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On EP elements in a C*-algebra
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Abstract

We give several characterizations of EP elements in C*-algebras. The
motivation for the factorization results comes in part from a recent pa-
per by Drivaliaris, Karanasios and Pappas on Hilbert space operators.
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1 Results in a C*-algebra

Several authors in [1, 6, 7] have recently addressed themselves to the ques-
tion of characterizing EP operators on Hilbert spaces or characterizing EP
elements in C*-algebras, and Boasso [3] considered this question in Banach
spaces and algebras. Basic facts about EP matrices and operators can be
found in [2, 4, 5].

Let A be a unital C*-algebra. An element a € A is regular if a € aAa;
any element = € A satisfying axza = a is called a generalized inverse of a. By
A" and A& we denote the set of all invertible and regular elements of A,
respectively. We note that a is regular if and only if a* is regular. A special
case of a generalized inverse of a € A is the Moore—Penrose inverse, written
a', which satisfies three additional conditions

afaa’ = af, (aTa)* = ala, (aa')* = aal.

The paper [9] gives a good account of the Moore-Penrose inverse in C*-al-
gebras. In particular it proves that

a is regular <= aA is closed <= a is Moore—Penrose invertible.
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For a € A we define two annihilators
a°={reA:axr=0}, °a={reA:za=0}

In this paper we state the results for the annihilators of the type a°, and for
the cosets of the type a.A. The results for the other types of annihilators
and cosets can be obtained from the symmetry relations

(a*)° =a° <= °(a*) = °a, aAd=a"A <= Aa = Aa*.

In the following lemma we summarize some well known facts for a future
reference. A proof is given for completeness.

Lemma 1.1. The following are true for a € A.
(i) a € A" <= aA=A and a® = {0}.
(ii) ac A = A= (a*A)®a°.
(ili) e* A=A <= a € A" and a° = {0}.

Proof. (i) If a is invertible, then clearly A = aA and a® = {0}. Conversely,
let A= aA and a® = {0}. Define the left regular representation L,: A — A
by Ly(x) = ax for all x € A. Then L, is a bijective bounded linear operator
on the Banach space A, and thus invertible. Let b = L;1(1). Then ab =
LoL;'(1) = 1. Further, LoLy = L, = L1 = I, that is, L, = L;'. Hence
ab =1 = ba.

(ii) If @ is regular, the Moore-Penrose inverse a'! exists, and
alaA = a*A, (1—a'a)A=a. (1.1)

The result follows from A = afaA® (1 —a'a).A. The converse need not hold
(the left and right shift on £2).

(iii) If a* A = A, then a* is regular, and so is a. Thereis u € A with 1 = a*u.
If az = 0, then 2* = z*a*u = (ax)*u = 0, and x = 0. The converse follows
from part (ii). O

Definition 1.2. An element a € A is said to be EP if a € A™ and aA =
a* A (or, equivalently, if a € A™8 and a® = (a*)°).

The condition aA = a*A gave the EP elements their name for equal
projections onto the range of ¢ and a* in the case of matrices and closed range
Hilbert space operators. The set of all EP elements of A will be denoted
by AP. There are many equivalent characterizations of EP elements in a
C*-algebra (see, for instance, [9, 10, 11]), many more still for Hilbert space
operators and matrices. We mention only one well known characterization
relevant to our present enquiry (see, for instance, [11]).



Lemma 1.3. An element a of a C*-algebra is EP if and only if it is reqular
and commutes with its Moore—Penrose inverse.

Proof. Let a be regular. If a' commutes with a, then a*A = a'a A = aa’ A =
(a*)Ta*A = aA. Conversely, if a is EP, then aA = a*A, and so Aa = Aa*.
Thus a € af AN Aal in view of (1.1). Let a = ual. Then a — a%a’ =
u(a’ — a'aa’) = 0. Let a = a’v. Then a — afa? = (a' — afaa’)v = 0. Thus
a’a’ = a = a'a?, and a'a = af(a?a’) = (aTa?)a’ = aal. O

Our first task is to characterize EP elements in terms of the existence
of projections; a projection in a C*-algebra is an element p € A satisfying
p*=p=p"

Theorem 1.4. An element a € A is EP if and only if there exists a projec-
tion p € A such that

pa =a = ap, a € (pAp)™. (1.2)

Proof. Suppose that p is such a projection. Let g be the inverse of a in
the C*-algebra pAp; then aqg = p = ga, and ¢ is a generalized inverse of a
as aqga = ap = a. In fact, q is the Moore—Penrose inverse of a: We have
qaq = qp = q as q € pAp, and (aq)* = p* = p = ag; since a,q commute,
(qa)* = qa. Hence q = af, and aa! = afa. By Lemma 1.3, a is EP.

The converse follows on setting p = ala. O

In the preceding theorem we can express a! in terms of the projection p
and ordinary inverse in A:

al =qg=(a+1-p)'p (1.3)

using the relation between the ordinary and pAp inverses; it is known that
pap is invertible in pAp if and only if pap + 1 — p is invertible in A.

We now turn our attention to characterizing EP elements in terms of fac-
torizations. The motivation for this part of the present paper is provided by
an interesting paper by Drivaliaris, Karanasios and Pappas [8] who studied
such characterizations for EP operators in a Hilbert space.

1.1 Factorization a = ba*

In view of Definition 1.2, the simplest factorization of an EP element of A is
of the form a = ba* with b° = {0}, which implies the equality a® = (a*)° of
annihilators. Then we have the following slightly more general result which
again follows from a direct verification of the equality of the annihilators.



Theorem 1.5. Let a € A™. Then the following conditions are equiva-
lent:

(i) a is EP.
(ii) a = ba* = a*c for some a,c € A.
(iii)

(iv) a*a = beal and a' = cya for some by, cy € A.

a*a = bia* and aa® = cra for some by, cq € A.

Proof. The equivalence of (i) and (ii) is a well known result, see for instance
[11, Theorem 3.1]. Taking into account the equalities

(a*a)°® = a® and (aa*)° = (a*)° = (a')°, (1.4)

we deduce the equivalence of the remaining two conditions to (i). O

1.2 Factorization a = ucw

First an auxiliary result.

Lemma 1.6. An element a € A" is EP if and only if a = ucu®™ for some
c,u € A satisfying ¢© = (¢*)° and u® = {0}.

Proof. Let a have the specified factorization. We show that (ucu*)°® =
(uc*u*)°. Let ucu*xr = 0. Then u*z € ¢® = (¢*)°, that is, c*u*z = 0, and
x € (uc*u*)® = (a*)°. The reverse inclusion is obtained by interchanging c
and c*.

The converse follows on choosing ¢ = a and u = 1. O

An interesting question arises whether ¢ in the preceding result needs to
be EP.

Theorem 1.7. Let a € A™. Then the following conditions are equiva-
lent:

(i) a is EP.

)
11) a = ucw = w*d*v* for some c¢,d,u,v,w € A satisfying c° = d° and
=v” = {0}.
(111) a*a = uiciwy and aa® = vidiwy for some ¢1,dy, ui, v, w1 € A satis-
fying ¢ = dS and u$ = v§ = {0}.
(iv) a = uscowy and at = vadawy for some ¢z, dy, us, va, wo € A satisfying
= d3 and us = v5 = {0}.



Proof. Suppose (ii) holds with ¢, d, u, v, w as specified. We show that a°® =
(a*)°. Suppose that z € a®. Then ucwz = 0, and cwz = 0 as u® = {0}.
Since d° = ¢°, we have dwz = 0, and a*x = vdwz = 0. Thus a° C (a*)° and
(i) holds. The reverse imclusion follows by interchanging a and a*.

Conversely, if (i) holds, then by Lemma 1.6, a = ucu* with ¢ € AP and
u® = {0}. Hence a* = uc*u*, where ¢° = (¢*)°, and (ii) is proved.

Applying the identities (2.1) we deduce the equivalence of the remaining
two conditions to (i). O

Theorem 1.8. An element a € A™® is EP if and only if
a = ucw = wd*u* (1.5)
for some ¢, d,u,w € A with ¢® C d°, (c*)° C (d*)° and u® = (w*)° = {0}.

Proof. First we show that a° C (a*)°. Let ax = ucwz = 0. Then cwz = 0,
and dwx = 0 as ¢® C d°. Hence a*z = udwz = 0.

To prove the reverse inclusion let a*z = w*c*u*x = 0. Then c¢*u*x = 0,
and d*u*x = 0 as (¢*)° C (d*)°. Hence w*d*u*z = 0, that is, az = 0.

The converse follows by the choice u =w =1, ¢ = a and d = a*. O

1.3 Factorization a = bc

We now consider a factorization of a € A of the form
a=be, b*’A=A=cA (1.6)

By Lemma 1.1, b*A = A is equivalent to b being regular and »° = {0}.
Likewise, ¢ is regular and (¢*)° = {0}. Hence the elements b*b and cc* are
invertible in A, again by Lamma 1.1, as (b*b)° = b° = {0} and b*bA =
b*A = A, and (cc*)® = (¢*)° = {0} and cc*A = cA = A. Tt then follows
that

bih = (b*b)"1b*b = 1, ccl = cc*(ec”) = 1. (1.7)

Lemma 1.9. If a has a factorization (1.6), then a is reqular with af = ¢'bt.

Proof. Using (1.7) we directly verify that z = c'bt satisfies the definition of
the Moore—Penrose inverse for a. ]

Theorem 1.10. Let a € A have the factorization (1.6). Then a is reqular
and the following conditions are equivalent:

(i) a € A%P.



(ii) bb! = cfe.
(iii) b(b*b)~1b* = c*(cc*) " Le.
(iv) (b%)° = c°.

Proof. (i) implies (ii). If a € A%, then afa = aal. Substituting into this
equation from Lemma 1.9 and (1.7), we get the result.

(ii) is equivalent to (iii) as bT = (b*b) 710" and ¢! = ¢*(cc*) L.

(iii) implies (iv). Let z € (b*)°. By (iii), ¢*(cc*)tez = 0. But (¢*)° =
{0}, and so cz = 0 and = € ¢°. The converse follows by symmetry.

(iv) implies (i). We observe that a®° = ¢° and (a*)° = (b*)°. O

2 Applications to Hilbert space operators

The results of the preceding section apply to Hilbert space operators, but
unlike in Drivaliaris, Karanasios and Pappas [8], a direct application would
cover only operators acting on the same space. In this section we develop
theory of EP operators from that of elements of a C*-algebra B(H), and
describe a transcription of C*-algebra results to results for operators between
Hilbert spaces. By B(H, K) we denote the set of all bounded linear operators
on H to K; we write B(H) = B(H, H). The direct sum H @& K of unrelated
Hilbert space H, K is always treated as an orthogonal sum.

We shall see that by using Theorem 1.4 we can bypass the necessity of
relating the algebra annihilator A° = {S € B(H) : AS = 0} to the spatial
nullspace N(A) = {& € H : Ax = 0} of an operator A € B(H). It is well
known that an operator A is regular in B(H) (and Moore—Penrose invertible)
if and only if it has closed range.

First we give a canonical form of an EP operator on a Hilbert space H.

Theorem 2.1. An operator A € B(H) is EP (relative to the C*-algebra
B(H)) if and only if it is of the form

A 0

_ 1 1

where Ay is invertible.

Proof. Suppose A has the specified decomposition relative to the orthogonal
space decomposition H = K @&+ L, and suppose P = I@®+0 is the orthogonal
projection of H onto K. We can then check that P satisfies the conditions
of Theorem 1.4: A and P clearly commute, and PA = (I &+ 0)(A4; &+ 0) =



A1 @+ 0= A. To show that A is invertible in the C*-algebra D = PB(H)P,
set QQ = Afl ®+ 0. Then A, Q € D commute, and

AQ= (A et0)ATreto)=Tat0="P

By Theorem 1.4, A is EP in the C*-algebra B(H).

Conversely, assume that A is EP. By Theorem 1.4 there exists an or-
thogonal projection P such that AP = A = PA and A is invertible in the
C*-algebra PB(H)P. Let A = A; &+ 0 be the decomposition of A, and
Q = Q1 ®* 0 the decomposition of the PB(H)P inverse Q of A relative to
H = R(P) @' N(P). From AQ = P we get A1Q1 &0 = I &+ 0, that is,
A1Q1 = 1. Since A and () commute, also Q1 A1 = I, and Ay is invertible. [J

Remark 2.2. The canonical form of an EP operator given in Theorem 2.1
features prominently in [8, Section 3| in a slightly different form. In [8] the
authors show that an operator A € B(H ) is EP if and only there exist Hilbert
spaces K and L, a unitary operator U € B(K @ L, H), and an invertible
operator A; € B(K) such that A = U(A; @+ 0)U*. We observe that the
existence of a unitary operator U € B(K @& L, H) means that the spaces
K @& L and H are isometrically *-isomorphic to each other.

Theorem 2.3. An operator A € B(H) is EP (relative to the C*-algebra
B(H)) if and only if A has closed range and N(A) = N(A*).

Proof. This follows from Theorem 2.1. If A is EP, then A has the decompo-
sition A = A; ®10 described in Theorem 2.1. Then R(A) = R(A;) is closed.
Further, A* = A7@®10, and N(A) = N(4;) = N(A}) = N(A*). Conversely,
let A have closed range and let N(A) = N(A*). Then H = R(A) &+ N(A),
and A has a decomposition A = A; @+ 0 with the properties described in
Theorem 2.1 relative to this space decomposition. O

The preceding theorem is the key used to transcribe the C*-algebra re-
sults of the preceding section in terms of operators between Hilbert spaces.

2.1 Factorization A = BA*
An application of Theorem 1.5 together with

N(A*A) = N(A) and N(AA*) = N(A*) = N(AT) (2.1)
yields the following result:

Theorem 2.4. Let A € B(H) be a closed range operator. Then the following
conditions are equivalent:



(i) A is EP.

(il) A= BA* = A*C for some B,C € B(H).

(iii) A*A = B1A* and AA* = C1 A for some B1,C € B(H).
(iv) A*A = By A" and AT = Cy A for some By, Co € B(H).

2.2 Factorization A = UCW

We can now give an operator version of Lemma 1.6 followed by the operator
version of Theorems 1.7 and 1.8.

Lemma 2.5. A closed range operator A € B(H) is EP if and only if there
exists a Hilbert space K and operators B € B(K), U € B(K, H) such that
N(B) = N(B*), N(U) ={0}, and A=UBU*.

Proof. Suppose that a closed range operator A has the specified factoriza-
tion. It is not difficult to prove that N(A) = N(UBU*) = N(UB*U*) =
N(A*). By Theorem 2.3, A is EP. The converse follows on choosing K = H,
B=AandU=1. O

Observe that we merely assume that N(B) = N(B*) without requiring
B to be a closed range operator.

Theorem 2.6. A closed range operator A € B(H) is EP if and only if there
exist Hilbert spaces K, L and operators U,V € B(L,H), C,D € B(K, L) and
W e B(H, K) such that

A=UCW = W*D*V*, (2.2)
where N(C) = N(D) and N(U) = N(V) ={0}.

Proof. Suppose that the factorization of a closed range operator A with the
specified properties exists. We can then verify that N(A) = N(UCW) =
N(VDW) = N(A*). By Theorem 2.3, A is EP. The converse follows on
choosing K=L=H, U=V =W=ITand C=A4, D = A*. O

Theorem 2.7. A closed range operator A € B(H) is EP if and only if there
exist Hilbert spaces K, L and operators U € B(L,H), C,D € B(K,L) and
W e B(H, K) such that

A=UCW = W*D*U*, (2.3)

where N(C) C N(D), N(C*) C N(D*) and N(U) = N(W*) = {0}.



Proof. Proceeding as in the proof of Theorem 1.8 we show that under the
decomposition (2.3), N(A) = N(A*). The converse follows on choosing
K=L=H,U=W=ITandC=A,D = A" O

Corollary 2.8. A closed range operator A € B(H) is EP if and only if there
exist Hilbert spaces K, L and operators U € B(L,H), C,D € B(K,L) and
W € B(H, K) such that

A=UCW = W*D*U*, (2.4)

where C' = C1 &+ 0 and D = Dy &+ 0 relative to the same space decomposi-
tion, Cy is injective, and N(U) = N(W*) ={0}.

Proof. This follows from the preceding theorem when we observe that the
decompositions for C' and D imply N(C') C N(D) and N(C*) Cc N(D*). O

Theorem 2.7 can be extended by the inclusion of conditions equivalent
0 (2.3) corresponding to conditions (iii) and (iv) of Theorem 1.7.

2.3 Factorization A = BC

Following our C'*-algebra investigation in the preceding section, we consider
an operator factorization of A € B(H) of the form

A= BC, B*and C are surjective, (2.5)

where B € B(K,H) and C € B(H,K). From the conditions on B it fol-
lows that B is injective and has closed range. Further, B*B and CC* are
invertible in B(K). Applying Theorem 1.10, we have:

Theorem 2.9. Let an operator A € B(H) have the factorization (2.5).
Then A has closed range, and the following conditions are equivalent:

(i) Ais EP.

(ii) BBt = Cfc.

(iii) B(B*B)~'B* = B*(CC*)~'C.
) N(B*) = N(C).

(iv

Remark 2.10. The preceding theorem is stronger than [8, Theorem 5.1] as
we do not assume—as it is done in [8]— that A has closed range.
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