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Abstract

We isolate several classes of stationary sets of [κ]ω and investigate
implications among them. Under a large cardinal assumption, we prove a
structure theorem for stationary sets.

1 Introduction

We investigate stationary sets in the space [κ]ω of countable subsets of an un-
countable cardinal. We concentrate on the following particular classes of sta-
tionary sets:

full
ր ց

club → local club → reflective → projective stationary
ց ր

spanning

Fig. 1.1
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In the diagram, the → represents implication. We show among others that
under suitable large cardinal assumption (e.g., under Martin’s Maximum), the
diagram collapses to just two classes:











club

local club

full











−→











projective stationary

spanning

reflective











Fig. 1.2

Under the same large cardinal assumption, we prove a structure theorem for
stationary sets: for every stationary set S there exists a stationary set A ⊂ ω1

such that S is spanning above A and nonstationary above ω1 − A.
We also investigate the relation between some of the above properties of

stationary sets on the one hand, and properties of forcing on the other, in par-
ticular the forcing that shoots a continuous ω1–chain through a stationary set.
We show that the equality of the classes of projective stationary sets and span-
ning sets is equivalent to the equality of the class of stationary–set–preserving
forcings and the class of semiproper forcings.

The work is in a sense a continuation of the previous work [3] and [4] of the
first two authors, and ultimately of the groundbreaking work of [5] of Foreman,
Magidor and Shelah.

2 Definitions

We work in the spaces [κ]ω and [Hλ]ω, where κ and λ are uncountable cardinals.
The concept of a closed unbounded set and a stationary set has been generalized
to the context of these spaces (cf. [6]) and the generalization gained considerable
prominence following the work [9] of Shelah on proper forcing.

The space [κ]ω is the set of all countable subsets of κ, ordered by inclusion;
similarly for [Hλ]ω , where Hλ denotes the set of all sets hereditarily of cardinality
less than λ. A set C in this space is closed unbounded (club) if it is closed under
unions of increasing countable chains, and cofinal in the ordering by inclusion.
A set S is stationary if it meets every club set. We shall (with some exceptions)
only consider κ and λ that are greater than ω1; note that the set ω1 is a club in
the space [ω1]

ω (which motivates the generalization). In order to simplify some
statements and some arguments, we shall only consider those x ∈ [κ]ω (those
M ∈ [Hλ]ω) whose intersection with ω1 is a countable ordinal (these objects
form a club set); we denote this countable ordinal by δx or δM respectively:

(2.1) δx = x ∩ ω1, δM = M ∩ ω1.

The filter generated by the club sets in [κ]ω is generated by the club sets of
the form

(2.2) CF = {x | x is closed under F}
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where F is an operation, F : κ<ω → κ; similarly for Hλ. In the case of Hλ,
we consider only those M ∈ [Hλ]ω that are submodels of the model (Hλ,∈, <),
where < is some fixed well ordering; in particular, the M ’s are closed under the
canonical Skolem functions obtained from the well ordering.

For technical reasons, when considering continuous chains in [κ]ω or [Hλ]ω,
we always assume that when 〈xα | α < γ〉 is such a chain then for every α, β < γ,

(2.3) if α < β then δxα
< δxβ

.

The term ω1–chain or (γ + 1)–chain, where γ < ω1, is an abbreviation for “a
continuous ω1–chain that satisfies (2.3).”

We also note that in one instance we consider club (stationary) sets in the
spaces [κ]ω1 (where κ ≥ ω2) those are defined appropriately.

Throughout the paper we employ the operations of projection and lifting,
that move sets between the spaces [κ]ω for different κ:

If κ1 < κ2 and if S is a set in [κ2]
ω, then the projection of S to κ1 is the set

(2.4) π(S) = {x ∩ κ1 | x ∈ S}.

If S is a set in [κ1]
ω then the lifting of S to κ2 is the set

(2.5) Ŝ = {x ∈ [κ2]
ω | x ∩ κ1 ∈ S}.

We recall that the lifting of a club set is a club set and the projection of a
club set contains a club set. Hence, stationarity is preserved under lifting and
projection.

The special case of projection and lifting is when κ = ω1:

π(S) = {δx | x ∈ S}, Â = {x | δx ∈ A} (A ⊂ ω1).

Definition 2.1. A set S ⊂ [κ]ω is a local club if the set

{X ∈ [κ]ℵ1 | S ∩ [X ]ω contains a club in [X ]ω}

contains a club in [κ]ℵ1 .

Definition 2.2. A set S ⊂ [κ]ω is full if for every stationary A ⊂ ω1 there exist
a stationary B ⊂ A and a club C in [κ]ω such that

{x ∈ C | δx ∈ B} ⊂ S.

(“S contains a club above densely many stationary B ⊂ ω1.”)

Definition 2.3. A set S ⊂ [κ]ω is projective stationary if for every stationary
set A ⊂ ω1, the set {x ∈ S | δx ∈ A} is stationary. (“S is stationary above every
stationary A ⊂ ω1.”)

Definition 2.4. A set S ⊂ [κ]ω is reflective if for every club C in [κ]ω, S ∩ C
contains an ω1–chain.

3



Definition 2.5. If x and y are in [κ]ω, then y is an ω1–extension of x if x ⊂ y
and δx = δy.

Definition 2.6. A set S ⊂ [κ]ω is spanning if for every λ ≥ κ, for every club set
C in [λ]ω there exists a club D in [λ]ω such that every x ∈ D has an ω1–extension
y ∈ C such that y ∩ κ ∈ S.

Local clubs were defined in [3]. Projective stationary sets were defined in
[4]; so were full sets (without the name). Note that all five properties defined
are invariant under the equivalence mod club filter. All five properties are also
preserved under lifting and projection. For instance, let S ⊂ [κ1]

ω be reflective
and let us show that the lifting Ŝ to [κ2]

ω is reflective. Let C be a club set in
[κ2]

ω and let F : κ<ω
2 → κ2 be such that CF ⊂ C. If we let for every e ∈ [κ1]

<ω,

f(e) = κ1 ∩ clF (e),

where clF (e) is the closure of e under F , then Cf is a club in [κ1]
ω. Also for

every x ∈ Cf , if y is the closure of x under F then y∩κ1 = x. Let 〈xα | α < ω1〉
be an ω1–chain in S ∩ Cf , we then let yα be the closure of xα under F , then

〈yα | α < ω1〉 is an ω1–chain in Ŝ∩CF . The arguments are simpler for the other
four properties as well as for projection.

It is not difficult to see that all the implications in Fig 1.1 hold. For instance,
to see that every spanning set is projective stationary, note that the definition
of projective stationary can be reformulated as follows: for every club C in [κ]ω,
the projection of S ∩ C to ω1 contains a club in ω1. So let C be a club in [κ]ω.
If S is spanning, then there is a club D in [κ]ω such that all x ∈ D have an
ω1–extension in S∩C. Hence π(D) ⊂ π(S ∩C), where π denotes the projection
to ω1.

3 Local clubs and full sets

Local clubs form a σ–complete normal filter that extends the club filter. Local
clubs need not contain a club, but they do under the large cardinal assumption
Weak Reflection Principle (WRP).

Definition 3.1. [5] Weak Reflection Principle at κ: for every stationary set
S ⊂ [κ]ω there exists a set X of size ℵ1 such that ω1 ⊂ X and S ∩ [X ]ω is
stationary in [X ]ω (S reflects at X).

It is not hard to show [3] that WRP at κ implies a stronger version, namely
that for every stationary set S ⊂ [κ]ω, the set of all X ∈ [κ]ω1 at which S reflects
is stationary in [κ]ω1 . In other words, every local club in [κ]ω contains a club.

Thus WRP is equivalent to the statement that every local club contains a
club. And clearly, WRP at λ > κ implies WRP at κ. The consistency strength
of WRP at ω2 is exactly that of the existence of a weakly compact cardinal; the
consistency of full WRP is considerably stronger but not known exactly at this
time.
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Example 3.2. For every ordinal η such that ω1 ≤ η < ω2, let Cη be a club set

of [η]ω of order–type ω1 (therefore |Cη| = ℵ1). Let S =
⋃

{Cη | ω1 ≤ η < ω2}.

Then S is a local club in [ω2]
ω and has cardinality ℵ2. By a theorem of Baum-

gartner and Taylor [1], every club set in [ω2]
ω has size ℵℵ0

2 . Therefore, WRP at
ω2 implies 2ℵ0 ≤ ℵ2, a result of Todorčević [2].

Let P be a notion of forcing and assume that |P | ≥ ℵ1. Let λ ≥ |P |+ and
consider the model Hλ whose language has predicates for forcing P as well as
the forcing relation. Note that every countable ordinal has a P–name in Hλ.

If M ∈ [Hλ]ω, a condition q is semi–generic for M if for every name α̇ for a
countable ordinal such that α̇ ∈ M , q  α̇ ∈ M .

The forcing P is semiproper (Shelah [9]) if the set

(3.1) {M ∈ [Hλ]ω | ∀p ∈ M ∃q < p q is semigeneric for M}

contains a club in [Hλ]ω.
In [3], it is proved that P preserves stationary sets (in ω1) if and only if the

set (3.1) is a local club. Since |H|P |+ | = 2|P |, we conclude that if P is stationary–

set–preserving, then WRP at 2|P | implies that P is semiproper. Consequently,
we have

Theorem 3.3. [5] WRP implies that the class of stationary–set–preserving
forcing notions equals the class of semiproper forcing notions.

Example 3.4. Namba forcing [8]. This is a forcing (of cardinality 2ℵ2) that
adds a countable cofinal subset of ω2 without adding new reals (cf. [7]). It
preserves stationary subsets of ω1 and by Shelah [9], it is not semiproper unless
0# exists.

We use the Namba forcing to get a partial converse of Theorem 3.3: if
stationary–set–preserving equals semiproper, then WRP holds at ω2.

Theorem 3.5. If there exists a stationary set S ⊂ [ω2]
ω that does not re-

flect, then the Namba forcing is not semiproper. Hence if every stationary–set–
preserving forcing of size 2ℵ2 is semiproper, then WRP holds at ω2, and every
local club in [ω2]

ω contains a club.

As Stevo Todorcevic points out, this theorem follows from his result in [10]
(CC∗ implies WRP) combined with Shelah’s result in [9], p.398, that if the
Namba forcing is semiproper then CC∗ holds.

Proof. Let S ⊂ [ω2]
ω be nonreflecting stationary set and assume that the Namba

forcing P is semiproper.
Since S does not reflect, there exists for each α, ω1 ≤ α < ω2, an operation

Fα : α<ω → α such that no x ∈ S is closed under Fα.
Let λ = (2ℵ2)+. As the set (3.1) contains a club, there exists some M ∈

[Hλ]ω such that M ∩ ω2 ∈ S, 〈Fα | ω1 ≤ α < ω2〉 ∈ M and there exists some
q ∈ P semigeneric for M .
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Let G be a P–generic filter (over V ) such that q ∈ G. In V [G], look at
M [G], where M [G] = {ẋ/G | ẋ ∈ M}. Since G produces a countable cofinal
subset of ωV

2 , M [G] ∩ ωV
2 is cofinal in ωV

2 . Let α < ωV
2 be the least ordinal in

M [G] that is not in M . Since G contains a semigeneric condition for M , we
have M [G] ∩ ω1 = M ∩ ω1 and so ω1 ≤ α < ωV

2 and M [G] ∩ α = M ∩ ω2.
Since α ∈ M [G], Fα ∈ M [G]. Hence M [G]∩α is closed under Fα. It follows

that x = M ∩ α = M [G] ∩ α belongs to S and is closed under Fα. This is a
contradiction.

Now we turn our attention to full sets. First we reformulate the definition:
S ⊂ [κ]ω is full if and only if there exists a maximal antichain W of stationary
subsets of ω1 such that for every A ∈ W , there exists a club CA in [κ]ω with
Â ∩ CA ⊂ S, where Â is the lifting of A from ω1 to [κ]ω.

We remark that the full sets form a filter, not necessarily σ–complete. It is
proved in [4] that σ–completeness of the filter of full sets is equivalent to the pre-
saturation of the nonstationary ideal on ω1. It is also known that presaturation
follows from WRP which shows that WRP is a large cardinal assumption.

Example 3.6. Let W be a maximal antichain of stationary subsets of ω1 and
consider the model 〈Hλ,∈, <, · · · 〉, whose language has a predicate for W . Let

SW = {M ∈ [Hλ]ω | (∃A ∈ W ∩ M) δM ∈ A}.

The clubs CA = {M ∈ [Hλ]ω | A ∈ M} for A ∈ W witness that SW is full.

We will now show that the sets SW from Example 3.5 generate the filter of
full sets:

Lemma 3.7. Let S be a full set in [κ]ω. There exists a model 〈Hλ,∈, <, · · · 〉,
where λ = κ+, and a maximal antichain W of stationary subsets of ω1 such that
SW ⊂ Ŝ.

Proof. Let S be full in [κ]ω. By the reformulation of full sets, let W be a
maximal antichain and for each A ∈ W , let FA : κ<ω → κ be an operation such
that

{x ∈ CFA
| δx ∈ A} ⊂ S.

Consider a model 〈Hλ,∈, <, · · · 〉, λ = κ+, whose language has a predicate for
W as well as for the function assigning the operation FA to each A ∈ W . We
claim that for every M ∈ SW , M ∩ κ ∈ S. To see this, let M ∈ [Hλ]ω and
let A ∈ W ∩ M be such that δM ∈ A. Then M is closed under FA and so
M ∩ κ ∈ CFA

and δM∩κ = δM ∈ A. Hence, M ∩ κ ∈ S.

Consequently, the filter of full sets on [κ]ω is generated by the projections of
the sets SW on [Hλ]ω with λ = κ+.

In [4], it is proved that the statement that every full set contains a club
is equivalent to the saturation of the nonstationary ideal on ω1 (and so is the
statement that every full set contains an ω1–chain). More precisely,
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Theorem 3.8. [4] (a) If the nonstationary ideal on ω1 is saturated then for
every κ ≥ ω2, every full set in [κ]ω contains a club.

(b) If every full set in [Hω2
]ω contains an ω1–chain, then the ideal of non-

stationary subsets of ω1 is saturated.

Consequently, “every full set is reflective” is equivalent to “every full set
contains a club” and follows from large cardinal assumptions (such as MM).
The consistency of “full = club”, being that of the saturation of NSω1

, is quite
strong. Neither “local club = club” nor “full = club” implies the other: WRP
has a model in which NSω1

is not saturated, while the saturation of NSω1
is

consistent with 2ℵ0 > ℵ2 which contradicts WRP. Both are consequences of
MM, which therefore implies that “club = local club = full”.

4 Projective stationary and spanning sets

In this section, we investigate projective stationary and spanning sets and par-
ticularly a forcing notion associated with such sets. Among others we show
that WRP implies that every projective stationary set is spanning (and then
spanning = projective stationary).

First we prove a theorem (that generalizes Baumgartner and Taylor’s result
[1] on clubs) that shows that the equality does not hold in ZFC. Every spanning
subset of [ω2]

ω has size ℵℵ0

2 while Example 3.2 gives a projective stationary (even
a local club) set of [ω2]

ω of size ℵ2. Thus the equality “spanning = projective
stationary” implies 2ℵ0 ≤ ℵ2.

Theorem 4.1. Every spanning set in [ω2]
ω has size ℵℵ0

2 .

Proof. Let S ⊂ [ω2]
ω be spanning. We shall find 2ℵ0 distinct elements of S.

Let F : [ω2]
2 → ω1 be such that for each η < ω2, the function Fη, defined by

Fη(ξ) = F ({ξ, η}), is a one–to–one mapping of η to ω1. As S is spanning, there
exists an operation G on ω2 such that every M ∈ [ω2]

ω closed under G has an
ω1–extension N that is closed under F and N ∈ S.

We shall find models Mf , f ∈ 2ω, closed under G, and δ < ω1 such that

(4.1) (a) δMf
≤ δ for each f , and

(b) if f 6= g then there exist ξ ∈ Mf and η ∈ Mg such that F (ξ, η) ≥ δ.

Now assume that we have models Mf that satisfy (4.1). If f 6= g and if
x ∈ [ω2]

ω is such that Mf ∪Mg ⊂ x and x is closed under F , then δx > δ. Hence
if Nf and Ng are ω1–extensions of Mf and Mg, respectively, and are closed
under F , then Nf 6= Ng. Thus we get {Nf , | f ∈ 2ω} such that the Nf ’s are
2ℵ0 elements of S.

Toward the construction of the models Mf , let cα ⊂ α, for each α < ω2 of
cofinality ω, be a set of order type ω with sup cα = α and let Mα be the closure
of cα under G. Let Z ⊂ ω2 and δ < ω1 be such that Z is stationary and for
each α ∈ Z, Mα ⊂ α and δMα

= δ.
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We shall find, for each s ∈ 2<ω (the set of all finite 0–1–sequences), a sta-
tionary set Zs and an ordinal ξs < ω2 such that

(4.2) (i) if s ⊂ t, then Zt ⊂ Zs,
(ii) (∀ α ∈ Zs) ξs ∈ cα,
(iii) ξ〈s0〉 < ξ〈s1〉 and F (ξ〈s0〉, ξ〈s1〉) ≥ δ.

Once we have the ordinals ξs, we let, for each f ∈ 2ω, Mf be the closure
under G of the set {ξf↾n | n < ω}. Clearly,

Mf =
∞
⋃

n=0

Mf↾n,

where for each s ∈ 2<ω, Ms is the closure under G of {ξs↾0, · · · , ξs}. Since
Ms ⊂ Mα for α ∈ Zs, we have δMf

≤ δ for every f ∈ 2ω. The condition
(4.2)(iii) guarantees that the models Mf satisfy (4.1).

The Zs and ξs are constructed by induction on |s|. Given Zs, there are ℵ2

ordinals ξ such that Sξ = {α ∈ Zs | ξ ∈ cα} is stationary. Consider the first
ω1 + 1 of these ξ’s and let η = ξ〈s1〉 be the ω1 + 1st element, and Z〈s1〉 = Sη.
Then find some ξ < η among the first ω1 elements such that Fη(ξ) ≥ δ and let
ξ〈s0〉 be such ordinal ξ and let Z〈s0〉 = Sξ.

In Definition 2.6, we defined spanning sets in [κ]ω as satisfying a certain
condition at every λ ≥ κ. The following lemma shows that it is enough to
consider the condition at Hκ+ .

Lemma 4.2. A set S ⊂ [κ]ω is spanning if and only if for every club C in
[Hκ+ ]ω there exists a club D in [Hκ+ ]ω such that every M ∈ D has an ω1–
extension N ∈ C such that N ∩ κ ∈ S.

Proof. It is easy to verify that if the condition ∀C ∃D etc. holds at some µ > λ
then it holds at λ. Thus assume that λ ≥ κ+ and the condition of the lemma
holds and let us prove that for every club C in [Hλ]ω there exists a club D in
[Hλ]ω such that every M ∈ D has an ω1–extension N ∈ C such that N ∩κ ∈ S.

Let C be a club in [Hλ]ω and let F be an operation on Hλ such that CF ⊂ C.
Let C0 be a club in [Hκ+ ]ω be such that Ĉ0 ⊂ CF . Let D0 be a club in [Hκ+ ]ω

such that every M0 ∈ D0 has an ω1–extension N0 ∈ C0 with N0 ∩ κ ∈ S. Let
D = D̂0 be the set of all M ∈ [Hλ]ω such that M ∩ Hκ+ ∈ D0. Let M ∈ D
and let M0 = M ∩ Hκ+ . Then M0 ∈ D0. Let N0 ∈ C0 be an ω1–extension of
M0 such that N0 ∩ κ ∈ S. We let N be the F–closure of M ∪ (N0 ∩ κ) in Hλ.
The model N is in CF . We claim that N ∩ κ = N0 ∩ κ. This shall give us that
N ∩ κ ∈ S and N is an ω1–extension of M .

Let α ∈ N ∩ κ. Let τ be a skolem term in (Hλ,∈, <, F ) and let a ∈ M and
α0, · · · , αn ∈ N0 ∩ κ be such that α = τ(a, α0, · · · , αn). Define h : [κ]n+1 → κ
by

h(β0, · · · , βn) =

{

τ(a, β0, · · · , βn) if τ(a, β0, · · · , βn) < κ,

0 otherwise.
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Then h ∈ M and hence h ∈ M ∩ Hκ+ = M0 ⊂ N0. Therefore,

α = h(α0, · · · , αn) ∈ N0 ∩ κ.

Definition 4.3. Let S ⊂ [κ]ω be a stationary set. PS is the forcing notion that
shoots an ω1–chain through S: forcing conditions are continuous (γ +1)–chains,
〈xα | α ≤ γ〉, γ < ω1, such that xα ∈ S for each α, and δxα

< δxβ
when

α < β ≤ γ. The ordering is by extension.

The forcing PS does not add new countable sets and so ω1 is preserved. The
generic ω1–chain is cofinal in [κ]ω and so κ is collapsed to ω1.

The following theorem gives a characterization of projective stationary sets
and spanning sets in terms of the forcing PS :

Theorem 4.4. (a) A set S ⊂ [κ]ω is projective stationary if and only if the
forcing PS preserves stationary subsets of ω1.

(b) A set S ⊂ [κ]ω is spanning if and only if the forcing PS is semiproper.

Proof. (a) This equivalence was proved in [4]; we include the proof for the sake
of completeness.

Let A be a stationary subset of ω1. We will show that PS preserves A if and
only if Â ∩ S is stationary.

First assume that Â ∩ S is nonstationary and let C ⊂ [κ]ω be a club such
that for every x ∈ S ∩ C, δx 6∈ A.

Let 〈xα | α < ω1〉 be a generic ω1–chain; there exists a club D ⊂ ω1 such
that for each α ∈ D, α = δxα

and xα ∈ C. Then D is a club in V [G] disjoint
from A.

Conversely, assume that Â ∩ S is stationary. We will show that A remains
stationary in V [G]. Let Ċ be a name for a club in ω1 and let p be a condition.
Let λ be sufficiently large. Since Â ∩ Ŝ is stationary in [Hλ]ω , there exists a
countable model M containing Ċ and p such that δM ∈ A and M ∩ κ ∈ S.
Let 〈xα | α < δM 〉 be an M–generic δM–chain extending p. By genericity,

M ∩ κ =
⋃

{xα | α < δM}. Since M ∩ κ ∈ S, it can be added on top of the

chain 〈xα | α < δM 〉 to form a condition q. This condition extends p and forces
that δM is a limit point of Ċ, and hence q forces that δM ∈ Ċ ∩ A. Therefore,
A is stationary in V [G].

(b) First let S be a spanning set in [κ]ω. Let λ ≥ (2κ)+ (note that |PS | ≤ 2κ)
and let us prove that the set (3.1) contains a club in [Hλ]ω.

Let C be the club of all models N ∈ [Hλ]ω that contain S, the forcing PS

and the forcing relation. By definition 2.6, there exists a club D in [Hλ]ω such
that every M ∈ D has an ω1–extension N ∈ C such that N ∩ κ ∈ S. We claim
that the set (3.1) contains D.

Let M ∈ D and p ∈ M . Let N ∈ C be an ω1–extension of M such that
N∩κ ∈ S. We enumerate all ordinals in N∩κ and all names α̇ ∈ N for ordinals.
Starting with p0 = p, construct a sequence of conditions p0 > p1 > · · · > pn >

9



· · · such that pn ∈ N for each n, and for every α̇ ∈ N there are some pn and
β ∈ N such that pn  α̇ = β, and that for every γ ∈ N ∩ κ there is some
pn = 〈xξ | ξ ≤ α〉 such that γ ∈ xα. The sequence produces a continuous chain
whose limit is the set N ∩κ. Since N ∩κ ∈ S, it can be put on top of this chain
to form a condition q < p that decides every ordinal name in N as an ordinal in
N . Now since N is an ω1–extension of M , they have the same set of countable
ordinals and it follows that q is semigeneric for M .

Conversely, assume that PS is semiproper. Let λ ≥ (2κ)+ and let C be a
club in [Hλ]ω. Let F be an operation on Hλ such that CF ⊂ C. Let µ > λ be
such that F ∈ Hµ. Since PS is semiproper, there is a club D ⊂ [Hλ]ω such that
every model in D has the form M ∩ Hλ, where F ∈ M ∈ [Hµ]ω, and there is
a semigeneric condition for M . We shall prove that every M ∩ Hλ ∈ D has an
ω1–extension N in CF such that N ∩ κ ∈ S.

Let M ∩ Hλ ∈ D and let q be a semigeneric condition for M ∈ [Hµ]ω. Let
G be a generic filter on PS over V such that q ∈ G. Working in V [G], let M [G]
be the set of all ȧ/G for ȧ ∈ M, and let N = M [G]∩ (Hλ)V . Since PS does not
add new countable sets, N ∈ V . Since F ∈ M [G], M [G] is closed under F , and
so is N . Hence N ∈ CF . Since q is semigeneric for M , M [G] ∩ ω1 = M ∩ ω1,
and so N is an ω1–extension of M ∩Hλ. Since the union of the generic ω1–chain
〈xα | α < ω1〉 is κ, we claim that the union of 〈xα | α < δM 〉 is M [G]∩κ = N∩κ.
Granting this claim, this union is xδM

and 〈xα | α ≤ δM 〉 is a condition in PS .
Therefore, xδM

∈ S, and hence N ∩ κ ∈ S.
We now proceed to prove the claim. We just need to check that xδM

=
M [G] ∩ κ. We have M ⊂ M [G] and G ∈ M [G]. In V [G], G defines a bijection
f : ω1 → κ. Let ḟ ∈ M be a canonical name for this f . We then have that

 ∀p ∈ Ġ ∃ α < ω1 ∀ γ < dom(p) p(γ) ⊂ ḟ ′′α

and
 ∀ α < ω1 ∃ p ∈ Ġ ∀γ < α ∃ β < dom(p) ḟ(γ) ∈ p(β).

Also, ḟ /G ∈ M [G] and ḟ /G ∩ M [G] : δM → M [G] ∩ κ is a bijection.
First we check that M [G] ∩ κ ⊂ xδM

.
Let α ∈ M [G] ∩ κ. Let α̇ ∈ M be a name such that  α̇ < κ and α = α̇/G.

Then
 ∃p ∈ Ġ(α̇ ∈

⋃

p).

Hence M |= ( ∃ ξ < ω1 α̇ ∈ ẋξ). Let ξ̇ ∈ M be a name for a countable ordinal
such that

 α̇ ∈ ẋξ̇.

Since the semigeneric condition q is in G, let ξ < δM and r ∈ G be such that
r  α̇ ∈ ẋξ. It follows that

α = α̇/G ∈ (ẋ/G)ξ ⊂ xδM
.

Secondly, we check that xδM
⊂ M [G] ∩ κ.

Let α < δM . Let β ∈ xα. We show that β ∈ M [G].

10



Let p ∈ M [G]∩G be such that xα = p(α). Let ṗ ∈ M be such that ṗ/G = p.
Let α̇ ∈ M be such that α̇/G = α. Let ξ̇ ∈ M be such that

q  ṗ(α̇) ⊂ ḟ ′′ξ̇.

It follows that β ∈ M [G] ∩ κ.

As a corollary, if stationary–set–preserving = semiproper, then projective
stationary = spanning. We shall prove the converse later in this section.

It follows that WRP implies that projective stationary = spanning. More
precisely,

Corollary 4.5. If every local club in [H(2κ)+ ]ω contains a club, then every
projective stationary set in [κ]ω is spanning.

Looking at the proof of (b), we observe that the club D in the definition of
spanning is the club that witnesses semiproperness of PS . If we replace “club”
by “local club”, the proof goes through as before and we get the following
characterization of projective stationary sets.

Lemma 4.6. A set S ⊂ [κ]ω is projective stationary if and only if for every
λ ≥ κ, for every club C ⊂ [λ]ω, there exists a local club D in [λ]ω such that
every x ∈ D has an ω1–extension y in C such that y ∩ κ ∈ S.

The quantifier ∀ C in Definition 2.6 and Lemma 4.6 can be removed by the
following trick. Let S be a stationary set in [κ]ω and let λ ≥ κ+ and µ = λ+.
Let

(4.3) S∗
λ = {M ∩ Hλ | M ∈ [Hµ]ω, S ∈ M and M ∩ κ ∈ S},

and

(4.4) Sub(S∗
λ) = {M ∈ [Hλ]ω | M has an ω1–extension N ∈ S∗

λ}.

Here we assume that Hµ has Skolem functions and M ∈ [Hµ]ω is an elemen-
tary submodel. The set S∗

λ is a stationary subset of [Hλ]ω and is equivalent to
the lifting of S.

Lemma 4.7. (a) S is spanning if and only if Sub(S∗
λ) contains a club.

(b) S is projective stationary if and only if Sub(S∗
λ) is a local club.

Proof. We prove (a) as (b) is proved similarly.
Let λ ≥ κ+ and µ = λ+.
First assume that S is spanning. Let

C = {M ∩ Hλ | M ∈ [Hµ]ω and S ∈ M}.

Let D be a club in [Hλ]ω such that every M ∈ D has an ω1–extension N ∈ C
with N ∩ κ ∈ S. Then D ⊂ Sub(S∗

λ).

11



Conversely, assume that S is not spanning. Let C = CF be the least coun-
terexample. As F is definable in Hµ from S, it belongs to every elementary
countable submodel M of Hµ such that S ∈ M . Hence every N ∈ S∗

λ is closed
under F and it follows that S∗

λ ⊂ C. Therefore, every M ∈ Sub(S∗
λ) has an ω1–

extension N ∈ C such that N ∩ κ ∈ S. Since C is a counterexample, Sub(S∗
λ)

does not contain a club.

Now we prove that projective stationary = spanning implies that stationary–
set–preserving = semiproper. This is a consequence of the following lemma.

Lemma 4.8. Let P be a forcing (|P | ≥ ℵ1) and let λ ≥ |P |+.
(a) P is semiproper if and only if the set (3.1) is spanning.
(b) P preserves stationary sets in ω1 is and only if the set (3.1) is projective

stationary.

Proof. Both (a) and (b) have the same proof, using Definition 2.6 and Lemma
4.6. The left–to–right implications are obvious, as club implies spanning and
local club implies projective stationary. Thus assume (for (a)) that the set (3.1)
is spanning. If follows from Definition 2.6 that there exists a club D in [Hλ]ω

such that every M ∈ D has an ω1–extension in the set (3.1). But since every
condition that is semigeneric for an ω1–extension of M is semigeneric for M , it
follows that every M ∈ D belongs to the set (3.1). Thus the set (3.1) contains
a club and P is semiproper.

Corollary 4.9. If every projective stationary set is spanning, then every forcing
that preserves stationary sets of ω1 is semiproper.

We conclude Section 4 with the following diagram describing the implications
under the assumption of WRP.

full
ր ց

club = local club projective stationary = spanning
ց ր

reflective

Fig. 4.1

5 Strong reflection principle

The Strong Reflection Principle (SRP) is the statement that every projective
stationary set contains an ω1–chain. Thus SRP implies that every projective
stationary set is reflective and that every full set contains a club. As SRP
implies WRP (cf. [3]) we also have local club = club and projective stationary
= spanning, obtaining the diagram (Fig. 1.2) from the introduction.

We shall now look more closely at spanning sets and prove, among others,
that if all spanning sets contain an ω1–chain then SRP holds.
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Definition 5.1. For X ⊂ [κ]ω, let

X⊥ = {M ∈ [Hκ+ ]ω | M has no ω1–extension N such that N ∩ κ ∈ X}.

The set X⊥ is a subset of [Hκ+ ]ω and is disjoint from X̂. If X is nonstation-
ary, then X⊥ contains a club. Let us therefore restrict ourselves to stationary
sets X ⊂ [κ]ω.

Lemma 5.2. (i) If S1 ⊂ S2 ⊂ [κ]ω, then S⊥
2 ⊂ S⊥

1 .
(ii) If S1 ≡ S2 mod club filter, then S⊥

1 ≡ S⊥
2 mod club filter.

(iii) Ŝ ∪ S⊥ is spanning (where Ŝ is the lifting of S to Hκ+).
(iv) S is spanning if and only if S⊥ is nonstationary.

Proof. (ii) Let F : κ<ω → κ be such that S1 ∩ CF = S2 ∩ CF . Let D = {M ∈
[Hκ+ ]ω | F ∈ M}. D is a club in [Hκ+ ]ω. We claim that S⊥

1 ∩ D = S⊥
2 ∩ D.

If M ∈ D and M 6∈ S⊥
1 , then M has an ω1–extension N such that N∩κ ∈ S1.

Since F ∈ M ⊂ N , N ∩ κ is closed under F . So N ∩ κ ∈ S2. Hence M 6∈ S⊥
2 .

Similarly for the other direction, and so we have S⊥
1 ∩ D = S⊥

2 ∩ D.
(iii) Let λ ≥ κ+ be arbitrary and let C be a club in [Hλ]ω. Let F : H<ω

λ →
Hλ be such that CF ⊂ C. We claim that every M ∈ CF has an ω1–extension
N ∈ C such that N ∩ Hκ+ ∈ Ŝ ∪ S⊥, i.e., either N ∩ κ ∈ S or N ∩ Hκ+ ∈ S⊥.

Let M ∈ CF . If M ∩ Hκ+ ∈ S⊥, then we are done. Otherwise, let M0 =
M∩Hκ+ . M0 has an ω1–extension N0 ∈ [Hκ+ ]ω such that N0∩κ ∈ S. Let N be
the closure of M ∪ (N0 ∩ κ) under F . We have that N ∈ C and M ⊂ N . By an
argument exactly as in the proof of Lemma 4.2, we conclude that N∩κ = N0∩κ.
Hence N is an ω1–extension of M and N ∩ κ ∈ S.

(iv) If S is spanning then by definition the set of all M ∈ [Hκ+ ]ω that do
have an ω1–extension N with N ∩ κ ∈ S contains a club, and hence S⊥ is
nonstationary. If S⊥ is nonstationary, then, since Ŝ ∪ S⊥ is spanning, Ŝ must
be spanning. Hence S is spanning.

Theorem 5.3. If every spanning set in [Hκ+ ]ω contains an ω1–chain, they
every projective stationary set in [κ]ω contains an ω1–chain.

Proof. Let S be a projective stationary set in [κ]ω. By Lemma 5.2(iii), Ŝ ∪ S⊥

is spanning in [Hκ+ ]ω and therefore contains an ω1–chain 〈Mα | α < ω1〉. We
claim that {α < ω1 | Mα ∩ κ ∈ S} contains a club and therefore S contains an
ω1–chain.

Suppose not. The set A = {α < ω1 | Mα ∈ S⊥ and α = δMα
} is stationary.

Let
C = {N ∈ [Hκ+ ]ω | κ ∈ N and (∀ β ∈ N ∩ ω1) Mβ ∈ N}.

C is a club in [Hκ+ ]ω. Since S is projective stationary, there exists an N ∈ C
such that δN ∈ A and N ∩ κ ∈ S. For every α < δN we have Mα ⊂ N . Hence
MδN

⊂ N and MδN
∩ ω1 = N ∩ ω1 = δN . Therefore, MδN

6∈ S⊥. This is a
contradiction.

Corollary 5.4. If every spanning set contains an ω1–chain, then SRP holds.
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6 A structure theorem

The following definition relativizes projective stationary and spanning.

Definition 6.1. Let A be a stationary set of countable ordinals and let S ⊂ [κ]ω.
(a) S is projective stationary above A if for every stationary B ⊂ A, the set

{x ∈ S | δx ∈ B} is stationary.
(b) S is spanning above A if for every club C ⊂ [Hκ+ ]ω there exists a club

D in [Hκ+ ]ω such that every M ∈ D with δM ∈ A has an ω1–extension N ∈ C
such that N ∩ κ ∈ S.

The following result is proved in [4].

Lemma 6.2. If the nonstationary ideal on ω1 is saturated, then for every sta-
tionary set S ⊂ [κ]ω there exists a stationary A ⊂ ω1 such that S is projective
above A.

Notice that the conclusion of the lemma can be stated as: the complement
of S is not full. Thus Lemma 6.2 is a reformulation of Theorem 3.8(a).

Corollary 6.3. If the nonstationary ideal on ω1 is saturated then for every
stationary S ⊂ [κ]ω there exists a stationary A ⊂ ω1 such that

(i) S is projective stationary above A, and
(ii) {x ∈ S | δx 6∈ A} is nonstationary.

Proof. Let W be a maximal antichain of stationary sets A ⊂ ω1 such that S
is projective stationary above A. Since |W | ≤ ℵ1, there exists a stationary AS

such that
AS = Σ{A | A ∈ W}

in the Boolean algebra P (ω1)/NS. It is easy to verify that AS has the two
properties.

Corollary 6.4. SRP implies WRP. In fact, assuming SRP, for every stationary
S ⊂ [κ]ω there exists a set X of size ℵ1 such that ω1 ⊂ X and an ω1–chain

〈Nα | α < ω1〉 with α = δNα
for all α < ω1 such that X =

⋃

α<ω1

Nα and Nα ∈ S

for every α ∈ AS.

Proof. The set S∪{x | δx 6∈ AS} is projective stationary and by SRP it contains
an ω1–chain.

The proof that WRP implies that projective stationary equals spanning
applies to the relativized notions, i.e., projective stationary above A equals
spanning above A. Thus we obtain the following theorem.

Theorem 6.5. Assume SRP. Let κ ≥ ω2 and let S ⊂ [κ]ω be stationary. There
exists a stationary AS such that

(i) for almost all x ∈ S, δx ∈ AS, and
(ii) almost all x with δx ∈ AS have an ω1–extension y ∈ S.
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Moreover, the set AS is unique mod club filter and if S1 ≡ S2 then AS1
≡

AS2
.
Also, a stronger version of (ii) holds: for every λ ≥ κ and every model

(λ, · · · ), almost all countable M ≺ (λ, · · · ) with δM ∈ AS have an ω1–extension
N ≺ (λ, · · · ) such that N ∩ κ ∈ S.

7 Order types and canonical functions

Two functions f, g : ω1 → ω1 are equivalent (mod club filter) if the set {α <
ω1 | f(α) = g(α)} contains a club. f < g if and only if {α < ω1 | f(α) < g(α)}
contains a club. Then < is a well–founded partial order of the equivalence classes
and every function can be assigned a rank in this partial order. For all η < ω2,
there exist canonical function fη such that each fη has rank η and when η is a
limit ordinal then fη is the least upper bound of {fξ | ξ < η}. The canonical
functions are unique and for ω1 ≤ η < ω2, if gη is any one–to–one mapping of
ω1 onto η, then for almost all α < ω1,

(7.1) fη(α) = order type of {gη(β) | β < α}.

The Boundedness Principle is the statement

(7.2) (∀ g : ω1 → ω1)(∃ η < ω2) g < fη.

This follows from the saturation of the nonstationary ideal on ω1 (but the
consistency strength is considerably less).

Theorem 7.1. The boundedness principle is equivalent to the following state-
ment: for every club C ⊂ ω1, the set

(7.3) {x ∈ [ω2]
ω | order–type(x) ∈ C} is a local club.

Proof. First assume that for every club C the set (7.3) is a local club. Let
g : ω1 → ω1 be an arbitrary function.

Let C = {γ < ω1 | (∀ α < γ) g(α) < γ}.
Let η and 〈xα | α < ω1〉 be such that ω1 < η < ω2 and 〈xα | α < ω1〉 is an

ω1–chain which is a club in [η]ω and for all α < ω1 order–type(xα) ∈ C. By our
assumption, such η exists.

We claim that g < fη. By (7.1), fη(α) = order–type(xα) for almost all
α < ω1. Let

D = {α ∈ C | α < fη(α) = order–type(xα)}.

For each α ∈ D we have fη(α) ∈ C and fη(α) > α, while g(α) < α′, where α′ is
the least element of C greater than α. Thus g < fη, witnessed by D.

Conversely, assume that for every g : ω1 → ω1, there exists an η < ω2 such
that g < fη. Let C ⊂ ω1. Consider the set

D = {η < ω2 | {α < ω1 | fη(α) ∈ C} contains a club}.
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Using canonicity, it is easy to verify that D is closed. We claim that D is
unbounded.

Let η0 < ω2. We construct a sequence of functions 〈gk | k < ω〉 and a
sequence of ordinals 〈ηk | k < ω〉 so that

fη0
< g0 < fη1

< g1 < · · ·

and that gk(α) ∈ C for every k and every α. This can be done since C is
unbounded and by our assumption. Let

η = limk ηk.

Then for almost α,

fη(α) = limk fηk
(α) = limk gk(α).

Since C is closed, we have fη(α) ∈ C for almost α, and so η ∈ D.
Now if η ∈ D and 〈xα | α < ω1〉 is a club in [η]ω, then by (7.1) the order

type of xα is fη(α) for almost all α < ω1, and therefore

{x ∈ [η]ω | order–type(x) ∈ C}

contains a club in [η]ω . Thus (7.3) is a local club.

Corollary 7.2. If SRP holds then for every stationary set S ⊂ [κ]ω, the set
{order–type(x ∩ ω2) | x ∈ S} is stationary.

Proof. SRP implies both the boundedness principle and that local club = club,
and so the set

{x ∈ [κ]ω | order–type(x ∩ ω2) ∈ C}

contains a club for every club C ⊂ ω1.
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