loss of generality we can assume that there exists the function u0 ∈
C̃ ′(I; R) such that limn→+∞ u

(i)
n (t) = u

(i)
0 (t) (i = 0, 1) uniformly on I

and that u0 is the solution of the problem (0.1), (0.2). �

Proof of Theorem 1.2. Let pn(t) = p(t)− 1/n and for any n ∈ N con-
sider the problems (4.1), (4.2) and (3.75n). In view of the Lemma 3.8
the problem (3.75n) has only zero solution if n ≥ n0. Then, as is well-
known (see [9, Theorem 1.1, p.345]), from the conditions (1.7), (1.9) it
follows that the problem (4.1), (4.2) has at least one solution, suppose
un. Now suppose that (4.4) is fulfilled and vn(t) = un(t)||un||−1

C . Then
the conditions (4.6) and (4.7) are fulfilled,

v′′n(t) = pn(t)vn(t) +
1

||un||C
(f(s, un(s))) + h(s)). (4.17)

Then in view the conditions (1.7) and (1.9), from (4.17) there fol-
lows the existence of r0 > 0 such that ||v′n||C ≤ r0. Consequently
in view (4.7) by the Arzela-Ascoli lemma, without loss of general-

ity we can assume that there exists the function w0 ∈ C̃ ′(I, R) such

that limn→+∞ v
(i)
n (t) = w

(i)
0 (t) (i = 0, 1) uniformly on I. Now, anal-

ogously as in the proof of Theorem 1.1, we can choose the sequence
{αk}+∞

n=1 from N such that, if we suppose un = uαn then the codi-
tions (4.8) will by true when the functions un and vn are the solu-
tions of the broblems (4.1), (4.2) and (4.17), (4.6) respectively with
pn(t) = p(t) − 1/αn for t ∈ I, n ∈ N. From (4.17) by virtue of (4.6),
(4.8) and (1.9) we obtain (4.14). Consequently, analogously as (4.15)
in the proof of the Theorem 1.1 we obtain

1

αn

∫ b

a

w(s)un(s)ds =

∫ b

a

(h(s) + f(s, un(s)))w(s)ds (4.18)

for n ≥ n0. Now note that in view of the conditions (1.1), (1.8),
(1.42), (4.2), and (4.8), all the assumptions of the Lemma 3.4 with
f1(t, x) = −f(t, x), h1(t) = −h(t) are satisfied. Hence, analogously
as in the proof of the Theorem 1.1, from (4.18) by Lemma 3.4 we see
that the problem (0.1), (0.2) has at least one solution. �
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Proof of Theorem 1.3. Let pn(t) = p(t) + (−1)i/n and for any n ∈
N consider the problems (4.1), (4.2), and (3.75n). In view of the
condition (1.13) and the fact that (−1)if(t; x) is non-decreasing in
the second argument for |x| ≥ r, we obtain

lim
n→+∞

1

||zn||C

∫ b

a

|f(s, zn(s))|ds = 0 (4.19)

for an arbitrary sequence zn ∈ C(I; R) with limn→+∞ ||zn||C = +∞.
Also, in view of Lemma 3.8 the problem (3.75n) in the case i = 0 as
in the case i = 2 has only a zero solution for n ≥ n0. Then as it is
well-known (see [9, Theorem 1.1, p. 345]) from the inequality (4.19)
it follows that the problem (4.1), (4.2) has at least one solution, sup-
pose un. Now suppose that (4.4) is fulfilled and vn(t) = un(t)||un||−1

C .
Then (4.6), (4.7) and (4.17) are fulfilled too. Thus, by the condi-
tions (4.7) and (4.19), from (4.17) we get the existence of r0 > 0 such
that ||v′n||C ≤ r0. Consequently in view of (4.7) by the Arzela-Ascoli
lemma, without loss of generality we can assume that there exists

the function w0 ∈ C̃ ′(I, R) such that limn→+∞ v
(i)
n (t) = w

(i)
0 (t) (i =

0, 1) uniformly on I. Now, analogously as in the proof of Theorem 1.1,
we can choose the sequence {αk}+∞

n=1 from N such that, if we suppose
un = uαn , the conditions (4.8) will by true when the functions un and
vn are the solutions of the problems (4.1), (4.2) and (4.17), (4.6) re-
spectively with pn(t) = p(t) + (−1)i/αn for t ∈ I, n ∈ N. From (4.17)
by virtue of (4.6), (4.8) and (1.13) we obtain (4.14). Consequently,
analogously as (4.15) in the proof of the Theorem 1.1 we obtain

− 1

αn

∫ b

a

w(s)un(s)ds = (−1)i

∫ b

a

(h(s) + f(s, un(s)))w(s)ds (4.20)

for n ∈ N . Now note that in view the conditions (1.11), (1.12), (1.14),
(4.2) and (4.8), all the assumptions of Lemma 3.5 with f1(t, x) =
(−1)if(t, x), h1(t) = (−1)ih(t) are satisfied. Hence, analogously as in
the proof of the Theorem 1.1, from (4.20) by Lemma 3.5 we obtain
that the problem (0.1), (0.2) has at least one solution. �

Proof of Corollary 1.1. From the condition (1.15) we immediately ob-
tain (1.14). Then all the conditions of Theorem 1.3 are fulfilled. �

Proof of Theorem 1.4. The proof is the same as the proof of theorem
1.3. The only difference is that instead of Lemma 3.5 we will use
Lemma 3.6. �

Proof of Theorem 1.5. From (1.21) it is clear that for an arbitrary
sequence zn ∈ C(I; R) such that limn→+∞ ||zn||C = +∞, the equality
(4.19) is valid. From (4.19) and Lemma 3.7, analogously as in the
proof of Theorem 1.3 from (4.19) and Lemma 3.5, we see that the
problem (0.1), (0.2) has at least one solution. �



23

Acknowledgement

The research was supported by the Academy of Sciences of the
Czech Republic, Institutional Research Plan N0.AV0Z10190503 and
the Grant No.201/06/0254 of the Grant Agency of the Czech Republic.

References

[1] R. P. Agarwal and I. Kiguradze, Two-point boundary value problems for
higher-order linear differential equations with strong singularities. Boundary
Value Problems 2006, 1-32; Article ID 83910.

[2] S. Ahmad, A resonance problem in which the nonlinearity may grow linearly
. Proc.Amer.Math.Soc.92 (1984),381–384.

[3] M. Arias, Existence results on the one-dimensional Dirichlet problem sug-
gested by the piecewise linear case.Proc. Amer. Math. Soc.97 (1986)No.1,121–
127.

[4] C. De Coster, P. Habets Upper and Lower Solutions in the theory of
ODE boundary value problems.Nonlinear Analysis And Boundary Value
Problems For Ordinary Differential Equations, SprringerWienNewYork(1996)
No.371,1–119.

[5] R. Conti , Equazioni differenziali ordinarie quasilineari con condizioni lineari.
Ann. Mat. Pura ed Appl., (1962) No.57, 49–61.

[6] E. Landesman, A. Lazer, Nonlinear Perturbations of linear elliptic boundary
value problems at resonance, J. Math. Mech. 19 (1970),609–623.

[7] P. Drabek, On The Resonance Problem With Nonlinearity which has arbitrary
linear growth. J. Math. Anal. Appl.127 (1987),435–442.

[8] P. Drabek, Solvability and Bifurkations of Nonlinear Equations. University of
West Bohemia Pilsen (1991),1–231.

[9] R. Iannacci, M.N. Nkashama Nonlinear Two Point Boundary Value Prob-
lems At resonance Without Landesman-Lazer Condition. Proc. Amer. Math.
Soc.106(1989)No.4,943–952.

[10] R. Iannacci, M.N. Nkashama Nonlinear Boundary Value Problems At reso-
nance. Nonlinear Anal.6(1987),919–933.

[11] R. Kannan, J.J. Nieto, M.B. Ray A Class of Nonlinear Boundary Value Prob-
lems Without Landesman-Lazer Condition. J. Math. Anal. Appl.105(1985),1–
11.

[12] I. Kiguradze, B. Shekhter, Singular boundary value problems for second or-
der ordinary differential equations. (Russian) Itogi Nauki Tekh., ser. Sovrem.
Probl. Mat., Noveish. Dostizheniya
30 (1987), 105–201; English transl.: J. Sov. Math. 43 (1988), No. 2, 2340–
2417.

[13] I. Kiguradze, Nekotorie Singularnie Kraevie Zadachi dlja Obiknovennih Dif-
ferencialnih Uravneni. Tbilisi University(1975),1–351.

[14] I. Kiguradze, On a singular two-point boundary value problem. (Russian) Dif-
ferentsial’ nye Uravneniya 5 (1969), No. 11, 2002-2016; English transl.: Differ.
Equations 5 (1969), 1493-1504.

[15] I. Kiguradze, On some singular boundary value problems for nonlinear second
order ordinary differential equations.(Russian) Differentsial’ nye Uravneniya
4 (1968), No. 10, 1753-1773; English transl.: Differ. Equations 4 (1968), 901-
910.

[16] I. Kiguradze, On a singular boundary value problem. J. Math. Anal. Appl. 30
(1970), No. 3, 475-489.



24 S. MUKHIGULASHVILI

[17] J. Kurzveil, Generalized ordinary Differential equations. Czechosl. Mat. J., 8
(1958), No. 3, 360–388.

Sulkhan Mukhigulashvili
Permanent addresses:
1. Mathematical Institute, Academy of Sciences of the

Czech Republic, Žižkova 22, 616 62 Brno, Czech Republic.
2. I. Chavchavadze State University, Faculty of physics

and mathematics, I. Chavchavadze Str. No.32, 0179 Tbilisi,
Georgia.

E-mail addresses: mukhig@ipm.cz


