
BIFURCATION DIRECTION AND EXCHANGE OF STABILITY

FOR AN ELLIPTIC UNILATERAL BVP ∗

JAN EISNER AND MILAN KUČERA
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The direction of bifurcation of nontrivial solutions to the elliptic boundary value prob-
lem involving unilateral nonlocal boundary conditions is shown in a neighbourhood of
bifurcation points of a certain type. Moreover, the stability and instability of bifurcat-
ing solutions as well as of the trivial solution is described in the sense of minima of the
potential. In particular, an exchange of stability is observed.

1. Introduction

Let Ω be a bounded domain in R
N with a Lipschitzian boundary ∂Ω, 1 < N < 5, let

ΓD and Γj , j = 1, . . . , n, be pairwise disjoint open (in ∂Ω) subsets of this boundary,

measΓD > 0. We consider a Crandall-Rabinowitz type bifurcation (a bifurcation

from a trivial solution at a simple eigenvalue with exchange of stability, see [4]) for

a semilinear elliptic PDE with unilateral nonlocal boundary conditions:

∆u+ pu+ au2 = 0 in Ω, (1.1)

u = 0 on ΓD,
∂u

∂ν
= 0 on ∂Ω \



ΓD ∪
n
⋃

j=1

Γj



 , (1.2)

∫

Γj
ψ(u) dΓ ≤ 0, ∂u

∂ν
= cjψ

′(u) ≤ 0 on Γj with some constant cj ,

cj
∫

Γj
ψ(u) dΓ = 0, j = 1, . . . , n,

(1.3)

where p ∈ R is the bifurcation parameter, a ∈ R is a number, ψ : R → R is a

C3-smooth function and ∂u
∂ν

is the outer normal derivative. The second condition
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in (1.3) implies, in particular, that for any j, ψ′(u) does not change sign on Γj (i.e.

ψ′(u(x)) is for all x ∈ Γj either non-negative or non-positive). The whole condition

(1.3) means that a certain ψ-average over any Γj cannot exceed the zero value, the

flux through any x ∈ Γj is proportional to ψ′(u(x)) and can go only outwards from

the domain Ω. If the ψ-average over Γj is strictly negative then there is no flux

through Γj .

Also the case a = 0, i.e. the linearized equation

∆u+ pu = 0 in Ω (1.4)

with (1.2), (1.3) and also with “linearized” (homogenized) boundary conditions
∫

Γj

u dΓ ≤ 0,
∂u

∂ν
= c0j on Γj with some c0j ≤ 0, c0j

∫

Γj

u dΓ = 0, j = 1, . . . , n, (1.5)

will be of interest for us. The condition (1.5) means that the average over any Γj

cannot exceed the zero value, the flux through any Γj is constant and can go only

outwards from the domain Ω. If the average over Γj is strictly negative then there

is no flux through Γj .

By solutions of all boundary value problems mentioned we mean weak solutions,

that means solutions of variational inequalities introduced below. As usual in the

case of variational inequalities, the linearized problem (1.4), (1.5) is (due to the

inequalities in the boundary conditions) nonlinear again but is positively homoge-

neous. However, let us emphasize that (1.4) with the original boundary conditions

(1.2), (1.3) is not even positively homogeneous if ψ′ is not constant. In [6] we have

proved the existence of a smooth branch of solutions to (1.1)–(1.3) bifurcating from

zero at a simple eigenvalue p0 of (1.4), (1.5). Of course, the u-component of this

branch emanates in the direction of the corresponding eigenfunction u0. Now, our

goal is to show that only ψ′′(0) together with a and u0 decide about the p-direction

and stability of the bifurcation branch. Let us remark that also in the case a = 0

there is generically a direction of bifurcation.

We will show that there are at least three essential differences from the case of

classical boundary conditions (see Fig. 2 of Section 3): First, only one half-branch

of nontrivial solutions (not two, as for the classical boundary conditions) bifurcates

from the branch of trivial solutions. Second, the bifurcating nontrivial solutions can

be stable even if the trivial solution is unstable on both sides from the bifurcation

point. And third, the bifurcating nontrivial solutions can be unstable even if the

trivial solution loses stability at the bifurcation point, i.e. is stable on one side of the

bifurcation point. Hence, there is not always exchange of stability if the bifurcation

parameter crosses the first bifurcation point (even if there is a loss of stability of

the trivial solution). Let us remark that the nonlinear term is quadratic, therefore

there is a transcritical bifurcation as well as exchange of stability for the problem

with classical boundary conditions (i.e. with Γj = ∅ for all j = 1, . . . , n).

An analogous result for the particular case of constant ψ′ was described already

in [5] but to consider the direction of the bifurcation branch it was necessary to
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have a nontrivial nonlinear perturbation in the equation because (1.3) becomes

positively homogeneous in this case. Let us note that in [5], an abstract theory

covering the case ψ(ξ) = ξ was studied. The generalization of these abstract results

including our present example is the subject of a forthcoming paper [7] based on an

equivalence of the variational inequality with the Lagrange equation. The results

can be understood as a certain modification of the well-known results for equations

(see e.g. [11], Chapter 8.7) to variational inequalities. The method of Lagrange

multipliers was used also in [6] to prove the existence of smooth bifurcation families

of nontrivial solutions for a class of variational inequalities covering our present

BVP.

Let us note that an abstract criterion of stability for variational inequalities

without any relation to bifurcation was given in [10]. A loss of stability at the

turning points for variational inequalities of a certain type was numerically proved

in [3]. Stability and continuation for solutions to obstacle problems were studied in

[8].

The main results are formulated in Theorems 2.2 and 2.3. At the end of the

text (Section 3) we show possible bifurcation diagrams in the case of one obstacle

(obtained with help of numerical computations).

2. Weak Formulation, Main Results

We will assume that the function ψ satisfies

ψ(0) = 0, ψ′(0) > 0 (2.1)

and the growth conditions

|ψ(ξ)| ≤ c(1 + |ξ|q), ψ′(ξ) ≤ c(1 + |ξ|q−1),

|ψ′′(ξ)| ≤ c(1 + |ξ|q−2), |ψ′′′(ξ)| ≤ c(1 + |ξ|q−3) for all ξ ∈ R
(2.2)

with some c > 0 and q ≥ 3 for N = 2, q = 2N−1
N−2 for N = 3 or N = 4. Let us

remark that the first assumption in (2.1) ensures that u = 0 is a solution for any

p ∈ R and the second implies that the condition (1.5) is a homogenization of (1.3).

In order to introduce a weak formulation, we consider the Hilbert space

H := {u ∈W 1,2(Ω) : u = 0 on ΓD in the sense of traces}

with the inner product 〈u, v〉 :=
∫

Ω
∇u·∇v dx for any u, v ∈ H . The corresponding

norm ‖ · ‖ is equivalent to the usual Sobolev norm on H under our assumptions.

Let us denote A := {1, . . . , n} and define for any u ∈ H a set

A(u) :=

{

α ∈ A :

∫

Γα

ψ(u) dΓ = 0

}

.

Furthermore, let us introduce a closed set K and a closed convex cone K0 by

K :=
{

u ∈ H :
∫

Γα
ψ(u) dΓ ≤ 0, α ∈ A

}

,

K0 :=
{

u ∈ H :
∫

Γα
u dΓ ≤ 0, α ∈ A

}
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and functionals gα : H → R by

gα(u) =

∫

Γα

ψ(u) dΓ.

Then A(u) = {α ∈ A : gα(u) = 0} and vα := ∇gα(0), α ∈ A, satisfy 〈vα, u〉 =

ψ′(0)
∫

Γα
u dΓ for any u ∈ H . Under the assumption (2.2), standard considerations

about Nemyckii operators and the continuity of the embedding of W 1,2(Ω) into

Lq(∂Ω) (see e.g. Theorem 4.2 in [9]) imply that the functionals gα are C3-smooth.

Moreover, under the assumption (2.1) the elements ∇gα(u) are linearly independent

for all u ∈ H . Realizing this and the definition of the local contingent cone to K at

u

T (K,u) := {z ∈ H : there exist wn ∈ K, tn > 0, wn → u, tn(wn − u) → z}

(see e.g. [1]) we have K0 = T (K, 0) and

T (K,u) =
{

v ∈ H :

∫

Γα

ψ′(u)v dΓ ≤ 0, α ∈ A(u)
}

for all u ∈ K.

We define a weak solution to (1.1)–(1.3) as a solution to the problem

p ∈ R, u ∈ K :

∫

Ω

∇u · ∇ϕ− (pu+ au2)ϕ dx ≥ 0 for all ϕ ∈ T (K,u) (2.3)

and a weak solution to (1.4), (1.2), (1.5) as a solution to

p ∈ R, u ∈ K0 :

∫

Ω

∇u · ∇(ϕ− u) − pu(ϕ− u) dx ≥ 0 for all ϕ ∈ K0. (2.4)

Finally, we define a functional Φ : R ×H → R by

Φ(p, u) :=

∫

Ω

(

|∇u|2 − pu2

2
−
au3

3

)

dx.

Remark 2.1. Of course, K0, (2.3) and (2.4) is of the form

K0 = {u ∈ H : 〈vα, u〉 ≤ 0 for all α ∈ A(0)}, (2.5)

p ∈ R, u ∈ K : 〈F (p, u), ψ〉 ≤ 0 for all ψ ∈ T (K,u), (2.6)

p ∈ R, u ∈ K0 :

〈

∂F

∂u
(p, 0)u, ϕ− u

〉

≤ 0 for all ϕ ∈ K0, (2.7)

respectively, with F : R ×H → H defined by

〈F (p, u), ϕ〉 =

∫

Ω

−∇u · ∇ϕ+ (pu+ au2)ϕ dx for all p ∈ R, u, ϕ ∈ H.

For N under consideration, the embedding theorems imply that F is well defined

and C∞-smooth. Hence, our problem fits into the abstract framework studied in

[7]. Moreover, it is easy to see that the functional Φ satisfies the condition

∂Φ

∂u
(p, u)v = 〈−F (p, u), v〉 for all p ∈ R and u, v ∈ H, (2.8)

i.e., F (p, ·) is a potential operator for any p ∈ R.
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Remark 2.2. If u ∈ H is such that ∆u ∈ L2(Ω), then the normal derivative
∂u
∂ν

can be defined as a linear bounded functional on the space H by
[

∂u
∂ν
, ϕ

]

=
∫

Ω
(∆u · ϕ+ ∇u · ∇ϕ) dx for all ϕ ∈ H , where [·, ·] is the dual pairing. The non-

positivity of ∂u
∂ν

on Γα will be understood in the sense of such functional, i.e.
[

∂u
∂ν
, ϕ

]

≤ 0 for all ϕ ∈ H , ϕ ≥ 0 on Γα, ϕ = 0 on ∂Ω \ Γα. The condition
∂u
∂ν

= cαψ
′(u) on Γα will mean that the functional ∂u

∂ν
can be represented on Γα by

the function cαψ
′(u) ∈ Lq∗(∂Ω) (with 1

q∗
+ 1

q
= 1, q from (2.2)), i.e.

[

∂u

∂ν
, ϕ

]

= cα

∫

Γα

ψ′(u)ϕ dΓ for all ϕ ∈ H,ϕ = 0 on ∂Ω \ Γα. (2.9)

Observation 2.1. A couple (p, u) ∈ R×H satisfies (2.3) (i.e. it is a weak solution

to (1.1)– (1.3)) if and only if u is smooth in Ω, ∆u ∈ L2(Ω), (1.1) is satisfied in

the classical sense and (1.2), (1.3) are satisfied where u on ∂Ω is understood in the

sense of traces and ∂u
∂ν

is understood in the sense of the functional from Remark 2.2.

Proof is the same as that of Observation 5.3 in [6].

Let us fix a subset A0 := {α1, . . . , αm} of A. Moreover, letH0 be a subspace ofH

given by H0 :=
{

u ∈ H :
∫

Γα
u dΓ = 0, α ∈ A0

}

. In the main assertions formulated

below we will need the boundary value problem (1.4), (1.2),
∫

Γα

u dΓ = 0 for α ∈ A0, (2.10)

∂u

∂ν
= cα on Γα with some cα ∈ R for any α ∈ A0, (2.11)

∂u

∂ν
= 0 on Γα for α ∈ A \ A0, (2.12)

having a weak formulation

p ∈ R, u ∈ H0 :

∫

Ω

∇u · ∇ϕ− puϕ dx = 0 for all ϕ ∈ H0. (2.13)

Let us remark that the problem (2.13) can be written in the abstract framework

of the paper [7] as p ∈ R, u ∈ H0, P
∂F
∂u

(p, 0)u = 0, where P is the orthogonal

projection of H onto H0.

The following theorem gives us the existence of a smooth branch bifurcating

from the trivial solutions. The description of the direction and stability of this

branch (which is our main goal) will be given in Theorems 2.2 and 2.3 below.

Theorem 2.1. Let (p0, u0) be a weak solution to (1.4), (1.2), (1.5) satisfying

(2.10),
∫

Γα

u0 dΓ < 0 for α ∈ A \ A0, (2.14)

∂u0

∂ν
= c0α on Γα with some c0α < 0 for any α ∈ A0. (2.15)
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Let us assume the following simplicity conditions:

If (p0, v0) is a weak solution to (1.4), (1.2), (2.10)–(2.12) then v0 = cu0, c ∈ R.

If (p0, v0) is a weak solution to (1.4), (1.2), (1.5) then v0 = cu0, c ≥ 0.

Then there exist ε > 0, s0 > 0 and C1-maps p̂ : [0, s0) → R and v̂ : [0, s0) → H0

with p̂(0) = p0, v̂(0) = 0 such that the following holds. The couple (p, u) with

|p − p0| < ε, ‖u‖ < ε and ‖u‖ 6= 0 is a weak solution to (1.1)–(1.3) if and only if

p = p̂(s), u = û(s) := s(u0 + v̂(s)) for a certain s ∈ (0, s0). In this case, moreover,

u = û(s) satisfies (2.12) and
∫

Γα
ψ(u) dΓ = 0 for α ∈ A0,

∂u
∂ν

= cαψ
′(u) < 0 on Γα with some cα ∈ R for any α ∈ A0,

∫

Γα
ψ(u) dΓ < 0 for α ∈ A \ A0.

Proof is the same as that of Theorem 5.4 in [6].

Remark 2.3. If N = 3 and a suitable growth estimate for the fourth derivative of

ψ is added to (2.2) then the functionals gα are C4-smooth and the mappings p̂, v̂, û

in Theorem 2.1 are in fact C2-smooth. If N = 2 and k > 2 is an arbitrary positive

integer then under suitable growth estimates for derivatives of ψ up to the order

k+1, the functionals gα are Ck+1-smooth and the mappings p̂, v̂, û in Theorem 2.1

are in fact Ck−1-smooth.

Theorem 2.2. Let (p0, u0) satisfy the assumptions of Theorem 2.1, let (p̂(s), û(s)),

s ∈ [0, s0), be the bifurcation branch from Theorem 2.1. If

a

∫

Ω

u3
0 dx+ 3ψ′′(0)

∑

α∈A0

c0α

∫

Γα

u2
0 dΓ < 0 (2.16)

then p̂(s) > p0 for all s ∈ (0, s0) and if, moreover,

p0 is the smallest eigenvalue of (1.4), (1.2), (2.10)–(2.12) (2.17)

then Φ (p̂(s), ·) attains a strong local minimum on K in û(s) for all s ∈ (0, s0). If

a

∫

Ω

u3
0 dx+ 3ψ′′(0)

∑

α∈A0

c0α

∫

Γα

u2
0 dΓ > 0 (2.18)

then p̂(s) < p0 and Φ (p̂(s), ·) has no local minimum on K in û(s) for all s ∈ (0, s0).

Proof. The direction and stability of bifurcation branches was described in [5],

Theorem 9 for a class of variational inequalities in the case when K is a cone with its

vertex at the origin in a Hilbert space. The problem (2.3) is included if ψ(ξ) = ξ, i.e.

K is a cone, and this particular case is described by [5], Theorem 14. These results

can be generalized to an abstract class of variational inequalities where K need not

be a cone, i.e. inequalitites containing (2.3) with a general ψ. See [7], Theorem 5.5,

which is proved by using local equivalence of a variational inequality to an equation
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with Lagrange multipliers. Theorem 2.2 follows from [7], Theorem 5.5 in the same

way as [5], Theorem 14 from [5], Theorem 9.

Theorem 2.3. Let p0 be the smallest eigenvalue of (1.4), (1.2), (1.5). Then Φ(p, ·)

attains a strict local minimum on K at u = 0 for any p ∈ (0, p0) and Φ(p, ·) has no

local minimum on K at u = 0 for any p > p0.

Proof. The assertion follows from [7], Theorem 5.6 in the same way as that of

[5], Theorem 15 follows from [5], Theorem 10.

Remark 2.4. Contrary to the fact that only one p0 ∈ R can be the smallest

eigenvalue of (2.4), the condition (2.17) can be fulfilled for more different values of

p0 corresponding to different subsets A0 of A, i.e. to different subspaces H0 of H

(maximally 2n). Hence, Theorem 2.2 can enable us to determine the stability of

bifurcating branches in a neighbourhood of several parameters p0.

Nevertheless, the complete exchange of stability (including the stability of the

trivial solution) is ensured only for the unique positive p0.

3. Example

Let Ω ⊂ R
2 be a rectangle {x ∈ (0, 1), y ∈ (0, `)}, ` < 1, ΓD := {(x, 0); x ∈

(0, 1)} ∪ {(0, y); y ∈ (0, `)}, Γ1 := {(x, `); x ∈ (0, 1)}, n = 1, A = {1}. If (p, u)

satisfies (2.4), i.e. it is a weak solution to (1.4) with

u = 0 on ΓD,
∂u

∂ν
= 0 on ∂Ω \ (ΓD ∪ Γ1) , (3.1)

∫

Γ1

u dΓ ≤ 0,
∂u

∂ν
≤ 0,

∫

Γ1

u dΓ ·
∂u

∂ν
= 0 on Γ1, (3.2)

∂u

∂ν
= c01 on Γ1 with some c01, (3.3)

then one of the following conditions is fulfilled:
∫

Γ1

u dΓ < 0, (3.4)

∫

Γ1

u dΓ = 0. (3.5)

If (3.4) holds then we have

∂u

∂ν
= 0 on Γ1, (3.6)

that means p is an eigenvalue and u is the corresponding eigenfunction with the

proper sign of the classical mixed Dirichlet–Neumann boundary value problem (1.4),

(3.1), (3.6).

The linearized problem in [5], Example, coincides with the present linearized

problem (2.4), only our variational inequality (2.3) is more complicated because of
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the generality of ψ. In [5] we have proved the following facts about (2.4) (i.e. about

(1.4) with (3.1)–(3.3)).

There exist sequences of couples
(

pN
m,n, u

N
m,n

)

and
(

pP
m, u

P
m

)

, m,n = 1, 2, . . . ,

satisfying (1.4) with (3.1)–(3.3), (3.4) (hence also (3.6)) and (1.4) with (3.1)–(3.3),

(3.5), respectively, and 0 < pN
1,1 < pP

1 < pN
2,1 ≤ · · · . Moreover,

pN
m,n =

(

(

2m−1
2

)2
+

(

2n−1
2`

)2
)

π2,

uN
m,n(x, y) = (−1)m sin (2m−1)π

2 x · sin (2n−1)π
2`

y, m, n = 1, 2, . . . ,

and uN
m,n satisfy (3.4) for all m,n (i.e. they do not satisfy (3.5) for any m,n). In

particular,

A(uN
m,n) = ∅ for all m,n (hence, A0 = ∅ in such cases). (3.7)

On the other hand, uP
m satisfy (3.5) and A(uP

m) = {1} for all m. Furthermore,
∫

Ω

(uN
1,1)

3 dx < 0,

∫

Ω

(uP
1 )3 dx > 0 (3.8)

(the second integral was computed numerically). Finally, the assumptions of The-

orems 2.1, 2.2 and 2.3 are verified for the couples
(

pN
1,1, u

N
1,1

)

and
(

pP
1 , u

P
1

)

for the

particular case ψ(ξ) = ξ (i.e. for the simplified conditions (2.16) and (2.18)).

ΓD

ΓD

Γ1

ΓN
-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Γ1

ΓN
ΓD

ΓD
-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Figure 1. Two different viewpoints on the function uP

1
corresponding to the parameter pP

1
= 16.01

for ` = 0.8.

In the present paper the further discussion is more complex because of the

presence of ψ′′(0). Because of (3.7) the terms in (2.16) and (2.18) with ψ′′(0)

are trivially zero and due to (3.8), Theorem 2.2 gives that if a > 0 then the first

bifurcating branch (emanating at pN
1,1) goes to the right and is stable and if a < 0

then it goes to the left and is unstable. If a = 0 then we cannot decide about the

direction of the first branch.

Due to (3.8), Theorem 2.2 gives that if a > 0 and ψ′′(0) < 0 then the second

bifurcating branch (starting at p0 = pP
1 > pN

1,1) goes to the left and is unstable and

if a < 0 and ψ′′(0) > 0 then it goes to the right and is stable.



9

Without loss of generality we can renorm the eigenfunction u0 = uP
1 so that

the corresponding c01 = ∂u0

∂ν

∣

∣

Γ1

= −1. Then the numerical computations e.g. for

` = 0.8 give
∫

Ω
(uP

1 )3 dx = 0.0086287704 and
∫

Γ1

(uP
1 )2 dΓ = 0.0172444952. The

left hand side in (2.16) and (2.18) is approximately equal to 3(0.167a−ψ′′(0)) and

Theorem 2.2 implies that the second bifurcation branch starting at p0 = pP
1 goes to

the right and is stable or goes to the left and is unstable if and only if ψ′′(0) > 0.167a

or ψ′′(0) < 0.167a, respectively. In particular, in the case a > 0, the second branch

goes to the left and is unstable even in cases when ψ is slightly convex at zero.

We get the following bifurcation diagram in a neigborhood of the two bifurcation

points discussed above.

0 pN
1,1 pP

1 0 pN
1,1 pP

1

Figure 2. Possible bifurcation diagrams. Left panel a > 0 and ψ′′(0) < 0, right panel a < 0 and
ψ′′(0) > 0.
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