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1 Introduction

Mathematical models consisting of elliptic and parabolic partial differential equations
with various boundary and initial conditions are useful tools in modeling and numerical
simulations of various real-life problems (see, e.g., [7, 11]). Usually, the exact (classical)
solutions of these models exhibits certain qualitative properties such as the maximum-
minimum principle (or, as a particular case, the nonnegativity preservation) [24], the
sign-stability (often called as a preservation of number of peaks) [14, 15], the maximum
norm contractivity, etc. For more details in the subject see recent reviews [10, 18].
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Among these, the maximum principle is the basic characteristic usually associated with
the second order elliptic (and parabolic) boundary value problems [17, 24, 26]. It can be
mathematically described as an a priori estimate of the magnitude of the (unknown in
the whole domain) solution by the magnitude of the (known) given, or easily computable,
data. The maximum principle is not only a mathematical feature of the model but it also
adequately describes the real behavior of the physical systems.

It is quite natural to require a suitable imitation of this property from the computed
approximations. This is the reason why the construction and validity of the corresponding
discrete analogues (the so-called discrete maximum principles, or DMPs in short) have
drawn much attention. To the authors’ knowledge, papers [28] by R. Varga in 1966 and
[13] by H. Fujii in 1973 were probably the very first works aimed at construction of a
reasonable DMP for elliptic and parabolic problems, respectively. These original papers
as well as the presented work use special properties of the finite difference and finite
element matrices to analyse the DMPs.

Later on, other types of the DMPs were formulated and proved in a number of pa-
pers, see, e.g., [6, 8, 17, 18, 21, 26, 29, 31]. They discuss various numerical methods for
different problems and study the validity of the DMPs. Most attention was paid to the
finite difference and finite element approximations of elliptic and parabolic problems and
to various geometric conditions on the shape of the classical simplicial and block finite
element partitions that provide the DMPs. Particularly challenging is the analysis of
the DMPs for the less standard but more promising and economical higher order finite
elements, see recent results [22] and [29]. However, the validity of the DMPs on prismatic
meshes has not been considered so far in spite of the fact that the prismatic partitions can
often be more natural and convenient compared to the standard tetrahedral partitions,
especially for cylindrical 3D domains.

The paper is organized as follows. Section 2 describes the 3D diffusion-reaction model
problem and Section 3 presents its finite element discretization by the lowest order pris-
matic elements. The main theoretical result about the DMP is contained in Section 4.
Section 5 provides practical geometric conditions for prismatic partitions to guarantee the
validity of the DMP. The sharpness of the obtained geometric conditions is verified by
numerical tests in Section 6. Finally, Section 7 points out possible generalizations and
several open problems.

2 Model problem

Throughout the paper we shall use the standard Sobolev space notation (cf. [7, 11]). We
consider the following reaction-diffusion boundary value problem

−∆u + c u = f in Ω, u = 0 on ∂Ω, (1)

where Ω ⊂ R3 is a bounded domain and c is a nonnegative bounded reaction coefficient.
To define the weak solution of (1), we assume the boundary ∂Ω to be Lipschitz continuous,
f ∈ L2(Ω), c ∈ L∞(Ω), and

0 ≤ c ≤ ‖c‖∞,Ω < ∞, (2)

where ‖c‖∞,Ω = ‖c‖L∞(Ω) stands for the L∞-norm of the reaction coefficient c over the
entire domain Ω. Similarly, we will use ‖c‖∞,P for the L∞-norm of c over a subdomain
P ⊂ Ω.
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The weak formulation of problem (1) reads: Find a function u ∈ H1
0(Ω) such that

∫

Ω

∇u · ∇v dx +

∫

Ω

c uv dx =

∫

Ω

fv dx ∀v ∈ H1
0 (Ω). (3)

Under the above conditions the weak solution u exists and is unique.
The following theorem shows the continuous maximum principle (CMP) for problem

(1), see [24] and also [17, 18] for a more general case of nonlinear problems with mixed
boundary conditions. In the sequel the equalities and inequalities between functions from
Lebesgue spaces should be understood up to a set of zero measure, as usually.

Theorem 1 Let u be a solution to (1) corresponding to a right-hand side f . If f ≤ 0 and
u ∈ C(Ω) then max

Ω
u = 0.

A natural discrete analogue to the above implication is known as the discrete maxi-
mum principle (DMP). In what follows, we formulate the DMP precisely and we derive
geometric conditions on the shape of prismatic finite elements guaranteeing its validity.

3 FE discretization on prismatic meshes

Let Ω = G × I be a cylindrical domain, where G ⊂ R2 is a polygon, I = (0, z0), and
z0 is a real positive number. We shall consider a face-to-face partition Th,τ = T G

h × T I
τ

of Ω into prisms (and call it prismatic mesh or prismatic partition of Ω), where T G
h is a

triangulation of G and T I
τ is a partition of I into segments (not necessarily with the same

lengths). The prismatic elements of Th,τ will be denoted from now on with the symbol P
possibly with certain subindices. The elements of the triangulation T G

h (being, actually,
the bases of the prismatic elements) will be denoted by T possibly with subindices. Let
Bi, i = 1, . . . , N + N∂ , be the vertices of Th,τ , where B1, . . . , BN are the interior nodes
and BN+1, . . . , BN+N∂ belong to the boundary ∂Ω.

Let Vh,τ ⊂ H1
0 (Ω) be the finite element space associated to Th,τ and defined as follows:

Vh,τ = {ϕ ∈ H1
0 (Ω) : ϕ(x, y, z)|P = λ(x, y) · ℓ(z), where

λ(x, y) ∈ P
1(T ), ℓ(z) ∈ P

1(I), P = T × I, P ∈ Th,τ , T ∈ T G
h , I ∈ T I

τ }, (4)

where P
1(T ) and P

1(I) stand for the spaces of linear functions defined in the triangle T and
in the interval I, respectively. Further, let φ1, . . . , φN denote the standard finite element
basis functions of Vh,τ satisfying φi(Bj) = δij , i = 1, 2, . . . , N , j = 1, 2, . . . , N +N∂ , where
δij is the Kronecker symbol.

The finite element discretization based on the weak formulation (3) reads: Find a
function uh,τ ∈ Vh,τ such that

∫

Ω

∇uh,τ · ∇vh,τ dx +

∫

Ω

c uh,τvh,τ dx =

∫

Ω

fvh,τ dx ∀vh,τ ∈ Vh,τ . (5)
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4 Discrete maximum principle

The discrete problem introduced above should, ideally, satisfy the following natural prop-
erty (cf. [8, 17, 18, 21, 29]):

f ≤ 0 =⇒ max
Ω

uh,τ = 0. (6)

This implication, however, has two different interpretations which are precisely formulated
in the following definitions.

Definition 1 Let Th,τ be a partition of Ω and let Vh,τ given by (4) be the finite element
space based on Th,τ . We say that approximate problem (5) satisfies the discrete maximum
principle (DMP) if

max
Ω

uh,τ = 0 for all f ≤ 0. (7)

Definition 2 Let f ≤ 0 be the right-hand side and let Th,τ be a partition of Ω. We say
that approximate problem (5) satisfies the discrete maximum principle (DMP) if

max
Ω

uh,τ = 0. (8)

If we consider a partition T A
h,τ such that problem (5) satisfies the DMP according

to Definition 1, implication (6) is valid for all nonpositive right-hand sides f . On the
other hand, if a right-hand side fB

1 ≤ 0 and a partition T B
h,τ are such that the DMP by

Definition 2 is valid then there could exist another right-hand side fB
2 ≤ 0 such that the

corresponding approximate solution uh,τ obtained on the same mesh T B
h,τ does not satisfy

(6).
To prove the DMP according to Definition 1 we have to characterize a suitable class of

meshes that guarantee (7). On the other hand, to prove the DMP according to Definition 2
we take an arbitrary nonpositive right-hand side f and construct a suitable mesh according
to this particular f such that (8) is valid.

In what follows we consider the DMP according to Definition 1. Theorem 2 below
gives sufficient conditions for prismatic partitions guaranteeing (7).

Remark 1 As all the basis functions are nonnegative, it is obvious that the FE approx-
imation satisfies uh,τ ≤ 0 everywhere in Ω if and only if uh,τ has nonpositive values at all
nodal points Bi, i = 1, . . . , N + N∂ .

Letting uh,τ =
N∑

i=1

yiφi, we come to the system of N linear equations

Ay = F, (9)

where A = (aij)
N
i,j=1 is called the FE matrix, the vector of unknowns y = (y1, . . . , yN)⊤

consists of the values of uh,τ at the interior nodes, and the vector F = (F1, . . . , FN)⊤ is
known as the load vector. The entries of the matrix A and of the vector F associated to
problem (1) are

aij =

∫

Ω

∇φi · ∇φj dx +

∫

Ω

c φiφj dx = a
(1)
ij + a

(2)
ij , (10)
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Fi =

∫

Ω

fφi dx, (11)

where matrices A(1) = (a
(1)
ij )N

i,j=1 and A(2) = (a
(2)
ij )N

i,j=1 are referred to as the stiffness and
mass matrices, respectively.

Various geometric conditions on the shape of the simplices in FE partitions come, in
fact, from the set of algebraic requirements on the entries of A providing the validity of
the DMPs, as it is done for example in [6, 17, 21]), where A is assumed to be irreducibly
diagonally dominant.

However, we find that it is sufficient and more convenient to require the matrix A to
be a Stieltjes matrix, i.e., symmetric, positive definite and having nonpositive off-diagonal
entries. Notice that Stieltjes matrices form a subclass of M-matrices which are not required
to be symmetric [27, p. 85] or [12, p. 121]. M-matrices have nonpositive inverse, which is a
sufficient and necessary condition for the DMP in the sense of Definition 1 and a sufficient
condition for the DMP in the sense of Definition 2. In the case of Stieltjes matrices we
avoid checking the irreducibility of the finite element matrix which is not always true
(cf. [9, p. 4]) and, moreover, it might be difficult to verify, in general.

Before we formulate the main result, we prove three auxiliary lemmas, where we
compute the entries of the local stiffness and mass matrices for an interval, a triangle,
and a prism. In the sequel, the symbol |T | stands for the measure of the set T .

Lemma 1 Let I = (0, d) be an interval and let ℓ0(z) = 1 − z/d and ℓ1(z) = z/d be the
1D shape functions, see Figure 1. Then

∫

I

ℓ2
0 dz =

∫

I

ℓ2
1 dz = d/3,

∫

I

ℓ0ℓ1 dz = d/6, (12)
∫

I

(ℓ′0)
2 dz =

∫

I

(ℓ′1)
2 dz = 1/d,

∫

I

ℓ′0ℓ
′
1 dz = −1/d. (13)

P r o o f : It follows from a straightforward calculation.

Lemma 2 Let T be a triangle ABC with the corresponding angles α, β, and γ, see Fig-
ure 1. Let λA = λA(x, y) and λB = λB(x, y) be the barycentric coordinates or equivalently
the linear shape functions corresponding to the vertices A and B. Then

∫

T

λ2
A d(x, y) = |T |/6, (14)

∫

T

λAλB d(x, y) = |T |/12, (15)
∫

T

|∇λA|2 d(x, y) =
1

2
(cotβ + cot γ), (16)

∫

T

∇λA · ∇λB d(x, y) = −1

2
cot γ. (17)

P r o o f : Results (14) and (15) follow immediately from a general formula

∫

T

λm
A λn

Bλp
C d(x, y) =

m!n!p!

(m + n + p + 2)!
2 |T |, m, n, p = 0, 1, 2, . . . ,
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mentioned in [7, p. 201] and proved in [16].
The well known identity (17) or its equivalent variants can be found at many places,

see for example [2, 9, 31] etc. Finally, (16) follows from (17) because

|∇λA|2 + ∇λA · ∇λB + ∇λA · ∇λC = 0.

h

l

A B

C

c0

1 l 0 1

α

b
a

β

γ

Figure 1: Basic denotation for 1D and 2D linear finite elements.

Lemma 3 Let I = (0, d) be an interval, T be a triangle, and let P = T × I be a prism.
Adopt the notation from Figure 2, in particular denote by A, B, D, and E the four vertices
of an arbitrary rectangular face of the prism P . Further, let λA(x, y) and λB(x, y) be the
barycentric coordinates corresponding to the vertices A and B of the triangle T and let
ℓ0(z) = 1 − z/d and ℓ1(z) = z/d. If

ϕA(x, y, z) = λA(x, y)ℓ0(z), ϕB(x, y, z) = λB(x, y)ℓ0(z),

ϕD(x, y, z) = λA(x, y)ℓ1(z), ϕE(x, y, z) = λB(x, y)ℓ1(z),

then
∫

P

∇ϕA · ∇ϕB d(x, y, z) = − d

12

(
2 cot γ − |T |

d2

)
, (18)

∫

P

∇ϕA · ∇ϕD d(x, y, z) =
d

12

(
cot β + cot γ − 2|T |

d2

)
, (19)

∫

P

∇ϕA · ∇ϕE d(x, y, z) = − d

12

(
cot γ +

|T |
d2

)
, (20)

and
∫

P

ϕAϕB d(x, y, z) =
d |T |
36

, (21)

∫

P

ϕAϕD d(x, y, z) =
d |T |
36

, (22)

∫

P

ϕAϕE d(x, y, z) =
d |T |
72

. (23)
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P r o o f : The statements (21)–(23) simply follow from the results of Lemmas 1 and 2.
The integrals (18)–(20) are computed as follows
∫

P

∇ϕA · ∇ϕB d(x, y, z) =

∫

T

∇λA · ∇λB d(x, y)

∫

I

ℓ2
0 dz +

∫

T

λAλB d(x, y)

∫

I

(ℓ′0)
2 dz

= −1

2
cot γ

d

3
+

|T |
12

1

d
,

∫

P

∇ϕA · ∇ϕD d(x, y, z) =

∫

T

|∇λA|2 d(x, y)

∫

I

ℓ0ℓ1 dz +

∫

T

λ2
A d(x, y)

∫

I

ℓ′0ℓ
′
1 dz

=
1

2
(cotβ + cot γ)

d

6
− |T |

6

1

d
,

∫

P

∇ϕA · ∇ϕE d(x, y, z) =

∫

T

∇λA · ∇λB d(x, y)

∫

I

ℓ0ℓ1 dz +

∫

T

λAλB d(x, y)

∫

I

ℓ′0ℓ
′
1 dz

= −1

2
cot γ

d

6
− |T |

12

1

d
.

B

C

b

c

d

a

D E

F

γ

βα

A

Figure 2: Basic denotation for the prismatic element.

In what follows, all inequalities between matrices, vectors, and scalars are to be un-
derstood entrywise. For example, the symbol A ≥ 0 means that all entries of a matrix
A = (aij)

N
i,j=1 are nonnegative, i.e., aij ≥ 0 for all i, j = 1, 2, . . . , N .

Definition 3 Let P = T × I be a prism and let α
(T )
max ≥ α

(T )
mid ≥ α

(T )
min > 0 be the maximal,

medium, and minimal angle of the triangular base T of the prism P , respectively. We
define the lower and upper bounds for the altitude of the prism P as

d
(P )
L =

(
2 cotα

(T )
max

|T | −
‖c‖∞,P

3

)−1/2

and d
(P )
U =

(
‖c‖∞,P

6
+

cotα
(T )
mid + cot α

(T )
min

2 |T |

)−1/2

.

(24)

The lower bound d
(P )
L is well defined only if

2 cotα
(T )
max

|T | −
‖c‖∞,P

3
> 0.

Notice that α
(T )
mid < π/2 and α

(T )
mid < π/2 for any triangle. Thus, d

(P )
U is always well

defined by (24).
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Theorem 2 Let Th,τ be a prismatic partition of Ω. For a prism P ∈ Th,τ , let d
(P )
L and

d
(P )
U be defined by (24), and let d(P ) denote the altitude of the prism P . If

d
(P )
L ≤ d(P ) ≤ d

(P )
U for all P ∈ Th,τ , (25)

then problem (5) satisfies the DMP according to Definition 1.

P r o o f : We have

aij =
∑

P ⊆ supp φi ∩ supp φj

∫

P

(
∇φi · ∇φj + c φiφj

)
d(x, y, z) =

∑

P ⊆ supp φi ∩ supp φj

a
(P )
ij .

As the finite element matrix is symmetric and positive definite, we only need to show that

a
(P )
ij ≤ 0 (26)

for all i 6= j. Then the matrix A is a Stieltjes matrix, hence, A−1 ≥ 0. Further, because
φi ≥ 0 for all i = 1, . . . , N , and f ≤ 0, we have Fi ≤ 0. Thus, by (9), we obtain y ≤ 0
and the DMP (7) holds.

It remains to prove (26). Let us consider a prism P ∈ Th,τ , P = T × I, and adopt
the notation from Lemma 3, see Figure 2. In particular, we use the short-hand notation
d = d(P ) for the altitude of the prism. Since we assume that d

(P )
L is well defined, we can

reformulate conditions (24)–(25) equivalently as

−2 cotα(T )
max +

|T |
d2

+ ‖c‖
∞,P

|T |
3

≤ 0 (27)

and

‖c‖∞,P

|T |
3

− 2|T |
d2

+ cotα
(T )
mid + cot α

(T )
min ≤ 0. (28)

To compute all the entries a
(P )
ij of the local finite element matrix it is enough to distinguish

the following three different cases, see Figure 3.

E

A ABA

D

Figure 3: Illustration of node positions in cases (i), (ii), and (iii).

(i) Let A be any vertex of P and let B be one of the two remaining vertices in the
same triangular base. If the basis functions φi and φj correspond to the vertices A and
B, respectively, then by (18) and (21)

a
(P )
ij =

∫

P

∇ϕA · ∇ϕB +

∫

P

c ϕAϕB ≤ d

12

(
−2 cot γ +

|T |
d2

+ ‖c‖∞,P

|T |
3

)
. (29)
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The nonpositivity of this value is guaranteed by (27) because the cotangent is a decreasing

function and hence − cot γ ≤ − cot α
(T )
max.

(ii) Let A be any vertex of P and let D be the vertex in the opposite triangular base
joined with A by an edge. If the basis functions φi and φj correspond to the vertices A
and D, respectively, then by (19) and (22)

a
(P )
ij =

∫

P

∇ϕA · ∇ϕD +

∫

P

c ϕAϕD ≤ d

12

(
cotβ + cot γ − 2|T |

d2
+ ‖c‖∞,P

|T |
3

)
. (30)

The nonpositivity of this value follows from (28) because cotβ+cot γ ≤ cot α
(T )
mid+cot α

(T )
min.

(iii) Let A be any vertex of P and let E be the vertex in the opposite triangular base
not joined with A by any edge. If the basis functions φi and φj correspond to the vertices
A and E, respectively, then by (20) and (23)

a
(P )
ij =

∫

P

∇ϕA · ∇ϕE +

∫

P

c ϕAϕE ≤ − d

12

(
cot γ +

|T |
d2

− ‖c‖∞,P

|T |
6

)

=
d

24

(
−2 cot γ +

|T |
d2

+ ‖c‖∞,P

|T |
3

)
− 3d

24

|T |
d2

. (31)

This is, clearly, nonpositive due to case (i), see (29).

5 Construction of meshes for the DMP

It is not immediately clear, how the prismatic partitions satisfying the crucial conditions
(24)–(25) look like. In this section, we prove several results which characterize prismatic
partitions with property (24)–(25). First of all, we present Lemma 4 which states that
conditions (24)–(25) are sharp in the sense that their violation leads to positive entries in
the local finite element matrices in certain situations.

Lemma 4 Let Th,τ be a prismatic partition of Ω and let the reaction coefficient c be
piecewise constant so that c|P = const. for all prisms P in Th,τ . Then all the off-diagonal

entries of the local finite element matrices a
(P )
ij are nonnegative if and only if conditions

(24)–(25) are satisfied.

P r o o f : The “if” part is a special case of Theorem 2. The “only if” part follows from
the fact that (29), (30), and (31) hold in our case as equalities because ‖c‖∞,P = c|P .
Thus, if (24)–(25) is not valid then at least one of entries (29) or (30) is positive.

In the following proofs we implicitly assume that d
(P )
L is well defined and we use an

equivalent reformulation of conditions (24)–(25)

‖c‖∞,P

6
|T | + cot α

(T )
mid + cot α

(T )
min

2
≤ |T |

(d(P ))2
≤ 2 cotα(T )

max −
‖c‖∞,P

3
|T |. (32)

Below, Lemma 5 shows important observation about the uniform (global) refinement of
the prismatic partitions satisfying (24)–(25).
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Figure 4: 2-fold and 3-fold uniform refinement of a prism.

Definition 4 Let m be a positive integer and Th,τ be a prismatic partition of Ω. We refine
each edge in Th,τ into m subedges. Hence, for each prism P ∈ Th,τ , P = T × I, we refine

the triangular base T into m2 similar triangles T̃i ⊂ T , i = 1, 2, . . . , m2, each segment I
into m equal segments Ĩj ⊂ I, j = 1, 2, . . . , m, and we obtain m3 prisms P̃i,j = T̃i × Ĩj,

P̃i,j ⊂ P . These prisms P̃i,j form a new face-to-face prismatic partition T̃h,τ of Ω which

we call m-fold uniform refinement of Th,τ . If m = 1 then T̃h,τ = Th,τ . See Figure 4 for an
illustration.

Lemma 5 If a prismatic partion Th,τ satisfies (24)–(25) then its m-fold uniform refine-

ment T̃h,τ with m ≥ 1 satisfies (24)–(25) as well.

P r o o f : Let P ∈ Th,τ , P = T × I, and P̃ ∈ T̃h,τ , P̃ = T̃ × Ĩ, be such that P̃ ⊂ P .

Then m2|T̃ | = |T | and md̃ = d, where d and d̃ stand for the altitudes of prisms P and P̃ ,

respectively. In addition, the triangles T and T̃ are similar and therefore the corresponding
maximal, medium, and minimal angles α ≥ β ≥ γ in T and α̃ ≥ β̃ ≥ γ̃ in T̃ are equal.

Since conditions (24)–(25) and, equivalently, (32) are valid for P , we estimate

‖c‖
∞, eP

6
|T̃ | + cot β̃ + cot γ̃

2
≤

‖c‖∞,P

6

|T |
m2

+
cot β + cot γ

2

≤ |T |
d2

≤ 2 cotα −
‖c‖

∞,P

3

|T |
m2

≤ 2 cot α̃ −
‖c‖

∞, eP

3
|T̃ |, (33)

where we use the facts that ‖c‖
∞, eP ≤ ‖c‖∞,P and m ≥ 1. To finish the proof we realize that

inequalities (33) actually prove conditions (32) for the prism P̃ because |T |/d2 = |T̃ |/d̃2.

The following definition and the subsequent theorems provide easily verifyable suf-
ficient conditions for prismatic partitions that yield the DMP. Furthermore, they give
practical hints how to construct such partitions.

Definition 5 Let Th,τ = T G
h × T I

τ be a prismatic partion of a cylindrical domain Ω =
G × I ⊂ R3, where G ⊂ R2 is a polygon and I ⊂ R is an interval. Further we denote by
di, i = 1, 2, . . . , M , the lengths of the M segments in T I

τ , by Tmax and Tmin the triangles

in T G
h with the largest and smallest areas, respectively, and by α

T G
h

max and α
T G

h

min the maximal
and minimal angles in the triangulation T G

h , respectively.
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We say that the prismatic partition Th,τ is well-shaped for the DMP if α
T G

h
max < π/2

and if
1

2
|Tmax| tanα

T G

h
max ≤ d2

i ≤ |Tmin| tanα
T G

h

min ∀i = 1, 2, . . . , M. (34)

In addition, if α
T G

h
max < π/2 and if

1

2
|Tmax| tanα

T G
h

max < d2
i < |Tmin| tanα

T G
h

min ∀i = 1, 2, . . . , M, (35)

then the prismatic partition Th,τ is called strictly well-shaped for the DMP.

Clearly, a strictly well-shaped partition is also well-shaped. Furthermore, it is easy to
see that any m-fold uniform refinement of a (strictly) well-shaped prismatic partition is
again (strictly) well-shaped. Hence, we can say that conditions (34) and (35) limit the
shape of the prisms and not their actual size. Before we introduce theorems stating that
well-shaped partitions guarantee the DMP we present Lemma 6 which presents geometric
properties of the well-shaped prismatic partitions. In particular, it limits the maximal

angle much more than the technical assumption α
T G

h
max < π/2.

Lemma 6 Let Th,τ = T G
h ×T I

τ be a well-shaped prismatic partition of a cylindrical domain

Ω = G × I. Let Tmax, Tmin, α
T G

h
max, and α

T G
h

min have the same meaning as in Definition 5.
Then

α
T G

h
max ≤ arctan

√
8 ≈ 70.5288◦, (36)

α
T G

h

min ≥ arctan(
√

5/2) ≈ 48.1897◦, (37)

and
|Tmax|
|Tmin|

≤ 2. (38)

P r o o f : We prove this lemma by contradiction. If a prismatic partition Th,τ = T G
h ×T I

τ

is well-shaped for the DMP then

1

2
|Tmax| tanα

T G

h
max ≤ |Tmin| tanα

T G

h

min (39)

independently from the partition T I
τ of I.

Let us suppose that (36) is not valid and let us consider the triangle T ∈ T G
h such

that its greatest angle α = α
T G

h
max > arctan

√
8 = 2 arctan(

√
2/2). The smallest angle γ

in this T satisfies γ ≤ π/2 − α/2 which is equivalent to cot γ ≥ cot(π/2 − α/2). It can
easily be verified that the inequality α > 2 arctan(

√
2/2) is equivalent to the inequality

2 cotα < cot(π/2 − α/2). Thus, 2 cotα < cot γ. From (39) and from the technical

assumption α
T G

h
max < π/2 we conclude that

1 ≤ |Tmax|
|Tmin|

≤ 2 cotα
T G

h
max

cot α
T G

h

min

≤ 2 cotα

cot γ
< 1, (40)

which is a contradiction and (36) is proved.
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To prove (37) by contradition, we consider the triangle T ∈ T G
h such that its smallest

angle γ = α
T G

h

min < arctan(
√

5/2) = 2 arctan(1/
√

5). The greatest angle α in this T satisfies
α ≥ π/2−γ/2 which is equivalent to cot α ≤ cot(π/2−γ/2). It can easily be verified that
the inequality γ < 2 arctan(1/

√
5) is equivalent to the inequality 2 cot(π/2−γ/2) < cot γ.

Thus, 2 cotα < cot γ which is a contradiction due to (40).

Finally, if (38) was not true then (39) together with the inequality tan α
T G

h

min ≤ tan α
T G

h
max

would imply

2 <
|Tmax|
|Tmin|

≤ 2 tanα
T G

h

min

tan α
T G

h
max

≤ 2, (41)

which is a contradiction, again.

Notice that the strictly well-shaped prismatic partitions satisfy (36)–(38) with strict
inequalities.

We would like to emphasize that conditions (36) and (37) are sharp in the sense that
there exist well-shaped prismatic partitions with the maximal and minimal angle equal
to arctan

√
8 and arctan(

√
5/2), respectively. Let us construct two examples of such

well-shaped prismatic partitions.
(i) Let T (i)

h,τ consists of copies of a prism P = T × I whose base T is an isosceles

triangle with angles α = arctan
√

8 ≈ 70.5288◦ and β = γ = π/2−α/2 ≈ 54.7356◦. If the

altitudes of all these prisms are set by (24) to be d2 =
(
d

(P )
L

)2
=
(
d

(P )
U

)2
=

√
2|T |, then

this prismatic partition Th,τ is well-shaped for the DMP. See Figure 5(i).

(ii) Similarly, to show that (37) is sharp, we construct a prismatic partition T (ii)
h,τ

consisting of prisms with bases T being isosceles triangles with angles γ = arctan(
√

5/2) ≈
48.1897◦ and α = β = π/2− γ/2 ≈ 65.905◦. If the altitudes of these prisms are chosen in
agreement with (24) inbetween

1

2

√
5|T | =

(
d

(P )
L

)2 ≤ d2 ≤
(
d

(P )
U

)2
=

2

3

√
5|T |

then this prismatic partition is well-shaped for the DMP. See Figure 5(ii) for an illustra-
tion. Notice that the whole plane R2 can be tiled by copies of any isosceles triangle.

(i)

(ii)

Figure 5: Two examples of isosceles triangulations. (i) The greater angles (70.5288◦) are
marked by double arcs and the smaller angles (54.7356◦) have no mark. (ii) The greater
angles (65.905◦) are marked by double arcs and the smaller angles (48.19◦) have no mark.

On the other hand, condition (38) is not sharp in this sense. A well-shaped prismatic
partition such that |Tmax|/|Tmin| = 2 does not exists. Indeed, if |Tmax|/|Tmin| = 2 then (41)
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implies that α
T G

h

min = α
T G

h
max, hence all triangles in the triangulation T G

h are equilateral and
consequently all of them have equal areas. This contradicts the fact that |Tmax|/|Tmin| = 2.
Nevertheless, for any ε > 0, it is possible to construct a well-shaped prismatic partition
such that |Tmax|/|Tmin| = 2 − ε. Figure 6 illustrates the construction of the base trian-
gulation for such prismatic partitions. For example, to have 1.99 < |Tmax|/|Tmin| < 2
it is enough to set ω = 0.03◦ and construct 381 (n = 380) triangles according to Fig-
ure 6. If the altitudes of the prisms satisfy 0.749029 < d2 < 0.749546 then the resulting
prismatic partition is strictly well-shaped. There are no interior points in Figure 6. In
order to obtain some we can uniformly refine the indicated partition or we can mirror the
triangulation with respect to the (almost) horizontal lines.

T0

T1

T2

Tn−1

Tn

1

1
ϑ

ϑ

ϑ2

ϑ2

ϑ3

ϑn−1

ϑn−1 ϑn

ϑn

ϑn+1

Figure 6: Construction of a triangulation consiting of isosceles triangles which are close
to equilateral triangles and whose areas grow such that |Tn|/|T0| is close to 2. The angles
marked by double arcs are equal to π/3 + 2ω and the ones marked by single arcs are
π/3 − ω, where ω is a small positive angle. If a stands for the lengths of two sides of the
isosceles triangle with angle π/3 + 2ω inbetween them then the third side has length ϑa,
where ϑ = 2 sin(π/3 + ω).

The practical significance of Lemma 6 lies in the fact that it gives necessary conditions
for a partition to be well-shaped for the DMP. If at least one condition of (36)–(38) is not
satisfied then the corresponding prismatic partition is not well-shaped for the DMP. The
following theorem says that well-shaped prismatic partitions yield the DMP in the pure
diffusion case, i.e., for c ≡ 0 in Ω.

Theorem 3 Let Ω = G × I ⊂ R3 be a cylindrical domain and let Th,τ = T G
h × T I

τ be
its well-shaped prismatic partition. If c ≡ 0 in Ω, then discretization (5) based on the
prismatic partition Th,τ satisfies the DMP according to Definition 1.

P r o o f : Lemma 6, statement (36), implies that all angles in the triangulation T G
h are

well below π/2. Hence, tangents and cotangents of all angles in T G
h are positive.

Let us consider a prism P = T × I in Th,τ . Further, let α ≥ β ≥ γ > 0 be the angles
in the triangle T , and let d stand for the altitude of the prism P . The assumption (34)
implies

cotβ + cot γ

2
≤ |T |

|Tmin|
cot α

T G
h

min ≤ |T |
d2

≤ |T |
|Tmax|

2 cotα
T G

h
max ≤ 2 cotα.

Thus, conditions (32) and, equivalently, (24)–(25) are satisfied for all prisms P ∈ Th,τ and
Theorem 2 concludes the proof.
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Theorem 4 below characterizes a class of prismatic partitions which provide the DMP
in the general diffusion-reaction case c ≥ 0 in Ω. Such partitions must be strictly well-
shaped and fine enough. Moreover, Theorem 4 quantifies how fine the suitable partitions
must be.

Theorem 4 Let Ω = G × I ⊂ R3 be a cylindrical domain and let Th,τ = T G
h × T I

τ be its
strictly well-shaped prismatic partition. Furthermore, let m ≥ 1 be an integer such that

m2 ≥ max
P∈Th,τ

‖c‖∞,P |T |
MP

, (42)

where P = T × I is a prism and

MP = min

{
6

( |T |
d2

− cot β + cot γ

2

)
, 3

(
2 cotα − |T |

d2

)}
, (43)

with α ≥ β ≥ γ being the angles in the triangle T and d standing for the altitude of
the prism P . Then discretization (5) based on the m-fold uniform refinement T̃h,τ of Th,τ

satisfies the DMP according to Definition 1.

P r o o f : Let us consider the m-fold uniform refinement T̃h,τ of the strictly well-shaped

prismatic partition Th,τ with m ≥ 1 given by (42). Let P̃ = T̃ × Ĩ be a prism in T̃h,τ and

let P ∈ Th,τ , P = T × I, be such a prism that P̃ ⊂ P . Denote by d̃ and d the altitudes of

prisms P̃ and P , respectively. Clearly, m2|T̃ | = |T |, md̃ = d, and the triangles T̃ and T

are similar, hence the corresponding angles α̃ ≥ β̃ ≥ γ̃ > 0 in T̃ and α ≥ β ≥ γ > 0 in T
are equal. Notice that all angles in both Th,τ and T̃h,τ are acute by Lemma 6.

Since the prismatic partition Th,τ is strictly well-shaped we have MP > 0 and assump-
tion (42) implies

‖c‖
∞, eP |T̃ | ≤ ‖c‖∞,P

|T |
m2

≤ MP ,

where we used ‖c‖
∞, eP ≤ ‖c‖

∞,P . Hence, from definition (43) we obtain

‖c‖
∞, eP |T̃ |
6

+
cot β̃ + cot γ̃

2
≤ |T̃ |

d̃2
≤ 2 cot α̃ −

‖c‖
∞, eP |T̃ |
3

,

where we utilize the facts that α̃ = α, β̃ = β, γ̃ = γ, and |T̃ |/d̃2 = |T |/d2. Thus we

verified the validity of conditions (32) and, equivalently, (24)–(25) for all prisms P̃ ∈ T̃h,τ

and Theorem 2 finishes the proof.

Remark 2 In the pure diffusion case, i.e., c ≡ 0 in Ω, the conditions for validity of the
DMP limit the shape and not the size of elements, cf. (32). Indeed, condition (32) limits
the ratio of the area of the base triangle and the square of the altitude of the prism by
the angles in the base triangle, but the size (volume) of the prism can be made arbitrarily
large or small while keeping this ratio constant. On the other hand, in the general case,
if the reaction coefficient c does not vanish then the partition must be also fine enough
in order to obtain the DMP, cf. Theorem 4. This is typical behavior of the diffusion-
reaction problem and it is in agreement with the previous DMP results for problems with
the reaction term, see, e.g., [3] for simplicial finite elements.
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Remark 3 Conditions (34) and (35) for the well-shaped and the strictly well-shaped
prismatic partitions bound the altitudes of the prisms from two sides. Therefore, it could
be troublesome or even impossible to divide a given domain Ω = G × I into layers with
suitable altitudes. However, if there exists a triangulation of G satisfying (39) then for
any altitude of Ω exists a sequence of domains Ωk = G ×Ik, such that Ωk → Ω as k → ∞
and that a (strictly) well-shaped prismatic partition of Ωk exists. Notice that the domains
Ωk and their (strictly) well-shaped prismatic partitions need not to be necessarily nested.

Remark 4 For illustration let us consider the most favorable triangulation T G
h consisting

of equilateral triangles with the same area. Let a stands for the length of each side of these
triangles. Further, let the reaction coefficient c vanishes. In order to satisfy conditions
(24)–(25) and, hence, to obtain the DMP the altitudes d of the prisms in the prismatic
partition Th,τ = T G

h × T I
τ are limited by

3

8
a2 ≤ d2 ≤ 3

4
a2. (44)

6 Numerical tests

In this section, we illustrate the theoretical results by numerical computations. The
numerical tests also show that the DMP is valid for much wider class of meshes than the
theory predicts.

First, we construct a well shaped triangulation for the DMP according to Definition 5.
This triangulation will be used to demonstrate the usage of Lemmas 5 and 6 as well as
Theorems 2, 3, and 4. The construction of the well shaped triangulation for the DMP
requires some care, however. Lemma 6 gives necessary conditions on the shape of the well
shaped triangulations, but sufficient conditions are unclear.

α

β

γ

α γ

β

Figure 7: The original partition. Figure 8: The applied computational mesh.

In order to construct a strictly well shaped prismatic partition we consider a trian-
gulation consisting of similar triangles as presented in Figure 7. All computations are
performed using two times refined original partition (4-fold refinement), presented in Fig-
ure 8. The prismatic partition is constructed from this triangulation by creating four
layers of prismatic elements with equal altitudes d. For this kind of partitions, the well
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shapedness condition (34) reduces to a simple inequality

1

2
tan αmax ≤ tan αmin. (45)

We stress that in agreement with (1) we use zero Dirichlet boundary conditions in all
computations.

In the first test, we study inequality (45) and its relation to the existence of a suitable
altitude d which would yield the DMP for c = 0. We compare altitudes predicted by
the theory (Theorems 2 and 3) with the altitudes computed numerically. Since the shape
of the applied partition (see Figure 7) is determined by the values of αmax and αmin, we
can visualize the results as a function of these two parameters. This is done in Figure 9.
Domain 1 illustrates the set of the well shaped triangulations, according to Definition 5.
Triangulations from this set satisfy the DMP by Theorem 3. In our case, domain 1 is
determined by (45). Domain 2 is the set of the non well-shaped triangulations, which
satisfy the DMP with a suitable altitude d according to Theorem 2. Domain 3 corre-
sponds to the set of triangulations for which we can computationally verify the DMP for
a certain altitude d. All other triangulations (domain 4) do not satisfy the DMP for any
altitude. We remark that the graining of the image is due to the finite resolution applied
in computations. Still, we can verify the sharpness of the necessary bounds for αmin and
αmax given by Lemma 6.

In Figure 9, we can compare the set of triangulations, where the DMP is guaranteed
by our theoretical results (domains 1 and 2), with the set of all triangulations yielding
the DMP (domain 3). We observe that the theory covers considerable part of the trian-
gulations yielding the DMP. On the other hand, this numerical experiment reveals that
the set of triangulations yielding the DMP is much wider than the theory predicts.

1

2
3

4

α
m

in

αmax

Figure 9: Characterization of the applied partitions according to αmax and αmin. In
domains 1 and 2, the DMP is guaranteed by Theorem 3 and 2. Domain 3 is not covered
by the theory but the DMP is valid there. Partitions corresponding to domain 4 do not
yield the DMP at all.
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Figure 10: The smallest entry A−1
min = minij A−1

ij of the inverse of the finite element matrix
as a function of the altitude d for c = 0 (left). Theoretical bounds (24)–(25) are plotted
as the dashed lines (right). The right panel is a zoom from the left panel.

In the second test, we demonstrate the theoretical bounds (24)–(25) for the altitude d
in the case c = 0, see Theorem 2. For this purpose, we construct a sequence of prismatic
partitions. All these partitions are based on the same triangulation and have four layers
of prisms with the altitude d varying from 0 to 1 with step 0.002. Based on the first
test, we choose as the base triangulation a strictly well-shaped triangulation shown in
Figure 8 with angles 65, 60, and 55 degrees. This base triangulation is used also for all
the subsequent tests.

For each prismatic partition in the sequence, we find the smallest entry A−1
min of the

inverse of the finite element system matrix, A−1
min = minij A−1

ij . As the DMP according

to Definition 1 is valid if and only if A−1
min ≥ 0, this value indicates whether the DMP

property is satisfied. The results are visualized in Figure 10. As one can observe, the
computationally obtained bounds for the DMP are only little larger compared to the
theoretically predicted bounds (24)–(25).

In the third test, we study the behavior of the bounds (24)–(25) for the altitude d, when
the coefficient c is a constant greater than zero. We use the same prismatic partitions as
in the previous case, but we vary the coefficient c from 1 to 30 with step 1. Theoretically
calculated and computationally verified bounds for the altitude d yielding the DMP are
visualized as functions of c in Figure 11. In this figure, we observe that the DMP is lost
for sufficiently large values of c, as predicted by bounds (24)–(25) presented in Theorem 2.
The computational bounds for the DMP behave in a similar manner as the theoretical
ones.

Finally, in the fourth test, we study if the DMP can be recovered for c = 100 by the
m-fold uniform refinement, according to Theorem 4. In this case, the theoretical bounds
for the altitude d with c = 0 are dL = 0.17918 and dU = 0.2165. The initial altitude
was chosen between these bounds as d0 = 0.1930. Figure 12 presents the behavior of
the computational and theoretical bounds for d. For the chosen value of the reaction
coefficient c, the initial partition does not yield the DMP for any altitude. As the partition
is strictly well shaped for the DMP, Theorem 4 states that a three-fold (MP = 0.38595
and m = 3) refinement should restore the DMP. This phenomenon is indeed observed
in our computations. Nevertheless, the results show an existence of a suitable altitude d
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yielding the DMP even for m = 2. This test confirms that the DMP is valid for any m-fold
uniform refinement with sufficiently large m, as predicted by Lemma 5 and Theorem 4.
The theoretically predicted value of m could be, however, greater then it is necessary, in
certain situations.

0 5 10 15 20 25 30

0.16

0.18

0.2

0.22

0.24

0.26

c

d

Figure 11: Behavior of the theoretical
(dashed lines) and the computational (solid
lines) bounds for the altitude d as a func-
tion of the coefficient c.
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Figure 12: Behavior of the theoretical
(dashed lines) and the computational (solid
lines) bounds for the altitude d with re-
spect to the m-fold uniform refinement.
The dotted line denotes the original alti-
tude d0 = 0.1930 and its refinement. The
reaction coefficient is chosen as c = 100.

7 Conclusions, generalizations, and open problems

The crucial result of this paper is formulated in Theorem 2, where we present an easily
verifyable condition (25) which guarantees the DMP. This theorem, however, does not
provide any guidelines how to construct suitable prismatic partitions for the validity of
the DMP. Therefore, we developed the concept of the (strictly) well shaped prismatic
partitions to characterize the base triangulations which guarantee existence of suitable
altitudes of the layers of prisms. The corresponding DMP on the (strictly) well shaped
prismatic partitions is formulated and proven in Theorems 3 and 4.

In Section 6, we present various numerical tests to asses the sharpness of the theoret-
ically obtained conditions. The first test, see Figure 9, is of particular interest, because
it indicates that the class of partitions which provide the DMP is much wider than one
would expect from the theoretical results.

Let us conclude this paper by the following list of possible generalizations and open
problems.

• To prove the DMP, we actually require the FE matrix A to have the nonnegative
inverse, i.e., A−1 ≥ 0. It is well known that some off-diagonal entries can be positive
and still one has A−1 ≥ 0 (see, e.g., a very recent work [1] for a discussion and
literature on this subject). This observation was actually used in [20] to weaken the
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standard condition of nonobtuseness (cf. [4, 19]) for tetrahedral elements. Similar
approach can be, obviously, applied to the case of prismatic meshes and conditions
(24)–(25) can be thus weakened.

• It would be interesting to investigate the DMPs in the case of the so-called hybrid
meshes, consisting of tetrahedra, hexahedra, pyramids, and prisms (see [30]). The
goal would be to derive suitable geometric conditions on the shapes of these elements
and to propose techniques for refinements (cf. [25]) of such meshes preserving the
shape limitations.

• The proofs of the DMPs for parabolic problems usually utilize the geometric con-
ditions derived in the elliptic case, cf. [13] for the simplicial finite elements. The
above presented concept of the well-shaped prismatic partitions can be used to prove
the DMP for parabolic problems discretized in space variables by prismatic finite
elements.

• Similarly, our concept of the well-shaped prismatic partitions can be used to treat
the DMPs for nonlinear elliptic problems. It is possible to follow the ideas introduced
in [17, 18].

• In recent works [5, 22, 23, 31] the authors try to preserve the DMPs by nonlinear
computational schemes which allow to avoid or considerably weaken the geometric
limitations on the meshes. These techniques can be generalized to the prismatic
finite elements as well.
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[14] Horváth, R., On the sign-stability of the numerical solutions of the heat equation,
Pure Math. Appl. 11 (2000), 281–291.
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