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REMARKS ON SPECIAL SYMPLECTIC CONNECTIONS

MARTIN PANÁK, VOJTĚCH ŽÁDNÍK 1

Abstract. The relation between special symplectic connection and Weyl con-

nections is shown. We give more explicit construction of the special symplectic

connections in some real cases.
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1. Introduction

Special symplectic connection on a symplectic manifold (M,ω) is a torsion-free
linear connection preserving ω which is special in the sense of definitions in 1.1.
The definition of special symplectic connection is rather wide, however, there is a
nice link between special symplectic connections and contact parabolic geometries,
which was established in the profound paper [1]. The main result of that paper
states that any special symplectic connection on M comes via a symplectic reduc-
tion from a specific linear connection on a one-diminension bigger contact manifold
C, the homogeneous model of some contact parabolic geometry. All the necessary
background on contact parabolic geometries is collected in section 2. The construc-
tion and the characterization from [1] is quickly reminded in section 3, culminating
in Theorem 3.2.

In the next section we provide an alternative and rather direct approach to
special symplectic connections. Firstly we reinterpret the previous results in terms
of parabolic geometries so that the specific linear connections on C are exactly the
exact Weyl connections corresponding to specific choices of scales. A choice of scale
further defines a bundle projection from TC to the contact distribution D ⊂ TC
and this gives rise to a partial contact connection on D. By the very construction,
the only ingredient which yields the special symplectic connection on M is just the
partial contact connection associated to the choice of scale, Proposition 4.2.

Finally, the direct construction of special symplectic connections works via a
pull-back of an ambient symplectic connection on the total space of the canonical
scale bundle Ĉ → C. Namely for some real cases we can find a convenient ambient
connection on Ĉ and then compare the exact Weyl connection and the pull-back
connection on C corresponding to the choice of scale so that they coincide on the
contact distribution D, Theorem 4.3. By the previous results, they give rise the same
symplectic connection on M after the reduction. This construction applies to the

1The first author was supported by the grant nr. 201/05/P088, the second author by the grant
nr. 201/06/P379, both grants of the Grant Agency of the Czech Republic.
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projective contact structures, CR structures of hypersurface type, and Lagrangean
contact structures, which are dealt in subsections 4.4, 4.5, and 4.6, respectively.

1.1. Special symplectic connections. Given a smooth manifold M with a sym-
plectic structure ω ∈ Ω2(M), linear connection ∇ on M is said to be symplectic
if it is torsion free and ω is parallel with respect to ∇. There is a lot of sym-
plectic connections to a given symplectic structure, hence studying this subject,
further restrictive conditions appear. Following the article [1], we consider the spe-
cial symplectic connections defined as symplectic connections belonging to some of
the following classes:

(i) Connections of Ricci type. The curvature tensor of a symplectic connection
decomposes under the action of the symplectic group into two irreducible compo-
nents. One of them corresponds to the Ricci curvature and the other one is the
Ricci-flat part. If the curvature tensor consists only of the Ricci curvature part,
then the connection is said to be of Ricci type.

(ii) Bochner–Kähler connections. Let the symplectic form be the Kähler form
of a (pseudo-)Kähler metric and let the connection preserve this (pseudo-)Kähler
structure. The curvature tensor decomposes similarly as in the previous case into
two parts but this time under the action of the (pseudo-)unitary group. These are
called Ricci curvature and Bochner curvature. If the Bochner curvature vanishes,
the connection is called Bochner–Kähler.

(iii) Bochner–bi-Lagrangean connections. A bi-Lagrangean structure on a sym-
plectic manifold consists of two complementary Lagrangean distributions. If a sym-
plectic connection preserves such structure, i.e. both the Lagrangean distributions
are parallel, then again the curvature tensor decomposes into the Ricci and Bochner
part. If the Bochner curvature vanishes, we speak about Bochner–bi-Lagrangean
connections.

(iv) Connections with special symplectic holonomies. We say that a symplec-
tic connection has special symplectic holonomy if its holonomy is contained in a
proper absolutely irreducible subgroup of the symplectic group. Special symplectic
holonomies are completely classified and studied by various people.

Note that all the previous definitions admit an analogy in complex/holomorphic
setting but we are dealing only with the real structures in this paper.

Acknowledgements. We would like to thank in the first place to Andreas Čap
for the fruitful discussion and suggestions, especially concerning Weyl connections.
Among others we would like to mention Lorenz Schwachhöfer, Jan Slovak and
JǐŕıVanžura, who were willing to discuss some aspects of the geometries in this
article.

2. Contact parabolic geometries and Weyl connections

In the this section we provide necessary background from the parabolic geome-
tries and generalized Weyl structures as can be found in [11] and [3].

2.1. Contact parabolic geometries. Semisimple Lie algebra admits a contact
grading if there is a grading g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 such that g−2 is one
dimensional and the Lie bracket [ , ] : g−1 × g−1 → g−2 is non-degenerate. If g
admits a contact grading, then g has to be simple. Any complex simple Lie algebra,
except sl(2, C), admits a unique contact grading, but the existence is not generally
guaranteed in real case. However, the split real form of complex simple Lie algebra
and most of non-compact non-complex real Lie algebras admit a contact grading.

Let g be a real simple Lie algebra admitting a contact grading, let p := g0⊕g1⊕g2

be the corresponding parabolic subalgebra, and let p+ := g1⊕ g2. Let further z(g0)
be the center of g0. Let E ∈ z(g0) be the grading element of g and let g′0 ⊂ g0
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be the orthogonal complement of E with respect to the Killing form on g. From
the invariance of the Killing form and the fact that [g−2, g2] = 〈E〉, the subalgebra
g′0 ⊂ g0 is equivalently characterized by the fact that [g′0, g2] = 0. For later use let
us denote p′ := g′0 ⊕ p+.

For a semisimple Lie group G and a parabolic subgroup P ⊂ G, parabolic ge-
ometry of type (G, P ) on a smooth manifold M consists of a principal P -bundle
G → M and a Cartan connection η ∈ Ω1(G, g), where g is the Lie algebra of G. If
g is simple Lie algebra admitting a contact grading and the Lie subalgebra p ⊂ g
of P corresponds to this grading, then we speak about contact parabolic geome-
try. The contact grading of g gives rise to a contact structure on M as follows.
Under the usual identification TM ∼= G ×P g/p via η, the P -invariant subspace
(g−1 ⊕ p)/p ⊂ g/p, defines a distribution D ⊂ TM , namely

(1) D ∼= G ×P (g−1 ⊕ p)/p.

Parabolic geometry is regular if the Levi bracket, induced on the graded tangent
bundle gr(TM) = D ⊕ TM/D from the Lie bracket of vector fields, coincides with
the algebraic bracket determined by the Lie bracket on g− = g−1⊕g−2. For regular
contact parabolic geometries, the distribution D ⊂ TM defined by (1) is a contact
distribution.

The contact distribution can be also given as a kernel of the contact form θ on
M , that is a form on M satisfying θ ∧ (dθ)n 6= 0. The (unique) Reeb vector field
R ∈ X(M), defined as dθ(R, ) = 0 and θ(R) = 1, then leads to the decomposition
TM ∼= D ⊕ R ·R of the tangent bundle.

2.2. Weyl structures. Let (G → M,η) be a parabolic geometry of type (G, P ).
Let p ⊂ g be the Lie algebras of the Lie groups P ⊂ G and let g = g−k ⊕ · · · ⊕ g0⊕
· · · ⊕ gk be the corresponding grading of g. Let G0 ⊂ P be the Lie group with Lie
algebra g0 and let P+ := exp p+ so that P = G0oP+. Let further G0 := G/P+ → M
be the underlying G0-bundle and let π0 : G → G0 be the canonical projection. A
Weyl structure for the parabolic geometry (G → M,η) is a global smooth G0-
equivariant section σ : G0 → G of the projection π0, i.e. a reduction of G → M to
the structure group G0 ⊂ P .

Denote by ηi the gi–component of the Cartan connection η ∈ Ω1(G, g). For a
Weyl structure σ : G0 → G, the pull-back σ∗η0 defines a principal connection on
the principal bundle G0. It is called the Weyl connection of the Weyl stucture σ.

Next, the form σ∗η−, is the soldering form. It provides the reduction of the
bundle (G → M) to the structure group G0 and σ∗η+ =: Pσ, is the Rho-tensor.

Any Weyl connection induces connections on all bundles associated to G0, in
particular, there is an induced linear connection on TM . By definition, any Weyl
connection preserves the underlying G0-structure on M . On the other hand, there
are particularly convenient bundles such that the induced connection from σ∗η0 is
sufficient to determine whole the Weyl structure σ. These are the so called bundles
of scales, oriented line bundles over M defined as follows.

2.3. Scales and exact Weyl connections. Let L → M be a principal R+-
bundle associated to G0. This is determined by a group homomorphism λ : G0 → R+

whose derivative is denoted by λ′ : g0 → R. The Lie algebra g0 is reductive, i.e.
g0 splits into a direct sum of the center z(g0) and the semisimple part, hence the
only elements that can act non-trivially by λ′ are from z(g0). Next, the restriction
of the Killing form B to g0 and further to z(g0) is non-degenerate. Altogether, for
any representation λ′ : g0 → R there is a unique element Eλ ∈ z(g0) such that

(2) λ′(A) = B(Eλ, A)



4 MARTIN PANÁK, VOJTĚCH ŽÁDNÍK 1

for all A ∈ g0. By Schur’s lemma, Eλ acts by a real scalar on any irreducible
representation of G0. An element Eλ ∈ z(g0) is called a scaling element if it acts
by a non-zero real scalar on each G0-irreducible component of p+. (In general, the
grading element of g is a scaling element.) A bundle of scales is a principal R+-
bundle associated to G0 via a homomorphism λ : G0 → R+, whose derivative is
given by (2) for some scaling element Eλ. Bundle of scales Lλ → M corresponding
to λ is naturally identified with G0/ ker λ, the orbit space of the action of the normal
subgroup kerλ ⊂ G0 on G0.

Let Lλ → M be a fixed bundle of scales and let σ : G0 → G be a Weyl structure
of a parabolic geometry (G → M,η). Then the Weyl connection σ∗η0 on G0 induces
a principal connection on Lλ and [3, Theorem 3.12] shows that this mapping es-
tablishes a bijective correspondence between the set of Weyl structures and the set
of principal connections on Lλ. Note that the surjectivity part of the statement is
rather implicit, however there is a distinguished subclass of Weyl structures which
allow more satisfactory interpretation, namely the exact Weyl strucures defined as
follows. Any bundle of scales is trivial and so it admits global smooth sections,
which we usually refer to as choices of scale. Any choice of scale gives rise to a
flat principal connection on Lλ and the corresponding Weyl structure is then called
exact.

Furthermore, due to the identification Lλ = G0/ ker λ, the sections of Lλ → M
are in a bijective correspondence with reductions of the principal bundle G0 → M
to the structure group ker λ ⊂ G0. Altogether for any choice of scale, the compo-
sition of the two reductions above is a reduction of G → M to the structure group
ker λ ⊂ G0 ⊂ P ; let us denote the resulting bundle by G′0. Hence the corresponding
exact Weyl connection has holonomy in ker λ and by general principles from the
theory of G-structures, it preserves the geometric quantity corresponding to the
choice of scale. In the cases of contact parabolic geometries, the canonical candi-
date for the bundle of scales is the bundle of positive contact forms. Easily, this
is the scale bundle corresponding to a (non-zero scalar multiple of) the grading
element E ∈ z(g0) and in the homogeneous case one recovers the cone Ĉ → C, cf.
remark 3.1(c). To be more presice, any Weyl connection preserves the underlying
G0-structure so in particular the contact ditribution D ⊂ TM ; the exact Weyl
connection corresponding to the contact one-form θ ∈ Ω1(M) preserves moreover
θ, i.e. θ is parallel.

3. Characterization of special symplectic connections

In this section the quick review of the construction of the special symplectic
connections from the article [1] is described.

3.1. Adjoint orbit and its projectivization. Let g be a real simple Lie algebra
admitting a contact grading and let e2

+ ∈ g be a maximal root element, i.e. a
generator of g2. Let G be a connected Lie group with Lie algebra g. Consider the
adjoint orbit of e2

+ and its oriented projectivization:

(3) Ĉ := AdG(e2
+) ⊂ g, C := Po(Ĉ) ⊂ Po(g).

The restriction of the natural projection p : g\{0} → Po(g) to Ĉ yields the principal
R+-bundle p : Ĉ → C, which we call the cone. The right action of R+ is just the
multiplication by positive real scalars. The fundamental vector field of this action
is the Euler vector field Ê defined as Ê(x) := x, for any x ∈ Ĉ ⊂ g.

Since Ĉ is an adjoint orbit of G in g, and g can be identified with g∗ via the
Killing form, there is a canonical G-invariant symplectic form Ω̂ on Ĉ. For any
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X, Y ∈ g and α ∈ Ĉ ⊂ g∗, the value of Ω̂ is given by the formula

Ω̂(ad∗X(α), ad∗Y (α)) := α([X, Y ]),

where ad∗ : g → gl(g∗) is the infinitesimal coadjoint representation and ad∗X(α) =
−α ◦ adX is viewed as an element of TαĈ. Under the identification g ∼= g∗ the
previous formula reads as

(4) Ω̂(adX(a), adY (a)) = B(a, [X, Y ]),

for any X, Y ∈ g and a ∈ Ĉ ⊂ g, where B : g×g → R is the Killing form. The Euler
vector field and the canonical symplectic form defines a (canonical) G-invariant
one-form α̂ on Ĉ by

(5) α̂ :=
1
2
Ê y Ω̂.

Immediately from definitions it follows that LÊΩ̂ = 2Ω̂ and consequently dα̂ = Ω̂.

Lemma. Let p : Ĉ → C be the cone defined by (3) and let P ′ ⊂ P be the connected
subgroups in G corresponding to the subalgebras p′ ⊂ p ⊂ g from 2.1. Then Ĉ ∼=
G/P ′ and C ∼= G/P so that the contact distribution D ⊂ T (G/P ) is identified with
Tp · ker α̂ ⊂ TC.

Proof. By definition, the group G acts transitively both on Ĉ and C = Ĉ/R+.
Since [A, e2

+] = 0 if and only if A ∈ p′ and we assume the Lie subgroup P ′ ⊂ G
corresponding to p′ ⊂ g is connected, the stabilizer of e2

+ is precisely P ′. Hence
the orbit Ĉ is identified with the homogeneous space G/P ′. Since P ⊃ P ′ is also
connected, P/P ′ is identified with the subgroup {exp tE : t ∈ R} ∼= R+ in P . Hence
P preserves the ray of positive multiples of e2

+ so that C = Ĉ/R+ is identified with
G/P .

For the last part of the statement, note that the Euler vector field is generated by
(a non-zero multiple of) the grading element E ∈ z(g0). The canonical one-form α̂ on
Ĉ is G-invariant, so it is determined by its value in the origin o ∈ G/P ′, i.e. e2

+ ∈ Ĉ,
which is a P ′-invariant one-form φ on g/p′. By (4) and (5), φ is explicitly given as
φ(X) = B(e2

+, [E,X]), possibly up to a non-zero scalar multiple. The formula is
obviously independent of the representative of X in g/p′ and the kernel of φ is just
(g−1⊕p)/p′. The tangent map of the projection p : Ĉ → C corresponds to the natural
projection g/p′ → g/p, hence Tp · ker α̂ ⊂ TC corresponds to (g−1 ⊕ p)/p ⊂ g/p
which defines the contact distribution D ⊂ T (G/P ) in (1). �

Remarks. (a) Note that in contrast to the definition of the cone in [1] we do not
assume the center of G is trivial. Hence the two approaches differ by a (usually
finite) covering. Because of the very local character of all the constructions that
follow, this causes no problem and we will not mention the difference below.

(b) The homogeneous space Ĉ ∼= G/P ′ is an example of a G-symplectic homoge-
neous space, i.e. a homogeneous space of a Lie group G with G-invariant symplectic
structure. According to [7, Corollary to Theorem 5.5.1], for G being semisimple,
any G-symplectic homogeneous space is isomorphic to a covering of an orbit in g,
which is thought with the (restriction of the) canonical symplectic form. Moreover
the covering map and hence the orbit are unique. This characterization will be
useful below.

(c) According to [1, Prop. 3.2], the bundle Ĉ → C can be identified with the
bundle of positive contact forms on C so that Ω̂ = dα̂ corresponds to the restriction
of the canonical symplectic form on the cotangent bundle T ∗C. In detail, a section
s : C → Ĉ yields the contact one-form θs := s∗α̂ and, by the naturality of the
exterior differential, dθs = s∗Ω̂.
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3.2. General construction. Let a be an element of a real simple Lie algebra g
admitting a contact grading. With the notation as before, let ξa be the fundamental
vector field of the left action of G on C ∼= G/P corresponding to a ∈ g. Let us denote
by Ca the (open) subset in C where ξa is transverse to the contact distribution
D ⊂ TC and oriented in accordance with a fixed orientation of TC/D. The vector
field ξa gives rise to a unique contact one-form θa on Ca such that ξa is its Reeb
field. In other words, θa ∈ Ω1(Ca) is uniquely determined by the conditions

(6) ker θa = D and θa(ξa) = 1.

Since ξa is a contact symmetry, i.e. Lξa
D ⊂ D, it easily follows that Lξa

θa = 0
and consequently ξa y dθa = 0. Let Ta ⊂ G denote the one-parameter subgroup
corresponding to the fixed element a ∈ g. We say that an open subset U ⊂ Ca is
regular if the local quotient MU := Ta \ U is a manifold. Since ξa y dθa = 0 and
dθa has maximal rank, it descends to a symplectic form ωa on MU , for any regular
U ⊂ Ca.

Next, let π : G → G/P ∼= C be the canonical P -principal bundle and consider
its restriction to Ca. If Ca in non-empty, then [1, Theorem 3.4] describes explicitly
a subset Γa in π−1(Ca) ⊂ G, which forms a G′

0-principal bundle over Ca where G′
0

denotes the connected subgroup in G corresponding to the Lie subalgebra g′0 ⊂ g.
For a regular open subset U ⊂ Ca, denote ΓU := π−1(U) ⊂ Γa and BU := Ta \ ΓU .
Then BU → MU is a G′

0-principal bundle and [1, Theorem 3.5] shows that the
restriction of the (g−2 ⊕ g−1 ⊕ g′0)-component of the Maurer–Cartan form µ ∈
Ω1(G, g) to ΓU descends to a (g−1 ⊕ g′0)-valued coframe on BU . Altogether, the
bundle BU → MU is interpreted as a classical G′

0-structure and the g′0-part of the
coframe above induces a linear connection on MU . It turns out this connection is
special symplectic connection with respect to the symplectic form ωa.

Surprisingly, [1, Theorem B] proves that any special symplectic connection can
be at least locally obtained by the previous construction. With an assumption on
dim g ≥ 14, which is equivalent to dim MU ≥ 4, we reformulate the main result of
[1] as follows.

Theorem ([1]). Let g be a simple Lie algebra of dimension ≥ 14 admitting a
contact grading. With the same notation as above, let a ∈ g be such that Ca ⊂ C is
non-empty and let U ⊂ Ca be regular. Then

(a) the local quotient MU carries a special symplectic connection,
(b) locally, connections from (a) exhaust all special symplectic connection.

An instance of the correspondence between the various classes of special sym-
plectic connections and contact gradings of simple Lie algebras is as follows. For
dim MU = 2n, special symplectic connections of type (i), (ii) and (iii), according
to the definitions in 1.1, corresponds to the contact grading of simple Lie algebras
sp(2n + 2, R), su(p + 1, q + 1) with p + q = n, and sl(n + 2, R), respectively. The
corresponding contact parabolic structure on C ∼= G/P is the projective contact
structure, CR structure of hypersurface type, and Lagrangean contact structure,
respectively. Details on each of these structures are treated in the next section in
details.

4. Alternative realization of special symplectic connections

Below we describe contact parabolic structures corresponding to special symplec-
tic connections of type (i), (ii) and (iii) as mentioned above. The aim of this section
is, for each of the listed cases, to provide the characterization of Theorem 3.2, and
so the realization of special symplectic connections, in more explicit and satisfac-
tory way. For this purpose we interpret the model cone p : Ĉ ∼= G/P ′ → G/P ∼= C
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in each particular case and look for a natural ambient connection ∇̂ on Ĉ which is
good enough to give rise the easier interpretation. We start with a reinterpretation
of the construction from 3.2 in terms of Weyl structures and conenctions.

4.1. Partial contact connections. In order to formulate the next results we
need the notion of partial contact connections. For a general distribution D ⊂ TM
on a smooth manifold M , a partial linear connection on M is an operator Γ(D)×
X(M) → X(M) satisfying the usual conditions for linear connections. In other
words, we modify the notion of linear connection on TM just by the requirement
to differentiate only in the directions lying in D. If a partial linear connection
preserves D, then restricting also the second argument to D yields an operator of
the type Γ(D) × Γ(D) → Γ(D); in the case the distribution D ⊂ TM is contact,
we speak about the partial contact connection.

Given a contact distribution D ⊂ TM and a classical linear connection ∇ on M ,
any choice of a contact one-form induces a partial contact connection ∇Das follows.
Let θ ∈ Ω1(M) be a contact one-form with the contact subbundle D and let Rθ be
the corresponding Reeb vector field. This induces a decomposition TM ∼= D ⊕ R
and in particular a bundle projection πθ : TM → D, namely the projection in the
direction of 〈Rθ〉 ⊂ TM . Now for any X, Y ∈ Γ(D), the formula

(7) ∇D
XY := πθ(∇XY )

defines a partial contact connection and we say that ∇D is induced from ∇ by θ.
The contact torsion of the linear connection is the projection of the classical

torsion to the contact distribution D given by the decomposition of the tangent
bundle given by the contact form, see above.

4.2. General construction revisited. In the construction of special symplectic
connection in 3.2, we started with a choice of an element a ∈ g which in particular
induced a contact one-form θa on Ca. Then we described the G′

0-principal bundle
Γa ⊂ π−1(Ca) which is actually a reduction of the P -principal bundle π−1(Ca) → Ca

to the structure group G′
0. In terms of subsection 2.3, the couple (π−1(Ca) → Ca, µ)

forms a flat parabolic geometry of type (G, P ) and the contact form θa represents a
choice of scale. The reduction above is just the exact Weyl structure corresponding
to θa so that Γa is the image of G′0 and the restriction of the g′0-part of the Maurer–
Cartan form µ to Γa is the exact Weyl connection.

Further restriction to a regular subset U ⊂ Ca and the factorization by Ta finally
yielded a special symplectic connection on MU = Ta \ U . In the current setting
together with the definitions in 4.1, it is obvious that the resulting connection on
MU is fully determined by the partial contact connection induced by θa from the
exact Weyl connection on U ⊂ Ca corresponding to θa. Since any Weyl connection
preserves the contact distribution D, the induced partial contact connection is just
the restriction to the directions in D. Altogether, we can recapitulate the results in
3.2 as follows.

Proposition. Let a ∈ g be so that Ca ⊂ C is non-empty and let U ⊂ Ca be regular.
Let θa be the contact one-form on U ⊂ Ca determined by a ∈ g as in (6).

Then the special symplectic connection on MU constructed in 3.2 is fully deter-
mined by the partial contact connection induced from the exact Weyl connection
corresponding to θa

4.3. Pull-back connections. Let p : Ĉ → C be the cone as in 3.1. Any smooth
section s : C → Ĉ determines a principal connection on Ĉ; the corresponding hori-
zontal lift of vector fields is denoted as X 7→ Xhor. An ambient linear connection
∇̂ on Ĉ defines a linear connection ∇s on C by the formula

(8) ∇s
XY := Tp(∇̂XhorY hor).
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We call ∇s the pull-back connection corresponding to s. On the other hand, for any
section s, which we call a choice of scale by 2.3, let θs = s∗α̂ be the contact form
and let ∇̄s be the corresponding exact Weyl connection on C. In the rest of this
section, we are looking for an ambient connection ∇̂ on Ĉ so that both ∇s and ∇̄s

induce the same partial contact connection on D ⊂ TC. For this reason it turns out
that ∇̂ has to be symplectic, i.e. ∇̂Ω̂ = 0.

The following statement provides together with Theorem 3.2 and Proposition
4.2 the desired simple realization of special symplectic connections of type (i), (ii),
and (iii) according to the list in 1.1. The point is that in all these cases the ambient
connection ∇̂ is very natural and easy to describe.

Theorem. Let Ĉ → C be the model cone for g = sp(2n + 2, R), su(p + 1, q + 1) or
sl(n+2, R). Then there is an ambient symplectic connection ∇̂ on the total space of
Ĉ so that, for any section s : C → Ĉ, the induced partial contact connections of the
exact Weyl connection and the pull-back connection corresponding to s coincide.

Although the definition of the cone Ĉ → C is pretty general, its convenient
interpretation necessary to find a natural candidate for ∇̂ is no more universal.
In order to prove the Theorem, we deal in following three subsections with each
case individually. It follows that the reasonable interpretation of the cone in any
discussed case is more or less standard and the candidate for an ambient connection
∇̂ is almost canonical. Therefore in the proofs of subsequent Propositions we focus
only in the justification of the choices.

Note that a natural guess for ∇̂ to be a G-invariant symplectic connection on
Ĉ = G/P ′ does help only for contact projective structures, i.e. the structures cor-
responding to the contact grading of g = sp(2n+2, R). This is due to the following
statement, which is an immediate corollary of [10, Theorem 3]: For a connected real
simple Lie group G with Lie algebra g, the nilpotent adjoint orbit C = AdG(e2

+)
admits a G-invariant linear connection if and only if g ∼= sp(m, R).

For a reader’s convenience we assume the dimension of C = G/P to be always
m = 2n + 1. Consequently, dim Ĉ = 2n + 2 and we further continue the convention
that all important objects on Ĉ are denoted with the hat.

4.4. Contact projective structures. Contact projective structures correspond
to the contact grading of the Lie algebra g = sp(2n + 2, R), the only real form of
sp(2n + 2, C) admitting the contact grading. These structures are studied in [6]
in whole generality: contact projective structure on a contact manifold (M,D) is
defined as a contact path geometry such that the paths are among geodesics of a
linear connection on M ; the paths are then called contact geodesics. In analogy to
classical projective structures, a contact projective structure is given by a class of
linear connections [∇] on TM having the same contact torsion and the same non-
parametrized geodesics such that the following property is satisfied: if a geodesic is
tangent to D in one point then it remains tangent to D everywhere.

The model contact projective structure is observed on the projectivization of
symplectic vector space (R2n+2, Ω̂) with Ω̂ being a standard symplectic form. Let G

be the group of linear automorphisms of R2n+2 preserving Ω̂, i.e. G := Sp(2n+2, R).
In order to represent conveniently the contact grading of the corresponding Lie

algebra, let Ω̂ be given by the matrix

 0 0 1
0 J 0
−1 0 0

, with respect to the standard

basis of R2n+2, where J =
(

0 In

−In 0

)
and In is the identity matrix of rank n. For

Jt = −J, the Lie algebra g = sp(2n + 2, R) is represented by block matrices of the
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form

g =


 a Z z

X A JZt

x −XtJ −a

 : A ∈ sp(2n, R)

 ,

where the non-specified entries are arbitrary, i.e. x, a, z ∈ R, X ∈ R2n and Z ∈ R2n∗,
and the fact A ∈ sp(2n, R) means that AtJ + JA = 0. Particular subspaces of the
contact grading g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 of g correspond to the diagonal pieces of
the block decomposition above. For instance, g−2 is represented by x ∈ R, g−1 by
X ∈ R2n, etc. In particular, g0 is represented by the pairs (a,A) ∈ R× sp(2n, R) so
that sp(2n, R) is the semisimple part gss

0 and the center z(g0) is generated by the
grading element E corresponding to the pair (1, 0). Following the general setup in
2.1, p = g0⊕ g1⊕ g2, p′ = gss

0 ⊕ g1⊕ g2, and P, P ′ are the corresponding connected
Lie subgroups in G. Schematically, the parabolic subgroup P ⊂ G is given as

P =


r ∗ ∗

0 ∗ ∗
0 0 r−1

 : r ∈ R+


and P ′ ⊂ P corresponds to r = 1. Easily, G acts transitively on R2n+2 \ {0}, P ′ is
the stabilizer of the first vector of the standard basis, and P is the stabilizer of the
corresponding ray. Hence Ĉ ∼= G/P ′ is identified with R2n+2 \ {0} and its oriented
projectivization C ∼= G/P is further identified with the sphere S2n+1 ⊂ R2n+2.
Altogether, we have interpreted the model cone for contact projective structures as

Ĉ ∼= R2n+2 \ {0} → S2n+1 ∼= C.

The canonical symplectic form on Ĉ corresponds to the standard symplectic form
on R2n+2 which is G-invariant by definition. As a particular interpretation of the
general definition in 3.1, the contact distribution D ⊂ TS2n+1 is given by Dv =
v⊥ ∩ TvS2n+1, where v ∈ S2n+1 and v⊥ = {x ∈ R2n+2 : Ω̂(v, x) = 0}.

Next, let ∇̂ be the canonical flat connection on R2n+2. Then the connections
on S2n+1 defined by (8) form projectively equivalent connections having the great
circles as common non-parametrized geodesics. Any great circle is the intersection
of S2n+1 with a plane passing through 0. If the plane is isotropic with respect to Ω̂,
we end up with contact geodesics. Note that no connection in the class preserves the
contact distribution, since it is obviously torsion-free, however the induced partial
contact connection coincides with the restriction of an exact Weyl connection to D:

Proposition. Let Ĉ → C be the model cone for g = sp(2n+2, R). Then C ∼= S2n+1,
Ĉ ∼= R2n+2 \ {0}, Ω̂ corresponds to the standard symplectic form on R2n+2, and the
ambient symplectic connection ∇̂ from Theorem 4.3 is the canonical flat connection
on R2n+2.

Proof. Since Ĉ ∼= G/P ′, the tangent bundle T Ĉ is identified with the associated
bundle G×P ′ (g/p′) via the Maurer–Cartan form µ on G; the action of P ′ on g/p′

is induced from the adjoint representation. On the other hand, Ĉ ∼= R2n+2 \ {0},
so g/p′ ∼= R2n+2 as vector spaces. R2n+2 is the standard representation of G and
an essential observation for the next development is that its restriction to P ′ ⊂
G is isomorphic to the representation of P ′ on g/p′. Explicitly, the isomorphism
R2n+2 → g/p′ is given by

(9)

 a
X
x

 7→

 a 0 0
X 0 0
x −XtJ −a

 + p′.

Altogether, T Ĉ ∼= G ×P ′ R2n+2 ∼= (G ×P ′ G) ×G R2n+2, where the (homogeneous)
principal bundle G ×P ′ G → Ĉ represents the symplectic frame bundle of Ĉ. The
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Maurer–Cartan form µ on G extends to a G-invariant principal connection on G×P ′

G. The later connection induces connections on all associated bundles, in particular,
this gives rise to an invariant symplectic connection on T Ĉ. Such a connection is
unique, hence this is the canonical flat connection ∇̂ on R2n+2.

Due to this interpretation of ∇̂, we are going to describe the covariant derivative
with respect to ∇̂ in an alternative way which will provide a comparison of the pull-
back and exact Weyl connections. For this purpose, let X̂, Ŷ ∈ X(Ĉ) be vector fields
on Ĉ 1. As in general, the subalgebra g−⊕〈E〉 ⊂ g is isomorphic to g/p′ ∼= R2n+2 as
a vector space. The action of P ′ on g/p′ ∼= R2n+2 turns g−⊕〈E〉 into a P ′-module.
Further, the splitting g = (g−⊕〈E〉)⊕p′ and the Maurer–Cartan form µ ∈ Ω̂1(G, g)
gives rise to a general connection on the principal bundle G → Ĉ. The horizontal
lift µ−1(X̂) ∈ X(G) of X̂ ∈ X(Ĉ) is defined by the equation µ(µ−1(X̂)(g)) = X̂(g)
for any g ∈ G, where X̂ on the right hand stands for the frame form with values in
g− ⊕ 〈E〉 ⊂ g. The (frame form of the) covariant derivative of Ŷ in the direction of
X̂ turns out to be expressed as

(10) ∇̂X̂ Ŷ = T Ŷ · µ−1(X̂) + λ′(X̂)(Ŷ ),

where Ŷ is viewed as the frame form with values in R2n+2 and λ′ denotes the
standard representation g → gl(R2n+2); see [11] for details.

From now on, let s : C → Ĉ be a fixed section of the model cone, i.e. a choice
of scale. This provides identifications TC ∼= G′0 ×G′

0
g− and T Ĉ ∼= G′0 ×G′

0
(g− ⊕

〈E〉), where G′0 is the principal G′
0-bundle as in 2.3. In the definition of the pull-

back connection, Xhor ∈ X(Ĉ) denotes the horizontal lift of vector field X ∈ X(Ĉ)
with respect to the principal connection on Ĉ determined by s. According to the
identifications above, the corresponding frame forms are related as Xhor(u0) =
(0, X(u0))t ∈ R2n+2 ∼= 〈E〉 ⊕ g−, for any u0 ∈ G′0. Altogether, for X, Y ∈ X(Ĉ), the
description of Xhor, Y hor ∈ X(Ĉ) and the formula (10) yield

(11) ∇̂XhorY hor =
(

0
TY · µ−1(X)

)
+ λ′(X)

(
0
Y

)
.

The tangent map of the projection p : Ĉ → C corresponds to the projection π :
g− ⊕ 〈E〉 → g− in the direction of 〈E〉, hence the result of the covariant derivative
∇s

XY with respect to the pull-back connection defined by (8) corresponds to the
g− part of (11).

On the other hand, the exact Weyl connection corresponding to the choice of
scale s is given by the formula

(12) ∇̄s
XY = TY · µ−1(X)− ad(Ps(X))(Y ),

see [11, 2.16]. Altogether, the desired comparison of the pull-back connection and
the exact Weyl connection determined by s is given by

(13) ∇s
XY − ∇̄s

XY = π

(
λ′(X + Ps(X))

(
0
Y

))
,

where π denotes the projection g−⊕〈E〉 → g− as before and (0, ad(Ps(X))(Y ))t =
λ′(Ps(X))(0, Y )t is easily satisfied according to the identification in (9). In particu-
lar, expressing the standard action on the right hand side of (13) for X, Y ∈ Γ(D),
the difference tensor turns out to be of the form

(14) ∇s
XY − ∇̄s

XY = −dθs(X, Y )Rs

1Be aware we will often denote by the same symbols the corresponding frame forms from

C∞(G, g/p′)P ′
. The meaning of the symbols will be clear from context.
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where θs and Rs is the contact form and the Reeb vector field, respectively, cor-
responding to the scale s : C → Ĉ. This shows that the induced partial contact
connections of the pull-back connection and the exact Weyl connection determined
by s coincide. �

4.5. CR structures of hypersurface type. These structures correspond to the
contact grading of the Lie algebra g = su(p + 1, q + 1), a real form of sl(n + 2, C),
where p + q = n once for all. In fact the correct full name of the general geometric
structure of this type is non-degenerate partially integrable almost CR structure of
hypersurface type. This structure on a smooth manifold M is given by a contact
distribution D ⊂ TM with a complex structure J : D → D so that the Levi bracket
L : D ∧ D → TM/D is compatible with the complex structure, i.e. L(J−, J−) =
L(−,−) for any −,− ∈ Γ(D). A choice of contact form provides an identification
of TxM/Dx, over any x ∈ M , with R and the later condition on Levi bracket says
that L(−, J−) is a non-degenerate symmetric bilinear form on D, that is a pseudo-
metric. Hence L(−, J−)+iL(−,−) is a Hermitean form on D whose signature (p, q)
is the signature of the CR structure.

The classical examples of CR structures of the above type are induced on non-
degenerate real hypersurfaces in Cn+1. In general, for a real submanifold M ⊂ Cn+1,
the CR structure on M is induced from the ambient complex space Cn+1 so that the
distribution D is the maximal complex subbundle in TM , and the complex structure
J is the restriction to D of the multiplication by i. The model CR structures of
hypersurface type are induced on the so called hyperquadrics.A typical hyperquadric
of signature (p, q) is described as a graph

(15) Q := {(z, w) ∈ Cn × C : =(w) = h(z, z)},

or as

(16) S := {(z, w) ∈ Cn × C : h(z, z) + |w|2 = 1},

where h is a Hermitean form of signature (p, q). It turns out that the induced CR
structures on Q and S are equivalent and the equivalence is established by the re-
striction of the biholomorphism (z, w) 7→

(
z

w−i ,
1−iw
w−i

)
. Note that this identification

is almost global (only the point (0, i) ∈ S is mapped to infinity) and projective. In
particular, Q and S are different affine realizations of a projective hyperquadric in
CPn+1 which is identified with the homogeneous space G/P as follows.

Let G be the group of complex linear automorphisms of Cn+2 preserving a Her-
mitean form H of signature (p + 1, q + 1), i.e. G := SU(p + 1, q + 1). Let the

Hermitean form H be given by the matrix

0 0 − i
2

0 I 0
i
2 0 0

, with respect to the stan-

dard basis (e0, e1, . . . , en, en+1), where I =
(

Ip 0
0 −Iq

)
represents the Hermitean

form h of signature (p, q) on 〈e1, . . . , en〉 ⊂ Cn+2. According to this choice, the Lie
algebra g = su(p + 1, q + 1) is represented by matrices of the following form with
blocks of sizes 1, n, and 1

g =


 c 2iZ v

X A IZ̄t

u −2iX̄tI −c̄

 : u, v ∈ R, A ∈ u(p, q), tr(A) + 2i=(c) = 0

 ,

where the non-specified entries are arbitrary, i.e. X ∈ Cn, Z ∈ Cn∗, and c ∈ C.
(Note that A ∈ u(p, q) means ĀtI + IA = 0, so in particular tr(A) is purely imagi-
nary complex number.) The contact grading of g is read along the diagonals as in
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4.4. In particular, g0 is represented by the pairs (c, A) ∈ C × u(p, q) with the con-
strain tr(A) + 2i=(c) = 0. The center z(g0) is two-dimensional, where the grading
element E corresponds to the pair (1, 0), and the semisimple part gss

0 is isomor-
phic to su(p, q). The subalgebra g′0

∼= u(p, q) corresponds to the pairs of the form
(− 1

2 tr(A), A). Subalgebras p′ ⊂ p ⊂ g are defined as in 2.1, P ′ ⊂ P are the corre-
sponding connected subgroups in G. The parabolic subgroup P ⊂ G is schematically
indicated as

P =


reiθ ∗ ∗

0 ∗ ∗
0 0 1

r eiθ

 : r ∈ R+


and P ′ ⊂ P corresponds to r = 1.

Let N be the set of non-zero null-vectors in Cn+2 with respect to the Hermitean
form H. Clearly, G preserves (and acts transitively on) N . If Q ⊂ G denotes the
stabilizer of the first vector of the standard basis then N is identified with the
homogeneous space G/Q. Obviously Q ⊂ P ′ ⊂ P corresponds to r = 1 and θ = 0
according to the description of P above. Since P ′/Q ∼= U(1), the group of complex
numbers of unit length, the homogeneous space G/P ′ is identified with N/U(1).
Next P ⊃ P ′ is the stabilizer of the complex line generated by the first vector of
the standard basis, so the homogeneous space G/P is identified with N/C∗, the
complex projectivization of N . Altogether a natural interpretation of the model
cone in this case is

Ĉ ∼= N/U(1) → N/C∗ ∼= C.

A direct substitution shows that the hyperquadric Q from (15) is the inter-
section of N with the complex hyperplane z0 = 1. According to the new basis
(e0 + ien+1, e1, . . . , en, e0 − ien+1) of Cn+2, the Hermitean metric H is in the di-
agonal form and the hyperquadric S from (16) is the intersection of N with the
complex hyperplane z′0 = 1 (where the dash refers to coordinates with respect to
the new basis). This recovers the identification above, in particular, both Q and S
are identified with N/C∗ ∼= C.

From now on, let C be the hyperquadric S in the hyperplane z′0 = 1 which we
naturally identify with Cn+1. This hyperplane without the origin is further identified
with N/U(1) ∼= Ĉ under the map (z′, w′) 7→ (h(z′, z′) + |w′|2, z′, w′). Denote by ĥ
the induced Hermitean metric (of signature (p + 1, q)) on this hyperplane and let
Ω̂ be its imaginary part. Obviously, both ĥ and Ω̂ are G-invariant, so the latter
corresponds to the canonical symplectic form by general principles we mentioned
in remark 3.1(b). Altogether, the defining equation (16) for S ⊂ Cn+1 reads as

(17) S = {z ∈ Cn+1 : ĥ(z, z) = 1}

and the most satisfactory interpretation of the model cone is

Ĉ ∼= Cn+1 \ {0} → S ∼= C.

Proposition. Let Ĉ → C be the model cone for g = su(p+1, q+1). Then Ĉ ∼= Cn+1\
{0} and C ∼= S, the hyperquadric in Cn+1\{0} given by (17), where ĥ is a Hermitean
metric of signature (p + 1, q). Further, Ω̂ corresponds to the imaginary part of ĥ

and the ambient symplectic connection ∇̂ from Theorem 4.3 is the canonical flat
connection on Cn+1.

Proof. The connection ∇̂ is obviously symplectic, i.e. ∇̂ is torsion-free and ∇̂Ω̂ = 0.
By definition, Ω̂ is the imaginary part of the Hermitean metric ĥ on Cn+1. Its real
part ĝ is then expressed in terms of Ω̂ and the standard complex structure on
Cn+1 as ĝ = Ω̂(−, i−). This is a real pseudo-metric on Cn+1 ∼= R2n+2 of signature
(2p + 2, 2q) and ∇̂ can be seen as the Levi-Civita connection of ĝ.
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As in general, let α̂ := Ê y Ω̂. Let s : S → Cn+1 \{0} be a section of the cone and
let θ := s∗α̂ be the corresponding contact one-form on S. Then g := dθ(−, i−) is a
non-degenerate symmetric bilinear form on the contact distribution D which has to
be preserved by the Weyl connection ∇̄s. Next, since we deal with the homogeneous
model, the contact torsion of ∇̄s vanishes. In fact, the corresponding partial contact
connection on D is uniquely determined by the fact that (i) it leaves g to be parallel
and (ii) its contact torsion vanishes.

In order to prove the statement, it suffices to show that (i) and (ii) is satisfied
also by the partial contact connection induced by the pull-back connection ∇s

corresponding to s. However, since ∇̂ is trosion-free, the pull-back connection ∇s

is torsion-free as well, hence the condition (ii) is satisfied trivially. The condition
(i) follows as follows: For X, Y, Z ∈ Γ(D), expand

(∇s
Xg)(Y, Z) = X ·dθ(Y, iZ)− dθ(∇s

XY, iZ)− dθ(Y, i∇s
XZ).

Since θ = s∗α̂ and dα̂ = Ω̂, by naturality of exterior differential we have dθ = s∗Ω̂.
Next easily, Txs ·X = Xhor|s(x) and, by the definition of the pull-back connection
in 4.3, Txs ·(∇s

XY )|x = (∇̂XhorY hor + fÊ)|s(x), for any x ∈ S and some function f
on S. The previous expression is then rewritten as

X · Ω̂(Ts ·Y, Ts · iZ)− Ω̂(Ts ·∇s
XY, Ts · iZ)− Ω̂(Ts ·Y, Ts · i∇s

XZ) =

= Xhor · Ω̂(Y hor, iZhor)− Ω̂(∇̂XhorY hor, iZhor)− Ω̂(Y hor, i∇̂XhorZhor).

But the latter expression is just (∇̂Xhor ĝ)(Y hor, Zhor) which vanishes trivially by
definitions. �

4.6. Lagrangean contact structures. Lagrangean contact structures correspond
to the contact grading of g = sl(n + 2, R), another real form of sl(n + 2, R). La-
grangean contact strucure on a smooth manifold M consists of the contact distribu-
tion D ⊂ TM and a fixed decomposition D = L⊕R so that the subbundles L and R
are Lagrangean, i.e. isotropic with respect to the Levi bracket L : D∧D → TM/D.
These structures was profoundly studied in [12] where we refer for a lot of details.
The model Lagrangean contact structure appears on the projectivization of the
cotangent bundle of real projective space; let us present the algebraic background
first.

The contact grading of g = sl(n + 2, R) is read diagonally as in 4.4 and 4.5 from
the following block decomposition

g =


 a Z1 z

X1 B Z2

x X2 c

 : a + tr(B) + c = 0

 ,

where as usual the non-specified entries are arbitrary, i.e. x, a, c, z ∈ R, X1, Z2 ∈ Rn,
X2, Z1 ∈ Rn∗, and B ∈ gl(n, R). The subalgebra g0 is represented by the triples
(a,B, c) ∈ R × gl(n, R) × R so that a + tr(B) + c = 0. The center z(g0) is two-
dimensional and the grading element E corresponds to (1, 0,−1). The semisimple
part gss

0 is isomorphic to sl(n, R) and the subalgebra g′0
∼= gl(n, R) is represented

by all triples of the form
(
− 1

2 tr(B), B,− 1
2 tr(B)

)
. The subspace g−1 defining the

contact distribution is split as g−1 = gL
−1⊕gR

−1, where gL
−1 is represented by X1 ∈ Rn

and gR
−1 by X2 ∈ Rn∗, so that this splitting is invariant under the adjoint action

of g0. Furthermore, the subspaces gL
−1 and gR

−1 are isotropic w.r. to the bracket
[ , ] : g−1 × g−1 → g−2. Similarly, g1 splits as gL

1 ⊕ gR
1 . The subalgebras p′ ⊂ p ⊂ g

are given as before. Let G be the group SL(n + 2, R). The connected parabolic
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subgroup P ⊂ G corresponding to p ⊂ g is schematically indicated as

P =


pq ∗ ∗

0 ∗ ∗
0 0 p

q

 : p, q ∈ R+


and P ′ ⊂ P corresponds to q = 1.

The homogeneous space G/P is naturally identified with the set of flags of half-
lines in hyperplanes in Rn+2. Indeed, the standard action of G on Rn+2 descends
to a transitive action both on rays and hyperplanes in Rn+2, so G acts transitively
on the set of flags of above type. The subgroup P is the stabilizer of the flag ` ⊂ ρ
where ` and ρ is the ray and the hyperplane generated by the first and the first
n + 1 vectors from the standard basis, respectively. Obviously, P = P̃ ∩ P̄ where P̃
is the stabilizer of ` and P̄ stabilizes ρ. Note that both P̃ and P̄ are also parabolic.

We claim that G/P ∼= Po(T ∗Sn+1) which is the oriented projectivization of the
cotangent bundle of projective sphere, the oriented projectivization of Rn+2. This
can be clarified as follows: The projective sphere Sn+1 ∼= Po(Rn+2) is identified
with G/P̃ , where P̃ ⊂ G is the stabilizer of the ray ` as above. Let p̃ ⊂ g be the
Lie algebra of P̃ and let g = g̃−1 ⊕ g̃0 ⊕ g̃1 be the corresponding grading of g. As
usual, (g/p̃)∗ ∼= g̃∗−1

∼= g̃1, hence T ∗Sn+1 ∼= T ∗(G/P̃ ) is identified with G×P̃ g̃1 via
the Maurer–Cartan form on G. Now, the adjoint action of P̃ on g̃1 is transitive and
an easy direct calculation shows that the stabilizer of a convenient element of g̃1 is
precisely P ′ ⊂ P ⊂ P̃ ; the subgroup P ⊂ P̃ is the stabilizer of the corresponding ray.
Altogether, g̃1

∼= P̃ /P ′ and Po(g̃1) ∼= P̃ /P , so T ∗Sn+1 ∼= G/P ′ and Po(T ∗Sn+1) ∼=
G/P . Hence the interpretation of the model cone for Lagrangean contact structures
is

Ĉ ∼= T ∗Sn+1 → Po(T ∗Sn+1) ∼= C
so that the canonical G-invariant symplectic form on Ĉ corresponds to the canonical
symplectic form on the cotangent bundle T ∗Sn+1. . .

Now we are going to expose a general construction following [12]; it turns out this
will be useful to find a candidate for the ambient connection ∇̂ on Ĉ ∼= T ∗Sn+1. Let
M be a manifold with linear torsion-free connection ∇ and let H ⊂ TT ∗M be the
corresponding horizontal distributions on the cotangent bundle over M . Together
with the vertical subbundle V of the projection p : T ∗M → M we have got an
almost product structure on T ∗M . Let α̂ be the canonical one-form and Ω̂ = dα̂
the canonical symplectic form on T ∗M . By definition of Ω̂, the subbundle V is
isotropic w.r. to Ω̂. The complementary subbundle H determined by the connec-
tion ∇ is isotropic if and only if ∇ is torsion-free. After the projectivization, the
decomposition V ⊕H = TT ∗M yields a Lagrangean contact structure on P(T ∗M).
Moreover, the almost product structure on T ∗M and so the Lagrangean contact
structure on P(T ∗M) are independent on the choice of connection from the pro-
jectively equivalent class [∇]. Altogether, starting with a projective structure on a
smooth manifold M , this gives rise to a Lagrangean contact structure on the pro-
jectivized cotangent bundle of M . Note that in terms of parabolic geometries, this
construction is an instance of the so called correspondence space construction [2]
which is formally powered by the inclusion P ⊂ P̃ of parabolic subgroups in G. As
a particular implementation of a general principle, locally flat projective structure
on M gives rise to a locally flat Lagrangean contact structure on P(T ∗M). This
is actually observed elementarily in the previous paragraph provided we consider
oriented projectivization instead of the usual one.

Proposition. Let Ĉ → C be the model cone for g = sl(n+2, R). Then Ĉ ∼= T ∗Sn+1,
C ∼= Po(T ∗Sn+1), and Ω̂ corresponds to the canonical symplectic form on cotangent
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bundle. Let further J : TT ∗Sn+1 → TT ∗Sn+1 be the almost product structure given
by the projective structure on Sn+1 as above. Then the bilinear form ĝ := Ω̂(−, J−)
on T ∗Sn+1 is symmetric and non-degenerate and the ambient symplectic connection
∇̂ from Theorem 4.3 is the Levi-Civita connection of ĝ.

Proof. Let Sn+1 ⊂ Rn+2 be the standard projective sphere. The projective struc-
ture [∇] is induced from the canonical flat connection in Rn+2, in particular, any
connection in the class is torsion-free. As before, this ensures that both subbundles
V and H from the corresponding decomposition of TT ∗Sn+1 are isotropic with
respect to the canonical symplectic form Ω̂. The decomposition V ⊕H = TT ∗Sn+1

determines the product structure J so that V and H is the eigenspace of J cor-
responding to the eigenvalue 1 and −1, respectively. Since both Ω̂ and J are non-
degenerate, the same holds true also for ĝ := Ω̂(−, J−). Since both V and H are
isotropic with respect to Ω̂, the bilinear form ĝ turns out to be symmetric, hence
it is a pseudo-metric on T ∗Sn+1.

The rest of the proof is completely parallel to that in 4.5 up to the interchange
between the almost complex and almost product structure on Ĉ and D ⊂ TC,
respectively. �

References
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