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ABSTRACT. The solutions of a family of semilinear stochastic equations in a Hilbert space with a
fractional Brownian motion are investigated. The nonlinear term in these equations has primarily
only a growth condition assumption. An arbitrary member of the family of fractional Brownian
motions can be used in these equations. Existence and uniqueness for both weak and mild solutions
are obtained for some of these semilinear equations. The weak solutions are obtained by a measure
transformation that verifies absolute continuity with respect to the measure for the solution of the as-
sociated linear equation. Some examples of stochastic differential and partial differential equations
are given that satisfy the assumptions for the solutions of the semilinear equations.

Key Words: Semilinear stochastic equations, fractional Brownian motion, stochastic partial dif-
ferential equations, absolute continuity of measures.

1. INTRODUCTION

Fractional Brownian motion denotes a family of Gaussian processes with continuous sample

paths that are indexed by the Hurst parameter H ∈ (0,1) and that have properties that appear

empirically in a wide variety of physical phenomena, such as hydrology, economic data, telecom-

munications, and medicine. Since some physical phenomena are naturally modeled by stochastic

partial differential equations and the randomness can be described by a fractional Gaussian noise,

it is important to study the problems of the solutions of stochastic differential equations in a Hilbert

space with a fractional Brownian motion. A significant family of these stochastic equations is the

set of semilinear equations, so it is important to investigate the existence and the uniqueness of the

solutions of the equations and the sample path properties of the solutions. If primarily only some

growth assumptions are made on the nonlinear terms in the semilinear equations then it is natural to

investigate weak solutions, especially those that arise by an absolutely continuous transformation

of the measure of the solution of the associated linear stochastic equation.

The study of the solutions of stochastic equations in an infinite dimensional space with a (cylin-

drical) fractional Brownian motion (for example, stochastic partial differential equations) has been

relatively limited. For the Hurst parameter H ∈ (1/2,1), linear and semilinear equations with
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an additive fractional Gaussian noise, the formal derivative of a fractional Brownian motion, are

considered in [8, 13, 15, 26]. Random dynamical systems described by such stochastic equations

and their fixed points are studied in [21]. A pathwise (or nonprobabilistic) approach is used in

[20] to study a parabolic equation with a fractional Gaussian noise where the stochastic term is

a nonlinear function of the solution. Strong solutions of bilinear evolution equations with a frac-

tional Brownian motion are considered in [11, 12] and the same type of equation is studied in [31]

where a fractional Feynman-Kac formula is obtained. A stochastic wave equation with a fractional

Gaussian noise is considered in [2] and a stochastic heat equation with a multiparameter fractional

Gaussian noise is studied in [16, 18].

One facet of the motivation for the study of weak solutions in an infinite dimensional space fol-

lows from some results [7,25] for weak solutions in finite dimensional spaces that use an absolutely

continuous transformation of measures which generalize the result of Girsanov [14] for Brownian

motion.

In this paper, a similar analysis is made for infinite dimensional state spaces. While the structure

of the infinite dimensional Girsanov theorem is analogous to the finite dimensional case, significant

distinct difficulties arise when the application of this theorem is used for stochastic equations in

infinite dimensional spaces. First the driving process is only cylindrical, so the Girsanov theorem

can only be used to transform the semilinear equation to a linear equation that is a fractional

Ornstein-Uhlenbeck process. Since there is not a classical strong solution to the linear equation, the

mild solution must be used which makes the analysis of the transformation of the measures by the

Radon-Nikodym derivative more difficult because a suitable sample path regularity of the Ornstein-

Uhlenbeck process must be verified. Unlike the finite dimensional case, this regularity is not

immediate and some assumptions on the coefficients in the linear equation must be made which is

known for the case of Brownian motion. The sample regularity requirement increases as the Hurst

parameter H increases. Dually the operators that appear in the Radon-Nikodym derivative are less

regular as H increases. Thus the applicability of the Girsanov theorem is not immediate in this

case and some conditions must be determined for the whole procedure to succeed. Furthermore,

for H > 1
2 in the finite dimensional case it is assumed that the nonlinear term in the semilinear

equation satisfies a global Hölder condition but this assumption is not satisfied in many typical

examples in infinite dimensional spaces, such as reaction-diffusion equations. Thus this Hölder

condition is relaxed here as well.
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In Section 2, some results from fractional calculus are given and these results are used to de-

scribe a kernel function for an integral operator that provides an isometry of the second moment

of Wiener-type stochastic integrals with respect to a fractional Brownian motion and the Lebesgue

space of square integrable functions. Furthermore, some recent results for the solution of a lin-

ear stochastic equation in a Hilbert space ([26]) are described. In Section 3, semilinear stochastic

equations in a Hilbert space are studied. Initially, an absolute continuity of measures result for

transforming the solution of a linear stochastic equation is verified that can be viewed as an ana-

logue of the result of Girsanov ([14]) for a transformation of a finite dimensional standard Brown-

ian motion. For a semilinear stochastic equation where the nonlinear term satisfies a linear growth

condition and some additional conditions are satisfied it is shown that there is one and only one

weak solution. The weak solution is obtained by verifying an absolute continuity of the measure of

the solution with respect to the measure of the solution of the associated linear equation. the cases

H ∈ (0,1/2) and H ∈ (1/2,1) are treated separately. Absolute continuity of the above measures is

verified when the nonlinearity satisfies a power growth condition and some additional assumptions

are made. In Section 4, some examples of stochastic differential and partial differential equations

are given that satisfy the assumptions of the theorems.

2. PRELIMINARIES

In this section, a cylindrical fractional Brownian motion in a separable Hilbert space is intro-

duced, a Wiener-type stochastic integral with respect to this process is defined, and some basic

properties of this integral are noted. Initially, some facts from the theory of fractional integration

(cf., [29]) are described. Let (V,‖ · ‖,〈·, ·〉) be a separable Hilbert space and let α ∈ (0,1). If

ϕ ∈ L1([0,T ],V ) then the left-sided and the right-sided fractional (Riemann-Liouville) integrals of

ϕ are defined (for almost all t ∈ [0,T ]) by(
Iα
0+ϕ

)
(t) =

1
Γ(α)

∫ t

0
(t− s)α−1

ϕ(s)ds

and

(
Iα
T−ϕ

)
(t) =

1
Γ(α)

∫ T

t
(s− t)α−1

ϕ(s)ds
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respectively, where Γ(·) is the gamma function. The inverse operators of these fractional integrals

are called fractional derivatives and can be given by their respective Weyl representations(
Dα

0+ψ
)
(t) =

1
Γ(1−α)

(
ψ(t)
tα

+α

∫ t

0

ψ(t)−ψ(s)
(t− s)α+1 ds

)
and

(
Dα

T−ψ
)
(t) =

1
Γ(1−α)

(
ψ(t)

(T − t)α
+α

∫ T

t

ψ(s)−ψ(t)
(s− t)α+1 ds

)
where ψ ∈ Iα

0+
(
L1 ([0,T ],V )

)
and ψ ∈ Iα

T−
(
L1 ([0,T ],V )

)
respectively.

Let KH(t,s) for 0 ≤ s ≤ t ≤ T be the real-valued kernel function

(2.1) KH(t,s) =
c̃H(t− s)H− 1

2

Γ
(
H + 1

2

) +
c̃H
(1

2 −H
)

Γ
(
H + 1

2

) ∫ t

s
(u− s)H− 3

2

(
1−
( s

u

) 1
2−H

)
du

for H ∈ (0,1/2). If H ∈ (1/2,1), then KH has a simpler form as

(2.2) KH(t,s) =
ĉH

Γ
(
H− 1

2

)s
1
2−H

∫ t

s
(u− s)H− 3

2 uH− 1
2 du .

The terms c̃H and ĉH are constants that only depend on H.

Define the integral operator KH induced from the kernel KH by

(2.3) KHϕ(t) =
∫ t

0
KH(t,s)h(s)ds

for h ∈ L2 ([0,T ],V ). It is well-known ([29]) that

KH : L2 ([0,T ],V )→ I
H+ 1

2
0+

(
L2 ([0,T ],V )

)
is a bijection and KH can be described as

(2.4) KHh(s) = cHI2H
0+

(
u 1

2−HI
1
2−H
0+

(
uH− 1

2
h
))

(s)

for H ∈ (0,1/2] and

(2.5) KHh(s) = cHI1
0+

(
uH− 1

2
I

H− 1
2

0+

(
u 1

2−Hh
))

(s)
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for H ∈ [1/2,1) where

(2.6) cH =

[
2HΓ

(
H + 1

2

)
Γ
(3

2 −H
)

Γ(2−2H)

] 1
2

,

cH = cHΓ(2H) ,

and

uα(s) = saI

for s ≥ 0 and a ∈R. The inverse operator

K−1
H : I

H+ 1
2

0+
(
L2[0,T ],V

)
→ L2 ([0,T ],V )

is given by

(2.7) K−1
H ϕ(s) = c−1

H s
1
2−HD

1
2−H
0+

(
uH− 1

2
D2H

0+ϕ

)
(s)

for H ∈ (0,1/2] and

(2.8) K−1
H ϕ(s) = c−1

H sH− 1
2 D

H− 1
2

0+

(
u 1

2−HDϕ

)
(s)

for H ∈ [1/2,1) and ϕ ∈ I
H+ 1

2
0+

(
L2 ([0,T ],V )

)
. Note that if ϕ ∈ H1 ([0,T ],V ), the Sobolev space,

then

(2.9) K−1
H ϕ(s) = c̄−1

H sH− 1
2 I

1
2−H
0+

(
u 1

2−Hϕ
′
)

(s)

for H ∈ (0,1/2].

Since the operator K−1
H plays an important role in the sequel, it is desirable to have some in-

formation about its domain I
H+ 1

2
0+

(
L2 ([0,T ],V )

)
. It is straightforward that I

H+ 1
2

0+
(
L2 ([0,T ],V )

)
⊃

Cβ ([0,T ],V ) for β > 1
2 −H and H ∈ (0,1/2). However, in Section III, a more refined result is

needed. If H ∈ (1/2,1), then I
H+ 1

2
0+

(
L2 ([0,T ],V )

)
⊃ L2 ([0,T ],V ).

A definition of the stochastic integral of a deterministic V -valued function with respect to a scalar

fractional Brownian motion (β (t), t ≥ 0) is given. This definition uses the methods in [1, 6, 28].

An alternative, equivalent method is given in [11].

Let K ∗
H : E → L2 ([0,T ],V ) be the linear map given by

(2.10) K ∗
H ϕ(t) = ϕ(t)KH(T, t)+

∫ T

t
(ϕ(s)−ϕ(t))

∂KH

∂ s
(s, t)ds
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for ϕ ∈ E and KH given by (2.1) where E is the linear space of V -valued step functions on [0,T ],

that is, ϕ ∈ E if

ϕ(t) =
n−1

∑
i=1

xi1[ti,ti+1)(t)

where xi ∈V for i ∈ {1, . . . ,n−1} and 0 = t1 < t2 < · · ·< tn = T .

Define the stochastic integral as∫ T

0
ϕ dβ :=

n

∑
i=1

xi (β (ti+1)−β (ti)) .

It follows directly that

(2.11) E

∥∥∥∥∫ T

0
ϕ dβ

∥∥∥∥2

= |K ∗
H ϕ|2L2([0,T ],V )

where |·|L2([0,T ],V ) is the norm in L2 ([0,T ],V ) induced by the inner product. Let (H , | · |H ,〈·, ·〉H )

be the Hilbert space obtained by the completion of the pre-Hilbert space E with the inner product

(2.12) 〈ϕ,ψ〉H := 〈K ∗
H ϕ,K ∗

H ψ〉L2([0,T ],V )

for ϕ,ψ ∈ E . The stochastic integral is extended to an arbitrary ϕ ∈ H by the isometry (2.11).

Thus H is a linear space of integrable functions and it is useful to obtain some more specific

information about H . If H ∈ (1/2,1) then it is easily verified that H ⊃ H̃ where H̃ is the

Banach space of Borel measurable functions with the norm | · |H̃ given by

(2.13) |ϕ|2
H̃

:=
∫ T

0

∫ T

0
‖ϕ(u)‖‖ϕ(v)‖φH(u− v)dudv

where φH(u) = H(2H−1)|u|2H−2 and it can be verified that H̃ ⊃ L
1
H ([0,T ],V ) and, in particular,

H̃ ⊃ L2 ([0,T ],V ) (cf. [12]). If ϕ ∈ H̃ and H > 1/2, then

(2.14) E

∥∥∥∥∫ T

0
ϕ dβ

∥∥∥∥2

=
∫ T

0

∫ T

0
〈ϕ(u),ϕ(v)〉φH(u− v)dudv .

If H ∈ (0,1/2), then the space of integrable functions is smaller than for H ∈ (1/2,1). For

H ∈ (0,1/2) it is known that H ⊃H1 ([0,T ],V ) (cf., [17, Theorem 5.20]) and H ⊃Cβ ([0,T ],V )

for each β > 1/2−H (a more specific result is given in the next section). If H ∈ (0,1/2), then the

linear operator K ∗
H can be described by a fractional derivative

(2.15) K ∗
H ϕ(t) = cHt

1
2−HD

1
2−H
T−

(
uH− 1

2
ϕ

)
(t)
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where its domain is H = I
1
2−H
T−

(
L2 ([0,T ],V )

)
(cf. [1, Proposition 6]). If H ∈ (1/2,1), then

(2.16) K ∗
H ϕ(t) = cHt

1
2−HI

H− 1
2

T−

(
uH− 1

2
ϕ

)
(t) .

A standard cylindrical fractional Brownian motion is defined now.

Definition 2.1. Let (Ω,F ,P) be a complete probability space. A cylindrical process 〈B, ·〉 : Ω×

R+×V → R on (Ω,F ,P) is called a standard cylindrical fractional Brownian motion with the

Hurst parameter H ∈ (0,1) if

(1) For each x ∈V \{0}, 1
‖x‖〈B(·),x〉 is a standard scalar fractional Brownian motion with the

Hurst parameter H.

(2) For α,β ∈R and x,y ∈V

〈B(t),αx+βy〉= α〈B(t),x〉+β 〈B(t),y〉 a.s. P.

Note that 〈B(t),x〉 has the interpretation of the evaluation of the functional B(t) at x though the

process B(·) does not take values in V .

For H = 1/2, this definition is the usual one for a standard cylindrical Wiener process in V . For

a complete orthonormal basis (en,n ∈N) of V , letting βn(t) = 〈B(t),en〉 for n ∈N, the sequence

of scalar processes (βn,n ∈N) is independent and B can be represented by the formal series

(2.17) B(t) =
∞

∑
n=1

βn(t)en

that does not converge a.s. in V .

Naturally associated with a standard cylindrical fractional Brownian motion is a standard cylin-

drical Wiener process (W (t), t ≥ 0) in V such that, formally, Ḃ(t) = KHẆ (t). For x ∈ V \ {0},

let βx(t) = 〈B(t),x〉. It is elementary to verify from (2.1) that there is a scalar Wiener process

(wx(t), t ≥ 0) such that

(2.18) βx(t) =
∫ t

0
KH(t,s)dwx(s)

for t ∈R+. Dually, wx(t) = βx

(
(K ∗

H )−1
1[0,t)

)
where K ∗

H is given by (2.15) or (2.16) and V =R.

Thus there is a formal expansion of W ,

(2.19) W (t) =
∞

∑
n=1

wn(t)en
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where (en,n ∈N) is a complete orthonormal basis for V and wn = 〈W,en〉 for n ∈N.

Now, the stochastic integral
∫ T

0 GdB is defined for a suitable operator-valued function G : [0,T ]→

L (V ) so that the integral is a V -valued random variable.

Definition 2.2. Let G : [0,T ]→L (V ) be Borel measurable, (en,n∈N) be a complete orthonormal

basis in V , G(·)en ∈H for each n∈N, and B be a standard cylindrical fractional Brownian motion

for some fixed H ∈ (0,1). The stochastic integral
∫ T

0 GdB is defined as

(2.20)
∫ T

0
GdB :=

∞

∑
n=1

∫ T

0
Gen dβn

provided the infinite series converges in L2(Ω,V ).

It is elementary to verify that this definition does not depend on the complete orthonormal basis

that is used.

The following proposition describes some L (V )-valued functions G that can be used as inte-

grands in Definition 2.2.

Proposition 2.3. Let G : [0,T ]→L (V ) be Borel measurable and G(·)x ∈H for each x ∈V . Let

ΓT : V → L2([0,T ],V ) be given as

(2.21) (ΓT x)(t) = (K ∗
H Gx)(t)

for t ∈ [0,T ] and x ∈V . If ΓT ∈L2
(
V,L2 ([0,T ],V )

)
, the linear space of Hilbert-Schmidt opera-

tors, then the stochastic integral (2.20) is a centered Gaussian V -valued random variable with the

covariance operator Q̃T given by

(2.22) Q̃T x =
∫ T

0

∞

∑
n=1

〈(ΓT en)(s),x〉(ΓT en)(s)ds

This integral does not depend on the choice of the complete orthonormal basis (en,n ∈N) in V .

Proof. Substituting G in the definition of the stochastic integral (2.20), it is clear that the terms

of the summation on the right-hand side are V -valued Gaussian random variables by the construc-

tion of the integral for a scalar fractional Brownian motion and the sequence of random variables(∫ T
0 Gen dβn,n ∈N

)
is independent. Computing the second moment of the tail of the series in
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(2.20) yields

E

∥∥∥∥∥ ∞

∑
k=m

Gek dβk

∥∥∥∥∥
2

=
∞

∑
k=m

E

∥∥∥∥∫ T

0
Gek dβk

∥∥∥∥2

=
∞

∑
k=m

∫ T

0
‖(K ∗

H Gek)(s)‖2 ds

=
∞

∑
k=m

∫ T

0
‖(ΓT ek)(s)‖2 ds =

∞

∑
k=m

|ΓT ek|2L2([0,T ],V ) .

It is clear that this final series tends to zero as m tends to infinity. Thus there is convergence in

L2(Ω,V ) of the partial sums of the infinite series in (2.20).

To verify that (2.20) is a Gaussian random variable and the form of the covariance Q̃T , initially

note that for any ϕ ∈H and x ∈V , there is the equality

(2.23)
∫ T

0
ϕ dβx =

∫ T

0
K ∗

H ϕ dwx

where wx is the Wiener process given by (2.18). The terms in the infinite series on the right-hand

side of (2.20) are V -valued, independent centered Gaussian random variables with the sequence of

covariance operators
(

Q̃(n)
T ,n ∈N

)
(2.24) Q̃(n)

T x =
∫ T

0
〈(K ∗

H Gen)(s),x〉(K ∗
H Gen)(s)ds

for each n ∈N and x ∈V . Thus

(2.25) Q̃T x =
∞

∑
n=1

∫ T

0
〈(K ∗

H Gen)(s),x〉(K ∗
H Gen)(s)ds

=
∫ T

0

∞

∑
n=1

〈(ΓT en)(s),x〉(ΓT en)(s)ds .

The summability of the infinite series on the right-hand side follows from the Hilbert-Schmidt

property of ΓT . The independence of the stochastic integral from the choice of the complete

orthonormal basis follows from (2.23) and the analogous property for stochastic integrals with

respect to a standard cylindrical Wiener process. �

Since for almost all t ∈ [0,T ] the linear operator ΓT (·)(t) : V →V is Hilbert-Schmidt, so denote

for almost all t ∈ [0,T ] the adjoint of ΓT (·)(t) as Γ∗T (·)(t) : V → V . It follows by (2.25) that for
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x,y ∈V ,

〈
Q̃T x,y

〉
=
∫ T

0

∞

∑
n=1

〈(ΓT en)(s),x〉〈(ΓT en)(s),y〉 ds

=
∫ T

0

∞

∑
n=1

〈en,(Γ∗T x)(s)〉〈en,(Γ∗T y)(s)〉 ds

=
∫ T

0
〈(Γ∗T x)(s),(Γ∗T y)(s)〉 ds

=
∫ T

0
〈ΓT Γ

∗
T x(s),y〉 ds .

If H ∈ (1/2,1), then Q̃T satisfies

Q̃T =
∫ T

0

∫ T

0
G(u)G∗(v)φH(u− v)dudv

where φH(u) = H(2H−1)|u|2H−2 and G is assumed to satisfy∫ T

0

∫ T

0
|G(u)|L2(V )|G(v)|L2(V )φH(u− v)dudv < ∞

(cf. [13, Proposition 2.2]).

The next proposition shows that some densely defined linear operators commute with the sto-

chastic integration.

Proposition 2.4. If Ã : Dom(Ã) → V is a closed linear operator, Dom(Ã) ⊂ V , and G : [0,T ] →

L (V ) is Borel measurable such that G([0,T ])⊂Dom(Ã) and both G and ÃG satisfy the conditions

for G in Proposition 2.3, then ∫ T

0
GdB ⊂ Dom(Ã) a.s. P

and

(2.26) Ã
∫ T

0
GdB =

∫ T

0
ÃGdB a.s. P.

Proof. By the assumptions on G and ÃG, it follows that Gen ∈H and ÃGen ∈H for n∈N so by a

standard argument using a sequence of step function integrands, the following equality is satisfied:

Ã
∫ T

0
Gen dβn =

∫ T

0
ÃGen dβn .
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Since the sequence of integrals that are obtained from a complete orthonormal basis (en,n ∈ N)

are Gaussian random variables it follows that

(2.27) lim
m→∞

m

∑
n=1

∫ T

0
Gen dβn =

∫ T

0
GdB a.s. P

and

lim
m→∞

Ã

(
m

∑
n=1

∫ T

0
Gen dβn

)
= lim

m→∞

m

∑
n=1

∫ T

0
ÃGen dβn =

∫ T

0
ÃGdB a.s. P.

Since Ã is a closed linear operator it follows that
∫ T

0 GdB ∈ Dom(Ã) a.s. P and the equality (2.26)

is satisfied. �

Some results are reviewed for a linear stochastic differential equation with a cylindrical frac-

tional Brownian motion whose solution is often called a fractional Ornstein-Uhlenbeck process.

This process is a mild solution of the linear stochastic equation

dZ(t) = AZ(t)dt +ΦdB(t)(2.28)

Z(0) = x

where Z(t), x ∈ V , (B(t), t ≥ 0) is a standard cylindrical fractional Brownian with H ∈ (0,1),

Φ ∈ L (V ), A : Dom(A) → V , Dom(A) ⊂ V , and A is the infinitesimal generator of a strongly

continuous semigroup (S(t), t ≥ 0) on V . A mild solution of (2.28) is

Z(t) = S(t)x+
∫ t

0
S(t− r)ΦdB(r)(2.29)

= S(t)x+ Ẑ(t)

where the stochastic integral in (2.29) is given by Definition 2.2.

Typically it is assumed that (S(t), t ≥ 0) is an analytic semigroup. In this case, there is a β̂ ∈R

such that the operator β̂ I−A is uniformly positive on V . For each δ ≥ 0, (Vδ ,‖ · ‖δ ) is a Hilbert

space where Vδ = Dom
((

β̂ I−A
)δ
)

with the graph norm topology so that

‖x‖δ =
∥∥∥∥(β̂ I−A

)δ

x
∥∥∥∥ .

For the mild solution of (2.28), the cases H ∈ (0,1/2) and H ∈ (1/2,1) have been treated sepa-

rately [13,26] because the conditions for similar results are somewhat different. The case H = 1/2

(Brownian motion) has been studied extensively (cf., [4]).
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For H ∈ (1/2,1), the following sample path property of the solution is described in [13].

Proposition 2.5. If H ∈ (1/2,1), S(t)Φ ∈L2(V ) for each t > 0 and

(2.30)
∫ T0

0

∫ T0

0
u−αv−α |S(u)Φ|L2(V )|S(v)Φ|L2(V )φH(u− v)dudv < ∞

for some T0 > 0 and α > 0 then there is a Hölder continuous V -valued version of the process

(Ẑ(t), t ≥ 0) with Hölder exponent β < α where Ẑ is the stochastic convolution in (2.29) and φH

is given in (2.13). If (S(t), t ≥ 0) is an analytic semigroup then there is a version of the process

(Ẑ(t), t ∈ [0,T ]) with Cβ ([0,T ],Vδ ) sample paths for each T > 0 and β +δ < α .

For each H ∈ (0,1), there are the following results for the sample path behavior of the mild

solution ([26]):

Proposition 2.6. Let (S(t), t ≥ 0) be an analytic semigroup, H ∈ (0,1) and

(2.31) |S(t)Φ|L2(V ) ≤ ct−γ

for t ∈ [0,T ], some c > 0, and γ ∈ [0,H). Let α ≥ 0 and δ ≥ 0 satisfy

(2.32) α +β + γ < H ,

then there is a version of the process (Ẑ(t), t ∈ [0,T ]) with Cα ([0,T ],Vδ ) sample paths. If it is as-

sumed instead of (2.31) and (2.32) that Φ∈L2(V ) and α +δ < H then the process
(
Ẑ(t), t ∈ [0,T ]

)
has a Cα ([0,T ],Vδ ) version. In particular, there is a Cα ([0,T ],V ) version for 0 < α < H.

3. SEMILINEAR STOCHASTIC EQUATIONS

In this section, both weak and mild solutions are obtained for various semilinear stochastic

equations with a fractional Brownian motion. The cases H ∈ (0,1/2) and H ∈ (1/2,1) are treated

separately as in the case of the linear stochastic equations (Proposition 2.5 and Proposition 2.6).

The weak solution of a semilinear equation is obtained by an absolutely continuous transformation

of the measure for the solution of the associated linear equation. The absolute continuity methods

given here are an analogue of the results for the measure of a finite dimensional fractional Brown-

ian motion ([7, 9, 23, 24]) and the results for Wiener measure ([3, 14]). For a fixed H ∈ (0,1) and

T > 0, let (Ft , t ∈ [0,T ]) be the filtration for the standard cylindrical fractional Brownian motion

(B(t), t ∈ [0,T ]) with the Hurst parameter H. The sub-σ -algebra Ft ⊂ F can be generated by
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σ (βn(s),s ∈ [0, t],n ∈N) where (βn,n ∈N) is a sequence of independent scalar fractional Brow-

nian motions with the Hurst parameter H that is given in the definition of a standard cylindrical

fractional Brownian motion (Definition 2.1).

The following result describes an absolute continuity for a transformation of a standard cylin-

drical fractional Brownian motion.

Theorem 3.1. Let H ∈ (0,1) and T > 0 be fixed and let (u(t), t ∈ [0,T ]) be a V -valued, (Ft)-

adapted process such that

(1) ∫ T

0
‖u(t)‖dt < ∞ a.s. P

and

(2)

U(·) :=
∫ ·

0
u(s)ds ∈ I

H+ 1
2

0+
(
L2 ([0,T ],V )

)
a.s. P .

Furthermore, it is assumed that

Eξ (T ) = 1

where

(3.1) ξ (T ) = exp
[∫ T

0

〈
K−1

H (U)(t),dW (t)
〉
− 1

2

∫ T

0

∥∥K−1
H (U)(t)

∥∥2
dt
]

where (W (t), t ∈ [0,T ]) is a standard cylindrical Wiener process in V given by (2.19) and K−1
H is

the inverse of the integral operator KH in (2.3). Then the process
(
B̃(t), t ∈ [0,T ]

)
given by

B̃(t) := B(t)−U(t)

is a standard cylindrical fractional Brownian motion in V with the Hurst parameter H on the

probability space
(
Ω,F , P̃

)
where

(3.2)
dP̃
dP

= ξ (T ) a.s.

Proof. Initially, it is noted that for an (Ft)-adapted process, (η(t), t ∈ [0,T ]) with η ∈ L2 ([0,T ],V )

a.s. P,
∫ T

0 〈η ,dW 〉 is defined by∫ T

0
〈η ,dW 〉=

∞

∑
n=1

∫ T

0
〈η ,en〉 dwn
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where the sequences (βn,n ∈ N) and (wn,n ∈ N) are related by (2.18). It is shown that K−1
H U

satisfies the conditions of η so that the stochastic integral in (2.20) is well-defined. Recall that the

linear operator KH given in (2.3) is a bijection

KH : L2([0,T ],V )→ I
H+ 1

2
0+

(
L2([0,T ],V )

)
so by assumption 1 in Theorem 3.1, K−1

H (U) ∈ L2 ([0,T ],V ) a.s. P. From the definition of KH ,

it follows that
(
K−1

H (U)(t), t ∈ [0,T ]
)

is an (Ft)-adapted process because U is (Ft)-adapted. By

the construction of the standard cylindrical Wiener process W , it is a Wiener process with respect

to (Ft) so ξT is a well-defined random variable. By a Girsanov theorem for Wiener processes in

infinite dimensions (cf., [4]), the equality (3.2) defines a probability P̃ on (Ω,F ) such that

W̃ (t) := W (t)−
∫ t

0
K−1

H (U)(s)ds

is a standard cylindrical Wiener process in V . Let

β̃n(t) := 〈B(t),en〉−〈U(t),en〉

and

w̃n(t) = 〈W (t),en〉−
〈∫ t

0
K−1

H (U)(s)ds,en

〉
.

It follows that∫ t

0
KH(t,s)dw̃n(s) =

∫ t

0
KH(t,s)dwn(s)−

∫ t

0
KH(t,s)

〈
K−1

H (U)(s),en
〉

ds(3.3)

= βn(t)−
〈∫ t

0
KH(t,s)

(
K−1

H (U)(s)
)

ds,en

〉
= βn(t)−

〈
KHK

−1
H (U)(t),en

〉
= βn(t)−〈U(t),en〉= β̃n(t) .

Thus (B̃(t), t ∈ [0,T ]) is a standard cylindrical fractional Brownian motion in V with the Hurst

parameter H on
(
Ω,F , P̃

)
. �

In this section, the following semilinear stochastic equation is considered:

(3.4) dX(t) = (AX(t)+F(X(t))) dt +ΦdB(t)
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where t ∈ R+, X(t), X0 ∈ V , (B(t), t ≥ 0) is a standard cylindrical fractional Brownian motion

with the Hurst parameter H ∈ (0,1), Φ ∈ L (V ), A : Dom(A) → V , Dom(A) ⊂ V , and A is the

infinitesimal generator of a strongly continuous semigroup (S(t), t ≥ 0) on V . The function F : V →

V is nonlinear and for the applications to stochastic partial differential equations it is more useful

to assume that F is only defined on a (dense) subspace of V . So, let (E,‖ · ‖E) be a separable

Banach space that is continuously embedded in V and F : E →V with X0 ∈ E. Subsequently, it is

assumed that F : E →V is Borel measurable, Im(F)⊂ Im(Φ), for G := Φ−1F , G : E →V , and

‖G(x)‖ ≤ k̂
(
1+‖x‖ρ

E
)

(3.5)

and

‖F(x)‖E ≤ k̂
(
1+‖x‖ρ

E
)

(3.6)

for each x ∈ E and some ρ ≥ 1. Furthermore, it is assumed that there is a constant K̄ such that for

each pair (x,y) in Dom(A), there is a z∗ ∈ ∂‖z‖E such that

(3.7) 〈Ax−Ay+F(x)−F(y),z∗〉E,E∗ ≤ K̄‖x− y‖E

where ∂‖z‖E is the subdifferential of the norm ‖z‖E at the point z = x− y and 〈·, ·,〉E,E∗ is the

pairing between E and E∗. The inequality (3.7) is a one-sided growth condition that ensures the

absence of explosions of solutions of (3.4) in a finite time. Some subsequent examples should

clarify its interpretation.

The notions of a weak and a mild solution of (3.4) are given now.

Definition 3.2. A weak solution of the equation (3.4) is a triple (X(t),B(t),(Ω̃,F̃ , P̃), t ≥ 0) where

(B(t), t ≥ 0) is a standard cylindrical fractional Brownian motion in V that is defined on the prob-

ability space (Ω̃,F̃ , P̃) and (X(t), t ≥ 0) is an E-valued process satisfying

(3.8) X(t) = S(t)X0 +
∫ t

0
S(t− r)F(X(r))dr +

∫ t

0
S(t− r)ΦdB(r) .

A mild solution, (X(t), t ≥ 0) of the equation (3.4) is an E-valued process on a fixed probability

space (Ω,F ,P) with a given standard cylindrical fractional Brownian motion that is the fractional

Brownian motion in (3.8), and the process (X(t), t ≥ 0) satisfies (3.8).
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The equation (3.8) has a unique weak solution if for any two weak solutions (X(t),B(t),(Ω,F ,P), t ≥

0) and (X̃(t), B̃(t),(Ω̃,F̃ , P̃), t ≥ 0), the processes (X(t), t ≥ 0) and (X̃(t), t ≥ 0) have the same

probability law.

The equation has a unique mild solution if for any two processes (X1(t), t ≥ 0) and (X2(t), t ≥

0) that satisfy (3.8) on the same probability space (Ω,F ,P) with the same standard cylindrical

fractional Brownian motion, P(X1(t) = X2(t), t ≥ 0) = 1.

A primary goal in this section is to verify weak existence and weak uniqueness of a solution of

(3.4). Since the cases H ∈ (0,1/2) and H ∈ (1/2,1) require different methods, they are treated

separately.

The following three assumptions are made to construct a solution of (3.4):

(H1). The semigroup (S(t), t ≥ 0) generated by A is analytic on V and for each t ≥ 0, S(t)|E ∈

L (E) and ‖ S(t)|E ‖L (E) is bounded on compact time intervals.

(H2). Φ ∈L (V ) is injective and for T > 0, the stochastic convolution process(∫ t

0
S(t− r)ΦdB(r), t ∈ [0,T ]

)
has a version with C([0,T ],E) sample paths.

(H3). The function F : E → V in (3.4) is Borel measurable, Im(F) ⊂ Im(Φ) and the function

G = Φ−1F : E →V satisfies

(3.9) ‖G(x)‖ ≤ k (1+‖x‖E)

for some k > 0 and all x ∈ E.

The following result verifies a weak solution for H ∈ (0,1/2).

Theorem 3.3. If H ∈ (0,1/2) and the conditions (H1)-(H3) are satisfied, then the semilinear equa-

tion (3.4) has a weak solution. If additionally F : E → E and

(3.10) ‖F(x)‖E ≤ k1 (1+‖x‖E)

for some k1 > 0 and all x ∈ E, then the weak solution is unique.

Proof. Initially, existence of a weak solution is verified. By a standard method that has been used

for equations of the form (3.4) with a standard cylindrical Brownian motion (cf., [4]), it suffices to
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verify that the cylindrical process

B̃(t) = B(t)−
∫ t

0
G(Z(s))ds

is a standard cylindrical fractional Brownian motion in a suitable probability space where

Z(t) = S(t)X0 + Z̃(t)

satisfies the associated linear equation. To use Theorem 3.1 it is necessary to verify that G = Φ−1F

satisfies the conditions of U in this theorem, that is,

(3.11)
∫ ·

0
G(Z(s))ds ∈ I

H+ 1
2

0+
(
L2 ([0,T ],V )

)
and

(3.12) Eexp [ρ(Z)] = 1

where

(3.13) ρ(Z) =
∫ T

0

〈
K−1

H

(∫ ·

0
G(Z)

)
)(t),dW (t)

〉
− 1

2

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0
G(Z)

)
(t)
∥∥∥∥2

dt ,

K−1
H is the inverse of KH in (2.3) and (W (t), t ≥ 0) is a standard cylindrical Wiener process in V

by (2.19).

From (2.9), it follows that

(3.14)

∣∣∣∣K−1
H

(∫ ·

0
G(Z)

)∣∣∣∣2
L2([0,T ],V )

= c−2
H

∣∣∣∣uH− 1
2
I

1
2−H
0+

(
u 1

2−HG(Z)
)∣∣∣∣2

L2([0,T ],V )

= ĉH

∫ T

0

(
sH− 1

2

∥∥∥∥∫ s

0
r

1
2−H(s− r)−

1
2−HG(Z̃(r))dr

∥∥∥∥)2

ds

≤ ĉHk2

(
1+ |Z̃|C([0,T ],E) + sup

t∈[0,T ]
‖S(t)X0‖E

)2 ∫ T

0
s2H−1

·
(∫ s

0
r

1
2−H(s− r)−

1
2−H dr

)2

ds

≤ cT

(
1+ |Z̃|2C([0,T ],E)

)
for some cT > 0 that only depends on T . This inequality verifies (3.11). By (3.14) it follows

directly that
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(3.15) Eexp

[
k̂
∫ T

0

∥∥∥∥K−1
H

(∫ ·

0
G(Z)

)
(t)
∥∥∥∥2

dt

]
≤ cEexp

[
k̂cT |Z̃|2C([0,T ],E)

]
for some c > 0. Substituting v = r

s in the integral with respect to r on the RHS of (3.14), it easily

follows that cT ↓ 0 as T ↓ 0. Since Z̃ is a C([0,T ],E)-valued Gaussian random variable, it follows

that

(3.16) Eexp
[
k̂cT |Z̃|2C([0,T ],E)

]
< ∞

is satisfied for T > 0 sufficiently small by the Fernique inequality. Clearly, (3.16) is the Novikov

condition which verifies the equality (3.12) for T > 0 sufficiently small. For arbitrary T > 0, a

simple iteration verifies the result, that is,

(3.17) Eexp

[
k̂
∫ Tm

Tm−1

∥∥∥∥K−1
H

(∫ ·

0
G(Z)

)
(t)
∥∥∥∥2

dt

]
< ∞

for a sufficiently fine partition 0 = T0 < T1 < · · ·< Tn = T . By a standard procedure from measure

theory it is verified that (3.12) is satisfied.

Now, uniqueness of the weak solution is verified. Uniqueness in law can be proved in a standard

way by removing the term F in (3.4) by absolute continuity of measures which is a suitable inverse

of the above construction of a weak solution.

Let (X̃(t), t ∈ [0,T ]) be a solution to the equation

(3.18) X̃(t) = S(t)x0 +
∫ t

0
S(t− r)F(X(r))dr + Z̃(t)

where Z̃(t) =
∫ t

0 S(t−r)ΦdB(r) and (B(t), t ∈ [0,T ]) is some standard cylindrical fractional Brow-

nian motion on a probability space
(
Ω̃,F̃ , P̃

)
.

The process (X̃(t), t ∈ [0,T ]) is defined on the same probability space as (B(t), t ∈ [0,T ]). Let

(W (t), t ∈ [0,T ]) be the Wiener process associated with (B(t), t ∈ [0,T ]) by (2.18). It suffices to

show that

(3.19)

exp
[
ρ̃(X̃)

]
:= exp

[
−
∫ T

0

〈
K−1

H

(∫ ·

0
G(X̃)

)
(t),dW (t)

〉
− 1

2

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0
G(X̃)

)
(t)
∥∥∥∥2

dt

]
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is a Radon-Nikodym derivative on
(
Ω̃,F̃ , P̃

)
so P̃ is the measure for a fractional Ornstein-Uhlenbeck

process and uniqueness in law follows. Thus it is necessary to show that

(3.20)
∫ ·

0
G
(
X̃(s)

)
ds ∈ I

H+ 1
2

0+
(
L2 ([0,T ],V )

)
and

(3.21) Ẽexp
[
ρ̃(X̃)

]
= 1

where Ẽ is integration with respect to P̃. The verifications of (3.20) and (3.21) are analogous to

the verifications of (3.11) and (3.12) respectively. However, since X̃ is not a Gaussian process, the

Fernique inequality cannot be used directly. Initially, it is verified that there is a c > 0 such that

(3.22) |X̃ |C([0,T ],E) ≤ c
(
1+‖X0‖E + |Z̃|C([0,T ],E)

)
.

where Z̃ is the stochastic process described in (H2). Let

u(t) = X̃(t)− Z̃(t)

= S(t)X0 +
∫ t

0
S(t− r)F

(
u(r)+ Z̃(r)

)
dr .

Thus

(3.23) ‖u(t)‖E ≤ c1‖X0‖+ c2

∫ t

0

(
1+‖u(r)‖E +‖Z̃(r)‖E

)
dr

for some positive constants c1 and c2. By the Gronwall Lemma it follows that

(3.24) ‖u(t)‖E ≤ c1
(
1+‖X0‖E + |Z̃|C([0,T ],E)

)
for t ∈ [0,T ] so the inequality (3.22) is verified. The exponential that usually occurs in the Gronwall

inequality is bounded by ec2T . Making the analogous computations in (3.14) it follows that

(3.25)
∣∣∣∣K−1

H

(∫ ·

0
G(Z)

)
(s)
∣∣∣∣2
L2([0,T ],V )

≤ cT

(
1+ |X |2C([0,T ],E)

)
≤ c̃T

(
1+ |Z̃|2C([0,T ],E)

)
where c̃T ↓ 0 as T ↓ 0 so (3.20) is satisfied. Thus the method in (3.15)–(3.17) can be used to verify

(3.21).

The random variable exp(ρ̃(X̃)) in (3.19) is a Radon-Nikodym derivative and it defines a prob-

ability measure Q on Ω̃. By this Girsanov-type theorem the process defined by B̃(t) = B(t) +
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0 u(s)ds, where u(s) = G(X̃(s)) is a standard cylindrical fractional Brownian motion with respect

to the measure Q. Let (W̃ (t), t ∈ [0,T ]) be the Wiener process associated with (B̃(t), t ∈ [0,T ]).

Let U(s) = K−1
H (
∫ ·

0 G(X̃))(s) for s ∈ [0,T ] and let E and EQ denote the expectations with respect

to the measures P̃ and Q respectively. For a bounded measurable function Ψ on C([0,T ],V ) it

follows that

E[Ψ(X̃)] =
∫

Ω̃

Ψ
dP̃
dQ

dQ = EQ[Ψ(X̃)exp(−ρ̃(X̃))]

= EQ[Ψ(X̃)exp(
∫ T

0
〈U(r),dW̃ (r)〉− 1

2

∫ T

0
‖U(r)‖2dr)]

= EQ[Ψ(S(·)X0 +
∫ ·

0
S(·− r)dB̃(r))exp(

∫ T

0
〈K−1

H (
∫ ·

0
G(S(·)X0

+
∫ ·

0
S(·− r)ΦdB̃(r)))(s),dW̃ (s)〉

− 1
2

∫ T

0
‖K−1

H (
∫ ·

0
G(S(·)X0 +

∫ ·

0
S(·− r)ΦdB̃(r)))(s)‖2ds)].

Since the processes W̃ and B̃ are standard cylindrical Brownian motions and standard cylindrical

fractional Brownian motions respectively the final expectation on the right hand side above does

not depend on the realization of X̃ , so the uniqueness in law is verified.

�

Now the existence and the uniqueness of a weak solution of (3.4) is verified for H ∈ (1/2,1).

Theorem 3.4. If H ∈ (1/2,1), (H1)–(H3) are satisfied and

(3.26) ‖G(x)−G(y)‖ ≤ kG‖x− y‖γ

for all x,y ∈ E, some γ ∈ (0,1], kG > 0 and Z̃ ∈Cβ ([0,T ],V ) for some β satisfying

(3.27) β >
H− 1

2
γ

where Z̃ is the stochastic convolution process in (H2), then the equation (3.4) has a weak solution.

If, additionally, (3.10) is satisfied, then the weak solution is unique.
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Proof. Initially, the existence of a solution is verified as in the proof of Theorem 3.3. It is shown

that

(3.28)
∫ ·

0
G(Z(s))ds ∈ I

H+ 1
2

0+
(
L2 ([0,T ],V )

)
a.s.

and

(3.29) Eexp [ρ(Z)] = 1

where ρ is given by (3.13). By (2.7) it follows that

(3.30)∣∣∣∣K−1
H

(∫ ·

0
G(Z)

)∣∣∣∣2
L2([0,T ],V )

= c−2
H

∣∣∣∣uH− 1
2
D

H− 1
2

0+

(
u 1

2−HG(Z)
)∣∣∣∣2

L2([0,T ],V )

= c−2
H

∫ T

0

∥∥∥∥∥ sH− 1
2

Γ
(3

2 −H
) (s

1
2−HG(Z(s))

sH− 1
2

)

+
(

H− 1
2

)∫ s

0

s
1
2−HG(Z(s))− r

1
2−HG(Z(r))

(s− r)H+ 1
2

dr

∥∥∥∥∥
2

ds

≤ c
∫ T

0

(
s

1
2−H ‖G(Z(s))‖+ sH− 1

2

∫ s

0

s
1
2−H − r

1
2−H

(s− r)H+ 1
2
‖G(Z(r))‖dr

+
∫ s

0

‖G(Z(s))−G(Z(r))‖
(s− r)H+ 1

2
dr

)2

ds

Using (3.9) and (3.26), the analyticity of the semigroup S(·) on V and the inequality

∫ s

0

s
1
2−H − r

1
2−H

(s− r)H+ 1
2

dr ≤ cs1−2H

where c is a generic constant, it follows that
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(3.31)∣∣∣∣K−1
H

(∫ ·

0
G(Z)

)∣∣∣∣
L2([0,T ],V )

≤ cT

(
1+‖X0‖2

E + |Z̃|2C([0,T ],E)

)

+ cT

∫ T

0

(∫ s

0

‖S(s)X0−S(r)X0‖γ

(s− r)H+ 1
2

dr

)2

+

(∫ s

0

‖Z̃(s)− Z̃(r)‖γ

(s− r)H+ 1
2

dr

)2
 ds

≤ cT

(
1+‖X0‖2

E + |Z̃|2C([0,T ],E)

)
+ cT

∫ T

0

(
‖X0‖γ

∫ s

0

(s− r)γλ

rγλ (s− r)H+ 1
2

dr

)2

+ cT

∫ T

0
|Z̃|2Cβ ([0,T ],V )

(∫ s

0

(s− r)γβ

(s− r)H+ 1
2

dr

)2

ds

where λ > 0 satisfies γλ < 1 and H +1/2− γλ < 1. It follows that

(3.32)
∣∣∣∣K−1

H

(∫ ·

0
G(Z)

)∣∣∣∣2
L2([0,T ],V )

≤ cT

(
1+‖X0‖2

E +‖Z̃‖2
C([0,T ],E) + |Z̃|2Cβ ([0,T ],V )

)
where cT ↓ 0 as T ↓ 0 so (3.28) is verified and by the Fernique inequality (3.29) is also verified.

Now the uniqueness of the weak solution is verified. Let (X̃(t), t ∈ [0,T ]) be the solution to the

equation (3.4) on a probability space (Ω̃,F̃ .P̃). As in the proof of Theorem 3.3, it is shown that

(3.33)
∫ ·

0
G(X̃)ds ∈ I

H+ 1
2

0+
(
L2 ([0,T ],V )

)
a.s.

and

(3.34) Ẽexp
[
ρ̃(X̃)

]
= 1

where ρ̃ is given by (3.13). It is necessary to obtain the inequality (3.22) that is used in the proof

of Theorem 3.3. The inequality (3.22) is verified by verifying the following inequality

(3.35) ‖X̂‖Cβ ([0,T ],V ) ≤ L
(

1+‖X0‖E + |Z̃|C([0,T ],E) + |Z̃|Cβ ([0,T ],V )

)
where X̂(t) = X̃(t)−S(t)X0 and L > 0. Let w(t) = X̃(t)−S(t)X0− Z̃(t) for t ≥ 0. The process w

satisfies

(3.36) w(t) =
∫ t

0
S(t− r)ψ(r)dr
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for t ∈ [0,T ] where

ψ(t) = F(w(t)+S(t)X0 + Z̃(t)) .

By the inequalities (3.10) and (3.35) it follows that ψ ∈ L∞([0,T ],V ) a.s. P. Since the semigroup

S(·) is analytic on V , w is α-Hölder continuous for each α ∈ (0,1), and using the method of proof

of [27, Theorem 4.3.1] there are constants ci > 0 for i = 1,2 such that

(3.37) |w|Cβ ([0,T ],V ) ≤ c1|ψ|L∞([0,T ],V ) ≤ c2
(
|w|L∞([0,T ],E) +‖X0‖E + |Z̃|C([0,T ],E)

)
.

Thus

(3.38)
|X̃ |Cβ ([0,T ],V ) ≤ |w|Cβ ([0,T ],V ) + |Z̃|Cβ ([0,T ],V )

≤ c2

(
|w|L∞([0,T ],E) +‖X0‖E + |Z̃|C([0,T ],E) + |Z̃|Cβ ([0,T ],V )

)
.

Using (3.22) again to bound |w|L∞([0,T ],E) the inequality (3.35) follows.

Now, using the methods for the inequalities (3.30)–(3.32), where Z(t) is replaced by X̃(t) =

S(t)X0 + X̂(t) it follows that

(3.39)
∣∣∣∣K−1

H

(∫ ·

0
G(Z)

)∣∣∣∣2
L2([0,T ],V )

≤ cT

(
1+‖X0‖2

E + |X̃ |2C([0,T ],V ) + |X̃ |2Cβ ([0,T ],V )

)
where cT ↓ 0 as T ↓ 0 which by (3.22) and (3.35) verifies (3.33). The equality (3.34) is obtained

from (3.39) by the Fernique inequality as in the proof of Theorem 3.3. �

Remark 3.5. The proofs of Theorem 3.3 and Theorem 3.4 have verified, in addition to weak ex-

istence and uniqueness of a solution to (3.4), the mutual absolute continuity (equivalence) of the

probability laws of the solution to (3.4) and the solution of (3.4) with F ≡ 0 (the fractional Ornstein-

Uhlenbeck process) in the path space.

The next objective is to relax the linear growth conditions (3.9) and (3.10) and the Hölder con-

tinuity (3.26). The linear growth condition is replaced by a dissipativity condition of the drift term

of (3.4), but some other conditions are also imposed so that there is existence and (strong) unique-

ness of a mild solution. The main contribution of the following two theorems is a mutual absolute

continuity of the probability laws of the solutions of (3.4) with a nonzero F and (3.4) with F ≡ 0.

Initially, the case H ∈ (0,1/2) is considered.
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Theorem 3.6. Let H ∈ (0,1/2) and (H1) and (H2) be satisfied. Let Φ ∈ L (V ) be injective,

Φ−1 ∈L (E,V ) and (S(t)|E , t ≥ 0) be a strongly continuous semigroup on E such that

(3.40) |S(t)|E |L (E) ≤ ew̃t

for t ≥ 0 and some w̃ ∈R. Let F : E → E be continuous and satisfy

(3.41) ‖F(x)‖E ≤ k1
(
1+‖x‖ρ

E
)

for x ∈ E for some k1 ≥ 0 and ρ ≥ 1 and for each pair x,y ∈ E, there is a z∗ ∈ ∂‖x− y‖E where

∂‖z‖E is the subdifferential of the norm ‖ · ‖E at z ∈ E such that

(3.42) 〈F(x)−F(y),z∗〉E,E∗ ≤ k2‖x− y‖E

for some k2 ∈R, that is, F − k2I is dissipative on E. Then there is one and only one mild solution

of (3.4) and its probability law on the Borel σ -algebra of Ω̌ = C([0,T ],E) is mutually absolutely

continuous with respect to the probability law of the fractional Ornstein-Uhlenbeck process (3.24)

on Ω.

Proof. Let (Fλ ,λ > 0) be a family of Lipschitz continuous functions from E to E such that each

Fλ satisfies the inequalities (3.41) and (3.42) for F with the same constants ρ , k1, k2. It is shown

that there is a k̄ > 0 depending only on w̃, k1, and k2 such that

(3.43) ‖vλ (t)‖E ≤ k̄
(

1+‖X0‖E +‖φ‖ρ

C([0,T ],E)

)
for t ∈ [0,T ] is satisfied for each λ > 0 and φ ∈C([0,T ],E) where vλ is a solution of the equation

(3.44) vλ (t) = S(t)X0 +
∫ t

0
S(t− r)Fλ (vλ (r)+φ(r)) dr

for t ∈ [0,T ].

To verify the inequality (3.43), it can be assumed by translation that k2 = 0 in (3.42) (replace Fλ

and A by Fλ −k2I and A+k2I respectively). Thus Fλ is dissipative on E for each λ > 0 and by the

assumptions

(3.45) 〈AEz,z∗〉E,E∗ ≤ w̃‖z‖2
E
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for each z ∈ Dom(AE) and z∗ ∈ ∂‖z‖E where AE is the restriction of A to E that generates the

semigroup S(·)|E . For each pair x,y ∈ Dom(AE) and λ > 0, there is a z∗
λ
∈ ∂‖x− y‖E such that〈

AE(x− y)+Fλ (x)−Fλ (y),z∗
λ

〉
E,E∗ ≤ w̃‖x− y‖E .

By [5, Proposition 5.5.6], there is a sequence (vn
λ
,n∈N) such that vn

λ
∈C1([0,T ],E)∩C([0,T ],Dom(AE))

such that vn
λ
→ vλ and δ n

λ
= d

dt vn
λ
−AEvn

λ
−Fλ

(
vn

λ
+φ
)
→ 0 in C([0,T ],E) as n → ∞. It follows

that

(3.46)

d−

dt

∥∥vn
λ
(t)
∥∥

E ≤
〈
AEvn

λ
(t)+Fλ

(
vn

λ
(t)+φ(t)

)
,(vn

λ
(t))∗

〉
E,E∗ +

∥∥δ
n
λ
(t)
∥∥

E

=
〈
AEvn

λ
(t)+Fλ

(
vn

λ
(t)+φ(t)

)
−Fλ (φ(t)),(vn

λ
(t))∗

〉
+
〈
Fλ (φ(t)),(vn

λ
(t))∗

〉
E,E∗ +‖δ

n
x (t)‖E

≤ w̄
∥∥vn

λ
(t)
∥∥

E + k2

(
1+ |φ |ρC([0,T ],E) +

∥∥δ
n
λ
(t)
∥∥

E

)
for t ∈ [0,T ]. Using the Gronwall Lemma, and letting n → ∞, verifies the inequality (3.43).

The mild solution to (3.4) can be expressed as X(t) = v(t)+ Z̃(t) where v satisfies the equation

(3.47) v(t) = S(t)X0 +
∫ t

0
S(t− r)F(v(r)+ Z̃(r))dr

for t ∈ [0,T ]. Thus the existence and the uniqueness of a mild solution follows from the corre-

sponding pathwise deterministic result (cf., [5, Proposition 5.5.6]).

The equivalence of the probability laws is shown by application of Theorem 3.1. As in the proof

of Theorem 3.3, it suffices to show that

(3.48)
∫ ·

0
G(Z(s))ds ∈ I

H+ 1
2

0+
(
L2([0,T ],V )

)
and

(3.49) Eexp [ρ(Z)] = 1

where ρ is given by (3.13). While G is not assumed to have at most linear growth as in Theorem

3.3, there is the growth condition

(3.50) ‖G(x)‖ ≤ k̂
(
1+‖x‖ρ

E
)
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for all x ∈ E and a constant k̂. Proceeding as in (3.14), it follows that

(3.51)

∣∣∣∣K−1
H

(∫ ·

0
G(Z)

)∣∣∣∣2
L2([0,t],V )

≤ c1

∫ T

0

(
sH− 1

2

∥∥∥∥∫ s

0
r

1
2−H(s− r)−

1
2−HG(Z(r))dr

∥∥∥∥)2

ds

≤ c2

(
1+ |Z̃|ρC([0,T ],E) + sup

t∈[0,T ]
‖S(t)X0‖ρ

E

)∫ T

0
s2H−1

·
(∫ s

0
r

1
2−H(s− r)−

1
2−H dr

)2

ds

≤ c3

(
1+‖X0‖2ρ

E + |Z̃|2ρ

C([0,T ],E)

)
for suitable constants c1, c2, c3. This inequality verifies (3.48). To verify the equality (3.49), it

suffices to assume that F is dissipative (that is, k2 = 0 in (3.42)). Since F is continuous, it is

m-dissipative (cf., [22]) so the family (Fλ ,λ > 0) of Yosida approximations of F is defined as

(3.52) Fλ (x) = F (Rλ (x)) =
1
λ

(Rλ (x)− x)

for x ∈ E where

(3.53) Rλ (x) = (I−λF)−1 (x) .

It is well known that Fλ : E → E for λ > 0 is Lipschitz continuous, so by Theorem 3.3, there is the

equality

(3.54) Eexp [ρλ (Z)] = 1

for λ > 0 where

(3.55) ρλ (Z) =
∫ T

0

〈
K−1

H

(∫ ·

0
Gλ (Z)

)
(t),dW (t)

〉
− 1

2

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0
Gλ (Z)

)
(t)
∥∥∥∥2

dt

and Gλ := Φ−1Fλ . As in (3.51), it follows that

(3.56) E

∣∣∣∣K−1
H

(∫ ·

0
(Gλ (Z)−G(Z))

)∣∣∣∣
L2([0,T ],V )

≤ cTE

∫ T

0

(
sH− 1

2

∫ s

0
r

1
2−H(s− r)−

1
2−H ‖Gλ (Z(r))−G(Z(r))‖ dr

)2

ds .
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By some well known properties of the Yosida approximations and for x ∈ E,

(3.57) ‖Gλ (x)−G(x)‖ ≤
∣∣Φ−1∣∣

L (E,V ) ‖Fλ (x)−F(x)‖

it follows that Fλ → F as λ → 0 and the right hand side of (3.57) tends to zero as λ ↓ 0, and

(3.58)

‖Gλ (x)‖ ≤
∣∣Φ−1∣∣

L (E,V ) ‖Fλ (x)‖E

≤
∣∣Φ−1∣∣

L (E,V ) ‖F(x)‖E

≤
∣∣Φ−1∣∣

L (E,V ) k1
(
1+‖x‖ρ

E
)

so the right-hand side of (3.56) tends to zero as λ ↓ 0. For a sequence (λn,n ∈N) that decreases to

zero it follows that

(3.59) lim
n→∞

exp
[
ρλn(Z)

]
= exp [ρ(Z)] a.s. P .

To obtain the equality (3.54) from the equality (3.59) for λn,n ∈N, it is necessary and sufficient to

show that the sequence
(
exp
[
ρλn(Z)

]
,n ∈N

)
is uniformly integrable. A sufficient condition for

this uniform integrability is to verify that

(3.60) sup
n
E
[(

exp
[
ρλn(Z)

])∣∣log
(
exp
[
ρλn(Z)

])∣∣]= sup
n
E
[(

exp
[
ρλn(Z)

])
ρλn(Z)

]
< ∞ .

By Theorem 3.3,

(3.61) E
[
ρλn(Z)exp

[
ρλn(Z)

]]
≤ Ẽλn

[
2
∫ T

0

∥∥∥∥K−1
H

(∫ ·

0
Gλn(Z)

)
(t)
∥∥∥∥2

dt

]

where Ẽλn is expectation with respect to P̃λn and

dP̃λn

dP
= exp

[
ρλn(Z)

]
and Z(·) satisfies the equation (2.28). On the probability space with the measure Pλn , Z(·) satisfies

the following semilinear equation where B(·) is a fractional Brownian motion with respect to Pλn

(3.62)
dXλn(t) =

(
AX(t)+Fλn(X(t))

)
dt +ΦdB(t)

Xλn(0) = X0 .
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Since Fλn is Lipschitz continuous, there is a unique mild solution on a given probability space so it

suffices to show

(3.63) E

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0
Gλn

(
Xλn

))
(t)
∥∥∥∥2

dt ≤ c

for some c ∈R+ that does not depend on λn. Repeating the inequalities (3.51) where G and Z are

replaced by Gλn and Xλn respectively and using the inequality (3.58) it follows that

(3.64)
∫ T

0

∥∥∥∥K−1
H

(∫ ·

0
Gλn

(
Xλn

))
(t)
∥∥∥∥2

dt ≤ c5

(
1+‖X0‖2ρ

E +
∣∣X̃λn

∣∣2ρ

C([0,T ],E)

)
for a constant ck that does not depend on n ∈N where X̃λn(t) = Xλn(t)−S(t)X0. By the inequality

(3.43) there is a constant c6 that does not depend on n such that

(3.65) E

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0
Gλn

(
Xλn

))
(t)
∥∥∥∥2

dt ≤ c6

(
1+‖X0‖2ρ

E +E |Z|4ρ2

C([0,T ],E)

)
= C < ∞ .

This inequality verifies (3.60). Thus the sequence
(
exp
[
ρλn(Z)

]
,n ∈N

)
converges in L1 and the

equality (3.54) is satisfied. �

Now the case H ∈ (1/2,1) is considered.

Theorem 3.7. Let H ∈ (1/2,1) and the other assumptions in Theorem 3.6 be satisfied. Let Φ−1 ∈

L (V ), Z̃ ∈Cβ ([0,T ],V ) for some β ∈ (0,1),

(3.66) 〈F(x)−F(y),x− y〉 ≤ k2 ‖x− y‖2

for each pair x,y ∈ E and a k2 ∈R+ (that is, F − k2I is dissipative on E with respect to the norm

on V ) and

(3.67) ‖F(x)−F(y)‖ ≤ k3
(
1+‖x‖q

E +‖y‖q
E
)
‖x− y‖γ

for each x,y ∈ E, with some k3 > 0, q ≥ 1, and γ ∈ (0,1] such that

(3.68) γβ > H− 1
2

.

Then there is one and only one mild solution to (3.4) and its probability law is mutually absolutely

continuous with respect to the probability law of the fractional Ornstein-Uhlenbeck process (2.28)

on Ω̌.
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Proof. As in the proof of Theorem 3.6, it is shown that

(3.69)
∫ ·

0
G(Z(s))ds ∈ I

H+ 1
2

0+
(
L2([0,T ],V )

)
and

(3.70) Eexp [ρ(Z)] = 1 .

The methods to verify (3.69) and (3.70) are similar to those used in the proof of Theorem 3.6, but

now the operator K−1
H has a different form. Using the inequality (3.41) and the Hölder continuity

condition (3.67) it follows that

(3.71)∣∣∣∣K−1
H

(∫ ·

0
G(Z)

)∣∣∣∣2
L2([0,T ],V )

≤ c1

∫ T

0

(
s

1
2−H ‖G(Z(s))‖+ sH− 1

2

∫ s

0

s
1
2−H − r

1
2−H

(s− r)H+ 1
2
‖G(Z(r))‖ dr

+
∫ s

0

‖G(Z(s))−G(Z(r))‖
(s− r)H+ 1

2
dr

)2

ds

≤ c2

[
1+ |Z|2ρ

C([0,T ],E) + c3

(
1+ |Z|2q

C([0,T ],E)

)
·

(∫ T

0

∫ s

0

‖S(s)X0−S(r)X0‖γ +
∥∥Z̃(s)− Z̃(r)

∥∥γ

(s− r)H+ 1
2

dr

)2

ds


for some constants c1, c2, c3. By the analyticity of the semigroup S(·) on V , it follows that

(3.72)

∣∣∣∣K−1
H

(∫ ·

0
G(Z)

)∣∣∣∣2
L2([0,T ],V )

≤ c4

[
1+‖X0‖2ρ

E

+
(
‖X0‖2q

E + |Z|2q
C([0,T ],V ) +1

)(
‖X0‖2γ

E + |Z|2γ

Cβ ([0,T ],V )

)]
≤ c5

(
1+‖X0‖m

E + |Z|mC([0,T ],V ) + |Z|mCβ ([0,T ],V )

)
for some constants c4 and c5 and m sufficiently large. Thus (3.69) is verified. To verify the equality

(3.70) consider the family of Yosida approximations (Fλ ,λ > 0) of F as in the proof of Theorem

3.6. By the dissipativity of F in the norm on V , Fλ : V →V is Lipschitz continuous for each λ > 0

and has at most polynomial growth so Fλ satisfies the assumptions of Theorem 3.4 so that

(3.73) Eexp [ρλ (Z)] = 1
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where ρλ is given by (3.55). By the method to obtain the inequality (3.71) it follows that

(3.74) E

∣∣∣∣K−1
H

(∫ ·

0
(Gλ (Z)−G(Z))

)∣∣∣∣2
L2([0,T ],V )

≤ c6E

∫ T

0

[
s

1
2−H ‖Gλ (Z(s))−G(Z(s))‖+ sH− 1

2

∫ s

0

s
1
2−H − r

1
2−H

(s− r)H+ 1
2
‖Gλ (Z(r))−G(Z(r))‖ dr

+
∫ s

0

‖Gλ (Z(s))−G(Z(s))−Gλ (Z(r))+G(Z(r))‖
(s− r)H+ 1

2
dr

]2

ds .

By the inequalities (3.57) and (3.58), it follows that ‖Gλ (x)−G(x)‖ → 0 as λ ↓ 0 for each x ∈ E

and the family (Gλ ,λ > 0) satisfies the growth condition

(3.75) ‖Gλ (x)‖ ≤ c7
(
1+‖x‖ρ

E
)

for x ∈ E and some c7 > 0. From the V -dissipativity of F , it follows by [5, Proposition 5.5.3] that

‖Rλ (x)−Rλ (y)‖ ≤ ‖x− y‖

for x,y ∈ E so that

(3.76) ‖Fλ (x)−Fλ (y)‖= ‖F (Rλ (x))−F (Rλ (y))‖ ≤ k3
(
1+‖Rλ (x)‖q

E +‖Rλ (y)‖q
E
)
‖x− y‖γ

for x,y ∈ E. Since

‖Rλ (x)‖E ≤ ‖x‖E +λ ‖F(x)‖E ≤ c8
(
1+‖x‖ρ

E
)

for x ∈ E, c8 ∈R+, and λ ∈ (0,1], there is the inequality

(3.77) ‖Fλ (x)−Fλ (y)‖ ≤ c9 (1+‖x‖m
E +‖y‖m

E )‖x− y‖γ

for x,y∈ E, c0 ∈R+, m≥ 1, and λ ∈ (0,1]. So Fλ and Gλ satisfy the inequality (3.67) uniformly in

λ ∈ (0,1]. Thus the right hand side of the inequality (3.74) tends to zero as λ ↓ 0 by the Dominated

Convergence Theorem where a majorizing function is provided by the estimates (3.75) and (3.77)

whose integrability is shown as in (3.71) and (3.72) and there is a decreasing sequence (λn,n ∈N)

whose limit is zero such that

(3.78) lim
n→∞

exp
[
ρλn(Z)

]
= exp [ρ(Z)] a.s. P.
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The uniform integrability of the sequence
(
exp
[
ρλn(Z)

]
,n ∈N

)
is shown by verifying the ana-

logue of (3.60). Equivalently,

(3.79) sup
n
E

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0
Gλn

(
Xλn

))
(t)
∥∥∥∥2

dt ≤ c < ∞

where Xλn(·) is the unique mild solution to the equation (3.62). The analogous inequalities (3.71)–

(3.74) are obtained by replacing G by Gλ using the polynomial growth bound and the local Hölder

continuity that are uniform in (λn,n ∈N) and Z(·) is replaced by Xλn(·). For some constants c10

and m ≥ 1,

(3.80)
∣∣∣∣K−1

H

(∫ ·

0
Gλn

(
Xλn

))∣∣∣∣2
L2([0,T ],V )

≤ c10

(
1+‖X0‖m

E +
∣∣X̃λn

∣∣m
C([0,T ],E) +

∣∣X̃λn

∣∣m
Cβ ([0,T ],V )

)
where X̃λm(t) = Xλm(t)−S(t)X0. By the inequality (3.43), it follows that

(3.81)
∣∣X̃λn

∣∣
C([0,T ],E) ≤ c11

(
1+‖X0‖+ |Z|ρC(0,T ],E)

)
for some c11 > 0. Let wλn(t) = X̃λn(t)− Z̃(t) so that

(3.82) wλn(t) =
∫ t

0
S(t− r)Fλn

(
wλn(s)+S(s)X0 + Z̃(s)

)
ds

for t ∈ [0,T ]. The inequality (3.81) provides a uniform bound on
∣∣wλn

∣∣
C([0,T ],E) so by repeating the

arguments for the inequalities (3.37) and (3.38), it follows that

(3.83)
∣∣Xλn

∣∣
Cβ ([0,T ],V ) ≤ c12

(
1+‖X0‖+ |Z̃|ρC([0,T ],E) + |Z̃|Cβ ([0,T ],V )

)
for some c12 > 0. The inequalities (3.80) and (3.81) verify the inequality (3.79) so the sequence(
exp
[
ρλn(Z)

]
,n ∈N

)
is uniformly integrable and the equality (3.73) is verified. �

4. SOME EXAMPLES

The first example is a finite dimensional stochastic equation with a nonlinear drift. Consider the

equation

(4.1) dX(t) = f (X(t))dt +ΦdB(t)

where f : Rn → Rn, Φ ∈ L (Rn) and (B(t), t ≥ 0) is an Rn-valued standard fractional Brownian

motion with Hurst parameter H ∈ (0,1). This case can be subsumed in the infinite dimensional
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results given here though some of the assumptions and the results simplify significantly. Let E =

V =Rn, S(t) = I for t ∈R+ and assume that Q = ΦΦ∗ is positive definite. The process(∫ t

0
ΦdB, t ∈ [0,T ]

)
has sample paths in Cβ ([0,T ],Rn) for 0 < β < H. If f : Rn →Rn is Borel measurable and

(4.2) ‖ f (x)‖ ≤ k1(1+‖x‖)

for some k1 > 0 and all x ∈ Rn then for H ∈ (0,1/2) there is one and only one weak solution of

(4.1) by Theorem 3.3. If, additionally, it is assumed that

(4.3) ‖ f (x)− f (y)‖ ≤ k‖x− y‖γ

for all x,y ∈ Rn and some γ > 1− 1
2H , then for H ∈ (1/2,1), there is one and only one weak

solution. In each of these cases, the probability measure of the solution is mutually absolutely

continuous with respect to the probability measure of the process (ΦB(t), t ∈ [0,T ]).

Now, replace the inequality in (4.2) by

(4.4) ‖ f (x)‖ ≤ k1(1+‖x‖ρ)

for some ρ ≥ 1 and k1 > 0. Assume that f : Rn →Rn is continuous and satisfies

(4.5) 〈 f (x)− f (y),x− y〉 ≤ k3‖x− y‖2

for some k3 > 0 and all x,y ∈Rn. If H ∈ (1/2,1), then assume that

(4.6) ‖ f (x)− f (y)‖ ≤ k4 (1+‖x‖q +‖y‖q)‖x− y‖γ

for some q ≥ 1, k4 > 0, γ > 1− 1
2H . For H ∈ (0, 1

2) Theorem 3.6 can be used to verify that

the probability law of the solution of (4.1) is mutually absolutely continuous with respect to the

probability law of (ΦB(t), t ∈ [0,T ]). Furthermore, there is one and only one mild solution of

(4.1), in fact, since the state space is finite dimensional, the mild solution is a strong solution.

For H ∈ (1
2 ,1) Theorem 3.7 can be used to verify mutual absolute continuity and one and only

one mild solution as for the case H ∈ (0, 1
2). Note that the inequalities (4.4)—(4.6) are satisfied

for the important case of models where f is a polynomial of odd degree with a negative leading

coefficient.
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The second example is a stochastic parabolic equation of 2mth order

(4.7)
∂u
∂ t

(t,ξ ) = [L2mu](t,ξ )+ f (u(t,ξ ))+η(t,ξ )

for (t,ξ ) ∈ [0,T ]×O with the initial condition

(4.8) u(0,ξ ) = x(ξ )

for ξ ∈O and the Dirichlet boundary condition

(4.9)
∂ ku
∂vk (t,ξ ) = 0

for (t,ξ ) ∈ [0,T ]× ∂O , k ∈ {0, . . . ,m− 1}, ∂

∂v denotes the conormal derivative, O is a bounded

domain in Rd with a smooth boundary and L2m is a 2mth order uniformly elliptic operator

(4.10) L2m = ∑
|α|≤2m

aα(ξ )Dα

and aα ∈C∞
b (O). For example, if m = 1 then this equation is called the stochastic heat equation.

The process η denotes a space dependent noise process that is fractional in time with the Hurst

parameter H ∈ (0,1) and, possibly, in space. The system (4.7)–(4.9) is modeled as

(4.11)
dX(t) = AX(t)dt +F(X(t))dt +ΦdB(t)

X(0) = x

in the space V = L2(O) where A = L2m,

Dom(A) =
{

ϕ ∈ H2m(O) | ∂ k

∂vk ϕ = 0 on ∂D for k ∈ {0, . . . ,m−1}
}

,

F : V →V is the operator, F(x)(ξ ) = f (x(ξ )),x ∈V,ξ ∈ O , Φ ∈L (V ) defines the space correla-

tion of the noise process and (B(t), t ≥ 0) is a cylindrical standard fractional Brownian motion in

V (formally, η(t, ·) = Φ(∂/∂ t)B(t, ·)). For Φ = I, the noise process is uncorrelated in space. It is

well known that A generates an analytic semigroup (S(t), t ≥ 0). Furthermore
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(4.12) |S(t)Φ|L2(V ) ≤ |S(t)|L2(V )|Φ|L (V ) ≤ ct−
d

4m

for t ∈ [0,T ], so if

(4.13) H >
d

4m

then the conditions of Proposition 2.6 are satisfied with γ = d
4m . Therefore, for any Φ ∈L (V ), the

stochastic convolution process (∫ t

0
S(t− r)ΦdB(r), t ∈ [0,T ]

)
is well-defined and has a version with Cβ ([0,T ],V ) sample paths for β ≥ 0 satisfying

(4.14) β < H− d
4m

.

Note that the condition (4.13) extends the well known result for a standard Wiener process

(H = 1
2 ).

Theorem 3.3 and 3.4 are applied to the present example. Assume the inequality (4.13) and let Φ

be boundedly invertible on V . Furthermore, let f : R→ R be measurable and satisfy

(4.15) | f (ξ )| ≤ k1(1+ |ξ |), ξ ∈ R,

By the preceding part of this example the conditions H1 - H3 are satisfied for E = V = L2(O)

and the map F : V →V has at most linear growth. Thus by Theorem 3.3 if H < 1
2 , then there exists

a unique weak solution to the equation (4.11).

If H > 1
2 , some additional conditions are required. Assume that

(4.16)
d

4m
<

1
2

(which is more restrictive than (4.13)) and suppose that
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(4.17) | f (ξ )− f (λ )| ≤ k|ξ −λ |γ , ξ ,λ ∈ R,

for some k > 0 and γ > 0,

(4.18)
H−1/2

H−d/4m
< γ ≤ 1.

Then, letting β be such that β < H − d
4m and γβ > H − 1

2 it is clear that all of the conditions of

Theorem 3.4 are verified so there is a unique weak solution to the equation (4.11).

The third example is a one-dimensional stochastic equation of reaction-diffusion type. Consider

the equation

(4.19)
∂u
∂ t

(t,ξ ) =
∂ 2u
∂ξ 2 (t,ξ )+ f (u(t,ξ ))+η(t,ξ )

for (t,ξ ) ∈ (0,T )× (0,1) and

u(0,ξ ) = x0(ξ )

∂u
∂ξ

(t,0) =
∂u
∂ξ

(t,1) = 0

for (t,ξ ) ∈ (0,T )× (0,1) where f and η are given in the previous example (with O = (0,1)). The

above formal equation can be rewritten in the form (4.11) with V = L2([0,1]), A = ∂ 2

∂ξ 2 ,

Dom(A) =
{

φ ∈ H2([0,1]) :
∂

∂ξ
φ(0) =

∂

∂ξ
φ(1) = 0

}
,

Φ ∈ L (V ) and F given in the preceding example. The semigroup generated by A satisfies the

estimate (4.12) (with m = d = 1), so if f satisfies the conditions of the previous example, the same

conclusions on existence and uniqueness of the weak solution are obtained.

However, it is desirable to relax the condition (4.15) of the linear growth of the function f ,

which is very restrictive in view of reaction-diffusion models, where f is often a polynomial. Let

H > 1/2 and assume that
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(4.20) | f (ξ )| ≤ k(1+ |ξ |ρ),

(4.21) ( f (ξ )− f (λ ))sgn(ξ −λ )≤ k(ξ −λ ),

(4.22) | f (ξ )− f (λ )| ≤ k(1+ |ξ |q + |λ |q|ξ −λ |γ

for all ξ ,λ ∈ R and some universal constants ρ > 0,q > 0,k > 0 and γ satisfying

(4.23)
H−1/2
H−1/4

< γ ≤ 1.

Note that these conditions are satisfied if f is Lipschitz or if f is a polynomial of odd degree

with a negative leading coefficient.

The conditions of Theorem 3.7 are verified now. Take the state space E = C([0,1]). It is well

known that the restriction of A to E generates a strongly continuous semigroup of contractions on

E. By Proposition 2.6 the stochastic convolution

(4.24) (
∫ t

0
S(t− r)ΦdB(r), t ∈ [0,T ])

has Cβ ([0,T ],Vδ ) sample paths for β +δ < H −1/4 and hence, by the Sobolev embedding theo-

rem, in the space C([0,T ],E)∩Cβ ([0,T ],V ) for 0 < β < H−1/4 (by (4.23) β can be chosen such

that βγ > H − 1/2). It remains to verify the conditions imposed on F . The polynomial growth

condition (3.41), the ”dissipativity of F − kI on V ” (3.66) and the local Hölder continuity of the

form (3.67) follow easily from the corresponding conditions on f , that is, (4.20), (4.21) and (4.22).

The dissipativity of F − kI on E (3.42) is a well known consequence of (4.21) by the characteriza-

tion of the subdifferential of the norm on E = C([0,1]) (cf.[30]). Therefore, all of the conditions

of Theorem 3.7 are satisfied and it follows that there is a unique weak solution in the present case.
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