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Abstract We consider a sequence of Dirichlet problems for steady Navier- Stokes

equations in perforated domains Ωs = Ω \
⋃I(s)

i=1 F
(s)
i , where F(s)

i , i = 1, . . . , I(s), are

nonintersecting closed subsets of Ω containing in small neighborhoods of some lines

(perforated domains with channels). The number of this small sets tends to infinity

as s → ∞. We study the asymptotic behavior of solutions us(x) of this problems in

domains with channels as s→∞. Conditions under which solutions us(x) converge to

some limit function are established. The boundary value problem for the limit function

is constructed. The result is based on the asymptotic expansion of the sequence us(x)

and on pointwise and integral estimates of auxiliary functions which are solutions of

the model boundary value problems.

Keywords Homogenization · Navier-Stokes equation · Perforated domain

1 Introduction and formulation of the problem

Processes in locally inhomogeneous media, the local properties of which are subject to

sharp small scale changes in the space, are of great interest in various fields of science.

Various methods were applied to the investigation of such problems. We mention one of

the most famous micro-macro approach which was used for homogenization of processes

in porous periodic media, [17]. In particular, there were constructed the asymptotic

expansions for flow in small channels of solid porous body and for moving of composite

of solid elastic bodies and viscous fluids. It is known that it is possible to get Darcy’s
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Š. Nečasová
Mathematical Institute of Academy of Sciences, Žitná 25, 11567 Prague 1, Czech Republic
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law in the limit. By the Darcy’s law a slow fluid flows through a rigid medium can be

modelled. Ene and Sanchez-Palencia seems to be first to give a derivation of it, from

the Stokes system, using multiscale expansion [7]. This derivation was made rigorously

by L.Tartar in [20]. This result was generalized by many authors and we mention

one generalization, which was done by Allaire [1] and to random statistically porous

medium by Beliaev and Kozlov [3]. Also we would like to mention the fundamental

work of Jikov, Kozlov and Oleinik [10] and several fundamental works which were done

by Jäger, Mikelic [9], Mikelic at el. [8,4]. If a rigid part of the porous medium Ω has

the critical size, much smaller than O(1), then it is possible to get Brinkman’s law,

(in detail, see [2]). In many applications the solid part is supposed to be elastic. In this

case the effective filtration law is known as Biot’s law [6].

Different problems in domains with nonperiodic structure, corresponding to the

case of Brinkman’s law, were considered in [14] - [18]. Firstly, elliptic systems of higher

order in domains with fine-grained boundary were studied in [14] using potential theory

and variational methods. This approach was applied, in particular, to Dirichlet prob-

lems for Navier-Stokes equations in domains with fine-grained boundary (see [11,12]).

Another approach was developed by I.V.Skrypnik for nonlinear elliptic and parabolic

equations (see, for example, [18,19] and reference therein). The study of this prob-

lem in nonlinear case is essentially different from the study of linear problem because

for the construction of the limit boundary value problem there must be some strong

convergence of gradients of solutions of the initial problems. The proof of such strong

convergence is based on a special asymptotic expansion by which the solutions of non-

linear problem in perforated domains are approximated near sets F(s)
i by solution of

some model nonlinear problems. The main role in study of the asymptotic behavior

of the solutions of nonlinear problems and in the construction of limit boundary value

problems is played by pointwise estimates of the solution of the model problem. This

approach, which gave us possibility to show the strong convergence of the gradients of

the solutions, was applied to the homogenization of the Navier-Stokes equation with

Dirichlet condition in domains with fine-grained boundary ([16]). In this paper we con-

sider the problem of the homogenization of the Navier-Stokes equations with Dirichlet

condition on the boundary in a sequence of domains with channels.

Notation. In what follows by Cj , j = 0, 1, . . . , we denote positive constants that

depend on n, Ω and do not depend on i and s.

Now we formulate the problem. Let ρ(x,G) be the distance from point x to the set

G ⊂ Rn, n ≥ 3, and for every ε > 0 we define ε-neighborhood of the set G:

U(G, ε) = {x ∈ Rn : ρ(x,G) < ε}.

For any fixed s ∈ N we consider the finite number of lines l
(s)
i ⊂ Ω, positive numbers

d
(s)
i , and closed domains F(s)

i such that

F(s)
i ⊂ U(l

(s)
i , d

(s)
i ), i = 1, . . . , I(s).

The number of lines I(s) tends to infinity as s→∞.
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In the perforated domain with channels Ωs = Ω \
I(s)⋃
i=1

F(s)
i we will study the

following problem

ν∆u(s) − (u(s) · ∇)u(s) = ∇p(s) + f , x in Ωs,

divu(s) = 0, x in Ωs, (1)

u(s)|∂Ωs
= 0,

where p(s)(x) is pressure, f(x) ∈ L2(Ω)n.

In the study of this problem the following problems arise:

– to establish conditions under which the solutions of the problem (1) converge as

s→∞
– to determine the boundary value problem for the limit function

We introduce the following spaces

H(Ωs) := {us(x) ∈W 1,2
0 (Ωs)

n : divus(x) = 0, x ∈ Ωs},

H(Ω) := {u(x) ∈W 1,2
0 (Ω)n : divu(x) = 0, x ∈ Ω}.

Definition 1 We say that u(s)(x) ∈ H(Ωs) is a weak solution of problem (1) if the

following integral identity∫
Ωs

[ν∇u(s)∇ϕ(s) − (u(s) · ∇)ϕ(s) · u(s)]dx = −
∫
Ωs

(f ,ϕ(s))dx (2)

is satisfied for every ϕ(s) ∈ H(Ωs).

Analogously to [13] the existence of the solution to problem (1) and the a priory

estimate are proved

‖u(s)‖H(Ωs) ≤ C0‖f(x)‖L2(Ωs)n .

Extending the function u(s)(x) ∈ H(Ωs) into
⋃I(s)

i=1 F
(s)
i by zero and keeping the same

notation, we obtain the function u(s)(x) ∈ H(Ω) which satisfies the following estimate

‖u(s)‖H(Ω) ≤ C0‖f‖L2(Ω)n .

Then, there exists a subsequence of the sequence {u(s)(x)}∞s=1 converging weakly in

H(Ω) and strongly in Lp(Ω)n (p < 6) as s → ∞. We denote this weak limit by

u(0)(x) ∈ H(Ω).

Remark 1 We suppose that n ≥ 4. For the case n = 3 the same result can be obtained

using analogous methods.
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2 Assumptions on sequence of perforated domains {Ωs}∞
s=1

We denote a ball of radius r with center at x by B(x, r). Let for every i = 1, . . . , I(s),

r
(s)
i be numbers such that the following conditions with constant λ independent of s

and i are satisfied:

– (i) (2 + C1)d
(s)
i ≤ r

(s)
i , lims→∞ r(s) = 0, where r(s) = max

1≤i≤I(s)
r
(s)
i , and

I(s)∑
i=1

(d
(s)
i )2(n−3)

(r
(s)
i )(n−1)

≤ C2;

– (ii) for any choice of s and i there exists finite number of points z
(s)
i,p , l = 1, . . . , P (i, s),

such that for every t
(s)
i ∈ [d

(s)
i , r

(s)
i ] the inclusion

U
(
T

(s)
i ({t(s)i }), t(s)i

)
⊂

P (i,s)⋃
p=1

B(z
(s)
i,p , λt

(s)
i )

holds, where

T
(s)
i ({t(s)i }) = U(l

(s)
i , t

(s)
i )

⋂{ ⋃
j 6=i

U(l
(s)
j , t

(s)
j )

⋃
∂Ω

}
,

U(l
(s)
i , r

(s)
i ) ⊂ Ω, B(z

(s)
i,p , λr

(s)
i ) ⊂ Ω;

– (iii) for every s = 1, 2, . . . the order of families of sets

{U(l
(s)
i , r

(s)
i ), i = 1, . . . , I(s)},

{B(z
(s)
i,p , λr

(s)
i ), i = 1, . . . , I(s), p = 1, . . . , P (i, s)}

do not exceed the number p0. That is, p0 is the largest positive number for which

(p0 + 1) sets from these families with the common points exist;

We suppose the following conditions on regularity of the lines l
(s)
i :

– (iv) for every s = 1, 2, . . ., i = 1, . . . , I(s), there exists a diffeomorphisms g
(s)
i from

class C1, g
(s)
i : U(l

(s)
i , 1) → g

(s)
i (U(l

(s)
i , 1)) ⊂ Rn such that the following inclusion

holds

g
(s)
i (l

(s)
i ) ⊂ {y ∈ Rn : y1 = . . . = yn−1 = 0};

– (v) there exists a constant κ > 0 independent of i and s such that the inequalities

‖
∂g

(s)
i (x)

∂x
‖ ≤ κ, det

Dg(s)i (x)

Dx ≥ κ−1,

are satisfied for x ∈ U(l
(s)
i , 1), where we denote the Jacobi matrix of g

(s)
i (x) in point

x by
Dg

(s)
i

(x)
Dx .

Remark 2 The meaning of the previous condition is the following: there exists a con-

stant C3 depending on n and κ only such that for every x1, x2 ∈ U(l
(s)
i , 1) the inequality

holds
1

C3
|x1 − x2| ≤ |g(s)i (x1)− g

(s)
i (x2)| ≤ C3|x1 − x2|. (3)
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3 Auxiliary functions

To formulate additional conditions for sets F(s)
i that guarantee possibility of construc-

tion of an averaged problem, we define auxiliary functions which are solutions of the

appropriate ”model” problems.

Let a > 0 and

Qa = {x ∈ Rn; x = (x′, xn), x′ = (x1, . . . , xn−1), |x′| ≤ a, |xn| ≤ H}.

Let F be a closed set, l = diamF , and 0 < d < H < 1/4. By Qd we denote the smallest

cylinder such that

F ⊂ Qd.

We consider the main ”model” problem in B(0, 1) \ F

∆vk(x) = ∇pk(x),

divvk(x) = 0, x ∈ B(0, 1) \ F (4)

vk(x)|∂F = ek, vk(x)|∂B(0,1) = 0,

where ek is the unit vector of axis 0Xk, k = 1, . . . , n.

The existence and uniqueness of the function vk(x, t) follows from [13] for any

fixed s ∈ N and i = 1, . . . , I(s). The solution vk(x, t) can be find as a minimum of the

following functional

J(vk) =

∫
B(0,1)

|∇vk|2dx =

∫
B(0,1)

n∑
l,p=1

∣∣∣∂vk
l

∂xp

∣∣∣2dx
in the class of functions

Hk(F) := {vk(x) ∈W 1,2
0 (B(0, 1)) : div vk = 0, x ∈ B(0, 1), vk = ek, x ∈ F}.

In the study of homogenization problem for a sequence of domains with channels the

key role is played by the pointwise estimate. In particular, the following statement is

proved using methods of [11], [12].

Theorem 1 There exists positive constant C4 such that for |α| = 0, 1, 2, k = 1, . . . , n, n ≥
4 the following estimates for the solution vk(x, t) of problem (4) are satisfied

|Dαvk
i (x)| ≤ C4

ln−3

|x′|n−3+|α| (5)

for every x ∈ B(0, 1) \Qa, where a ≥ C1l, for every i = 1, . . . , n, and∫
B(0,1)

(Dαvk(x), Dαvk(x)) ≤ C4(l
n−3 + ln−1−2|α|) (6)

where Dαvk
i =

∂|α|vk
i

∂α1x1...∂αn xn
, |α| = α1 + . . .+ αn.
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Proof Let denote by G(x, y) = ‖Gij(x, y)‖n
i,j=1 Green’s function to the Dirichlet prob-

lem for the Stokes system:

ν∆xGij(x, y)−
∂

∂xi
qj(x, y) = δ(x, y)δij , (x, y) ∈ B(0, 1)×B(0, 1),

n∑
i=1

∂

∂xi
Gij(x, y) = 0, (x, y) ∈ B(0, 1)×B(0, 1),

Gij(x, y)|x∈∂B(0,1) = 0, y ∈ B(0, 1).

If x 6= y, y ∈ B(0, b), a < b < 1 then Dα
xD

β
yGij(x, y) for (x, y) ∈ B(0, 1) × B(0, b)

exists and are continuous. They look like

A(x, y)|x− y|−n+2−|α|−|β|

where functions A(x, y) are bounded in B(0, 1) × B(0, b). There exist G̃j(x, y) such

that

Gj(x, y) = curlxG̃j(x, y)

with Dα
xD

β
y G̃ij(x, y) = B(x, y)|x− y|−n+3−|α|−|β| for (x, y) ∈ B(0, 1)×B(0, b), x 6= y,

where B(x, y) are bounded.

We will use Green’s formulas in the next consideration:∫
B(0,1)\F

(
∆v −∇p,u

)
dx =

∫
B(0,1)\F

(∇v,∇u)dx+

∫
∂B(0,1)

⋃
∂F

(
∂v

∂n
− pn,u

)
ds,(7)

∫
B(0,1)\F

{
(∆v −∇p,u)− (∆u−∇q,v)

}
dx =

∫
∂B(0,1)

⋃
∂F

{
(∂v

∂n − pn,u)− (∂u
∂n − qn,v)

}
ds, (8)

where n is an outer normal vector to B(0, 1) \F . Let in (8) v(x) be solution of (4) and

u(x) = Gj(x, y), then∫
B(0,1)\F

{
(∆vk −∇pk,Gj(x, y))− (∆xGj(x, y)−∇q,vk)

}
dx =

∫
∂B(0,1)

⋃
∂F

{
(∂vk

∂n − pkn,Gj(x, y))− (
∂xGj(x,y)

∂n − qjn,v
k)

}
dxs, (9)

We use that

Dαvk(x) = DxGj(x, y) = 0 if x ∈ ∂B(0, 1), |α| = 0, 1,

vk(x) = ek,
∂vk

∂n
if x ∈ ∂F ,

(∆xGj(x, y)−∇qj ,vk) = δ(x, y)vk
j (x) = vk

j (y) if (x, y) ∈ B(0, 1)×B(0, b).
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Then from (9) we get

vk
j (y) =

∫
∂F

(
(
∂vk

∂n
− pkn,Gj(x, y))− (

∂xGj(x, y)

∂n
− qjn,vk)

)
dxs ∀y ∈ B(0, b). (10)

To prove that ∫
∂F

(∂xGj(x, y)

∂n
− qjn,v

k
)
dxs = 0, (11)

we use formula (7) where v = Gj(x, y), u = ek, y ∈ F , and domain of integration is

F \ ∂F . Then we obtain ∫
F\∂F

(
∆xGj(x, y)−∇qj , ek

)
dx =

∫
F\∂F

(∇xGj(x, y),∇ek)dx+
∫

∂F
(

∂Gj(x,y)
∂n − qj(x)n, ek)dxs. (12)

From this it follows (11). Using (10) and (11) for all y ∈ Q1, |α| = 0, 1, 2, we have

Dαvk
j (y) =

∫
∂F

(
∂vk

∂n
− pkn, Dα

y Gj(x, y))
)
dxs ∀y ∈ B(0, 1). (13)

Now we introduce cut-off functions

– (1) ϕ(t) ∈ C∞(R1), ϕ(t) = 1, if t ≤ 0, ϕ(t) = 0, if t ≥ C1
2 ,

ϕ(
|x′| − d/2

l
) = 1 if |x′| ≤ d

2
, ϕ(

|x′| − d/2

l
) = 0 if |x′| ≥ d

2
+
c1l

2
,

|Dαϕ(
|x′| − d/2

l
)| ≤ C̃

l|α|
;

– (2) ψ(t) ∈ C∞(R1),

ψ(
yn − xn

H
) = 1 if |yn − xn| ≤

H

2
, ψ(

yn − xn

H
) = 0 if |yn − xn| ≥ H.

We define the function

uα
j (x, y) = curlx[Dα

y G̃j(x, y)ϕ(
|x′| − d/2

l
)ψ(

yn − xn

H
)].

If x ∈ ∂F ⊂ Qa then uα
j (x, y) = Dα

y Gj(x, y). Moreover, uα
j (x, y) ∈ C∞(Qa) if |y′| ≥

d
2 + c1l

2 and uα
j (x, y) = 0 if |x′| ≥ d

2 + c1l
2 . Let in (7) v be a solution of (4), u = uα

j (x, y)∫
B(0,1)\F

(
∆vk −∇pk,uα

j (x, y)
)
dx =

∫
B(0,1)\F

(∇vk,∇xuα
j (x, y))dx+

∫
∂B(0,1)

⋃
∂F

(∂vk

∂n − pkn,uα
j (x, y))dxs.

Then we obtain∫
∂F

(
∂vk

∂n
− pkn,Dα

y Gj(x, y))dxs = −
∫

B(0,1)\F

(∇vk,∇xuα
j (x, y))dx. (14)



8

From (13) and (14) we get

Dα
y v

k
j (y) =

∫
B(0,1)\F

(∇vk,∇xuα
j (x, y))dx,

|Dα
y v

k
j (y)| ≤

 ∫
B(0,1)\F

|∇vk|2dx


1
2
 ∫

B(0,1)\F

|∇xuα
j (x, y)|2dx


1
2

(15)

Function ωk(x) = curl{ẽkϕ(
|x′|−d/2

l )ψ(yn−xn

H )} ∈ Hk(F). Since d < l we have∫
B(0,1)

|∇vk|2dx ≤
n∑

i,j=1

∫
B(0,1)

|∂ωk
i (x)

∂xj
|2dx ≤

∫
B(0,1)

|∇(ϕ(
|x′|−d/2

l )ψ(yn−xn

H ))|2dx ≤

C meas{Q d
2 +

C1l

2
\Q d

2
} ≤ C

l2
(d
2 + C1l

2 )n−1 ≤ Cln−3, (16)

hereafter C are generic constants independent of d, l.

We consider the second integral of (15):∫
B(0,1)\F

|DxD
α
y (G̃j(x, y)ϕ(

|x′| − d/2

l
)ψ(

yn − xn

H
))|2dx.

Now,

|DxD
α
y (G̃j(x, y)ϕ(

|x′| − d/2

l
)ψ(

yn − xn

H
))|2 ≤ |Dx[ϕ(

|x′| − d/2

l
)×

(Dα
y G̃j(x, y)ψ(

yn − xn

H
) +Dα

y ψ(
yn − xn

H
)G̃j(x, y))]|2 = |Dxϕ(

|x′| − d/2

l
)×

(Dα
y G̃j(x, y)ψ(

yn − xn

H
) +Dα

y ψ(
yn − xn

H
)G̃j(x, y)) + ϕ(

|x′| − d/2

l
)×

(DxD
α
y G̃j(x, y)ψ(

yn − xn

H
) +DxD

α
y ψ(

yn − xn

H
)G̃j(x, y))|2 ≤

≤ C[|Dxϕ(
|x′| − d/2

l
)|2|Dα

y G̃j(x, y)|2 + |Dxϕ(
|x′| − d/2

l
)|2|G̃j(x, y)|2+

|DxD
α
y G̃j(x, y)|2 + |Dα

y G̃j(x, y)|2] ≤

C

(
1

l2|x− y|2(n−3+|α|) +
1

l2|x− y|2(n−3)
+

1

|x− y|2(n−2+|α|) +
1

|x− y|2(n−3+|α|)

)
≤

C

l2||y′| − |x′||2(n−3+|α|) .

Since |y′| ≥ C1l+ d and |x′| ≤ C1l
2 + d

2 , then |y′| − |x′| ≥ |y′| − C1l
2 − d

2 ≥
|y′|
2 and we

obtain∫
B(0,1)\F

|DxD
α
y (Gj(x, y)ϕ(

|x′| − d/2

l
)ψ(

yn − xn

H
))|2dx ≤ C

ln−3

|y′|2(n−3+|α|) . (17)

From (15)-(17) we deduce (5).
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For |α| = 1 the estimate (6) follows from (16). Let us prove (6) for |α| = 0. We

divide the domain of integration B(0, 1) into two parts

B(0, 1) = (B(0, 1) \Q2l)
⋃

Q2l.

The integral over B(0, 1) \Q2l we estimate using pointwise estimate (5):∫
B(0,1)\Q2l

|vk
i (x)|2dx ≤ A

∫
B(0,1)\Q2l

(
l

|x′|

)2

dx ≤ Bln−3 (18)

For x ∈ Q2l = {x ∈ Rn : |x′| ≤ 2l, |xn| ≤ H} we denote by x′t = x′ t
|x′| , then

vk
i (x) = vk

i (x′2l, xn)−
2l∫

|x′|

dvk
i (x′t, xn)

dt
dt.

Using Hölder’s inequality we get:

|vk
i (x)|2 = 2|vk

i (x′2l, xn)|2 + 2

 2l∫
|x′|

t|dv
k
i (x′t, xn)

dt
|1
t
dt


2

≤ 2|vk
i (x2l)|2 + 2

2l∫
|x′|

dt

t2

2l∫
0

|∇vk
i |

2t2dt.

Integrating the last inequality over cylinder Q2l we obtain:

∫
Q2l

|vk
i (x)|2dx ≤ 2

∫
Q2l

|vk
i (x′2l, xn)|2dx+

2l∫
|x′|

dt

t2

∫
Q2l

2l∫
0

|∇vk
i |

2t2dt.

The first integral in the right-hand side we estimate using (5), the second analogously

to (16). Then we get (6). The proof is completed.

Remark 3 The estimates in the case n = 3 we obtain analogously using logarithmic

cut-off functions. As a result we obtain that there exist positive constants C5 such that

for |α| = 0, 1, 2, k = 1, 2, 3, the following estimates for the solution vk(x, t) of problem

(4) are satisfied

|Dαvk
i (x)| ≤ C5

1

|x′||α|
ln−1 1

l

for every x ∈ B(0, 1) \Qa, where a ≥ C1l, for every i = 1, 2, 3, and∫
B(0,1)

(Dαvk(x), Dαvk(x)) ≤ C5 ln−1 1

l
.
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To construct the limit boundary value problem we define vk(x;G,F) as the solution

of the problem

∆vk(x) = ∇pk(x), x in U(G, 1/2),

divvk(x) = 0, x in U(G, 1/2) \ F , (19)

vk(x)|∂F = ek, vk(x)|∂U(G,1/2) = 0,

for any open set G ⊂ Rn and a closed set F ⊂ G.

We suppose that for every s the inequality r(s) ≤ 1/2n−2 is valid. We define

sequences of numbers {λs}, {µs}:

λ2
s = max{[ln 1

r(s)
]−1, ‖u(0)‖2W 1,2(U(s))n + ‖f‖2W 1,2(U(s))n}, µs = λ

1
n−3
s , (20)

where U(s) =
I(s)⋃
i=1

U(l
(s)
i , ρ̄

(s)
i ), ρ̄

(s)
i = 1

2d
(s)
i + [r

(s)
i ]

n−1
n−2 .

For s = 1, 2, . . . , i = 1, . . . , I(s), we introduce subsets of indices

I ′(s) = {i : i = 1, . . . , I(s), d
(s)
i ≥ [r

(s)
i ]

n−1
n−3 µs},

I ′′(s) = {i : i = 1, . . . , I(s), d
(s)
i < [r

(s)
i ]

n−1
n−3 µs},

and a sequence of numbers

ρ
(s)
i = d

(s)
i for i ∈ I ′(s), ρ

(s)
i = 2C3[r

(s)
i ]

n−1
n−3 µs if i ∈ I ′′(s), (21)

where C3 is the constant from (3). We assume that 2C3ρ
(s)
i ≤ r

(s)
i for i ∈ I ′′(s). For

every s = 1, 2, . . . , i ∈ I ′′(s), we consider sets

L
(s)
i = {x ∈ l(s)i : ρ(x, T

(s)
i ({2ρ(s)i })) ≥ 2ρ

(s)
i } = L

(s)
i,1

⋃
L

(s)
i,2 .

We denote L
(s)
i,1 is the union of all connected sets from L

(s)
i which length are not less

than λ−1
s ρ

(s)
i . The closed set L

(s)
i,2 consists of all curve segments of l

(s)
i such that their

lengths are less or equal λ−1
s ρ

(s)
i ,

dist{∂L(s)
i,2 , T

(s)
i ({2ρ(s)i })} = 2ρ

(s)
i .

We divide every curvilinear segment from the set L
(s)
i,1 on the finite number segments

of equal length such that

L
(s)
i,1 =

M(i,s)⋃
m=1

L
(s)
i (m),

ρ
(s)
i

2λs
≤ |L(s)

i (m)| ≤
ρ
(s)
i

λs
,

where |L(s)
i (m)| is the length of curvilinear segment L

(s)
i (m).

Let α
(s)
i,m, β

(s)
i,m, s = 1, 2, . . . , i ∈ I ′′(s), m = 1, . . . ,M(i, s) are endings of curvilin-

ear piece L
(s)
i (m). We denote for s = 1, 2, . . ., i = 1, . . . , I(s), m = 1, . . . ,M(i, s) and

some sufficiently large constant γ

G
(s)
i,m(γ) = U(L

(s)
i (m), 2ρ

(s)
i ) \ {B(α

(s)
i,m, γρ

(s)
i )

⋃
B(β

(s)
i,m, γρ

(s)
i )}, (22)
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v
(s)
k,i,m(x) := vk(x;G

(s)
i,m(γ),F(s)

i

⋂
G

(s)
i,m(γ)),

Ck`
m (F(s)

i ) =

∫
U(G

(s)
i,m

(γ),1/2)

(∇v
(s)
k,i,m,∇v

(s)
`,i,m)dx, k, ` = 1, . . . , n.

We assume that the following additional condition is satisfied:

– (vi) There exists a continuous nonnegative matrix ||c(x)|| such that for every ball

B ⊂ Ω we have

lim
s→∞

∑
(i,m)∈Is(B)

Ck`
m (F(s)

i ) =

∫
B

ck`(x)dx.

By Is(B) we denote the set of all pairs (i,m), i ∈ I ′′(s), m = 1, . . . ,M(i, s) such

that x
(s)
i,m ∈ B, where x

(s)
i,m is a middle of the curvilinear piece L

(s)
i (m).

4 Auxiliary statements and cut-off functions

To specify some geometrical properties of such perforation, we formulate additional

statements (see [18]). In particular, it can be shown that

lim
s→∞

λs = 0, lim
s→∞

µs = 0, lim
s→∞

λsµ
2(n−3)
s = 0.

The following inclusion is also valid

U(l
(s)
i , 2ρ

(s)
i ) ⊂ U(L

(s)
i,1 , 2ρ

(s)
i )

⋃
U(T

(s)
i ({2ρ(s)i }), 2ρ(s)i (2 +

1

λs
)).

It can be proved the following results ([18])

Lemma 1 There exists γ large enough independent of s and i such that

(I) for any fixed s, i sets G
(s)
i,m(γ), m = 1, . . . ,M(i, s), are disjoint;

(II) the following inclusion holds

U(l
(s)
i , 2ρ

(s)
i ) ⊂

M(i,s)⋃
m=1

{G(s)
i,m(γ + 1/3)

⋃
B(α

(s)
i,m, (γ + 2/3)ρ

(s)
i )

⋃
(23)

B(β
(s)
i,m, (γ + 2/3)ρ

(s)
i )}

⋃{ P (i,s)⋃
p=1

B(z
(s)
i,p , 2λρ

(s)
i (2 + 1/λs))

}
. (24)

Now we define the cut-off functions in a different way for indices i ∈ I ′(s), i ∈ I ′′(s).
If i ∈ I ′(s) we divide the curve onto the finite number of curvilinear segments with

equal length such that it belongs to the segment [
d
(s)
i
2 , d

(s)
i ]. Then we have

l
(s)
i =

R(i,s)⋃
r=1

l
(s)
i (r),

d
(s)
i

2
≤ |l(s)i (r)| ≤ d

(s)
i ,
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U(l
(s)
i , 2d

(s)
i ) =

R(i,s)⋃
r=1

U(l
(s)
i (r), 2d

(s)
i ), i ∈ I ′(s).

Let us define the cut-off functions for i ∈ I ′′(s). Let m = 1, . . . ,M(i, s), p =

1, . . . , P (i, s), j ∈ I ′(s), r = 1, . . . , R(j, s), then we denote:

B
(s,1)
i,m = B(αi,m, (γ + 1)ρ

(s)
i ), B

(s,2)
i,m = B(β

(s)
i,m, (γ + 1)ρ

(s)
i ),

B
(s,3)
i,m = B

(
x
(s)
i,m,

(
2 +

1

λs

)
ρ
(s)
i

)
,

B̂
(s)
i,m = B

(
z
(s)
i,m, 2λρ

(s)
i

(
3 +

1

λs

))
,

D
(s)
j,r = U(l

(s)
j (r), 2d

(s)
j ), G

(s)
i,m = G

(s)
i,m(γ),

where x
(s)
i,m is a middle of curve segment L

(s)
i (m). Numbers λs and ρ

(s)
i are defined in

(20) and (21) accordingly, and α
(s)
i,m, β

(s)
i,m, γ take the same values as (22).

We define the sequences of cut-off functions from C∞(Rn) with values in [0, 1]

{ϕ(s)
i,m(x)}, {ψ(s,1)

i,m (x)}, {ψ(s,2)
i,m (x)}, {χ(s)

i,p (x)}, {ω(s)
j,r (x)}

for i ∈ I ′′(s), m = 1, . . . ,M(i, s), p = 1, . . . , P (i, s), j ∈ I ′(s), r = 1, . . . , R(j, s), with

the following properties:

(a) suppϕ
(s)
i,m(x) ⊂ G

(s)
i,m, suppψ

(s,1)
i,m (x) ⊂ B

(s,1)
i,m , suppψ

(s,2)
i,m (x) ⊂ B

(s,2)
i,m ,

suppχ
(s)
i,p (x) ⊂ B̂

(s)
i,p , suppω

(s)
j,r (x) ⊂ D

(s)
j,r ;

(b)
∑

j∈I′(s)

ω
(s)
j (x) +

∑
j∈I′′(s)

σ
(s)
i (x) = 1, for x ∈

I(s)⋃
i=1

U(l
(s)
i , ρi),

where ω
(s)
j (x) =

R(j,s)∑
r=1

ω
(s)
j,r (x) and

σ
(s)
i =

M(i,s)∑
m=1

[
ϕ

(s)
i,m(x) + ψ

(s,1)
i,m (x) + ψ

(s,2)
i,m (x)

]
+

P (i,s)∑
p=1

χ
(s)
i,p (x);

(c) ϕ
(s)
i,m(x) = 1 for x ∈ U(l

(s)
i , ρ

(s)
i ) ∩G(s)

i,m(γ + 1);

(d) there exists the constant C6 independing of i, s such that

|∇ϕ(s)
i,m(x)|+ |∇ψ(s,1)

i,m (x)|+ |∇ψ(s,2)
i,m (x)||∇χ(s)

i,p (x)| ≤ C6

ρ
(s)
i

, for i ∈ I ′′s ,

|∇ω(s)
i,r (x)| ≤ C6

d
(s)
i

, if i ∈ I ′s,
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(e) order of families of sets

{suppϕ
(s)
i,m, suppψ

(s,1)
i,m , suppψ

(s,2)
i,m , suppχ

(s)
i,p , suppω

(s)
j,r },

where i ∈ I ′′(s), m = 1, . . . ,M(i, s), p = 1, . . . , P (i, s), j ∈ I ′(s), r = 1, . . . , R(j, s),

is less or equal than constant independing of s.

These functions were constructed in [18]. It was shown that

{suppϕ
(s)
i′,m′(x)} ∩ {suppϕ

(s)
i′′,m′′(x)} = ∅ if (i′,m′) 6= (i′′,m′′)

for a fixed s.

5 Asymptotic expansion of solutions and formulation of the main result

The construction of an asymptotic expansion is connected with the separation of lead-

ing terms which are constructed by means of solutions of local boundary value prob-

lems. To construct the asymptotic expansion of the solution to the problem (1) we

need the following theorem about the representation of solenoidal vectors from the

space L2(Ω)n in the form of rotors [5].

Theorem 2 Let G be a domain of Rn which is the diffeomorphic image of a ball.

Let J(G) be the closer of lineal of smooth solenoidal functions from L2(G)n. Then for

every u(x) ∈ J(G) the following representations are valid

u(x) = curl ũ(x),

ũ(x) ∈W 1,2(G)n, div ũ(x) = 0,
∂ũ

∂n
|∂G = 0,

‖ũ‖W 1,2(G)n ≤ C7‖u‖L2(G)n ,

where C7 = C7(G). The vector-function ũ is defined by these conditions in a unique

way.

Let G = B(x0, R), then from this theorem and reasons of the similarity the follow-

ing estimates can be obtained:

‖ũ‖L2(G)n ≤ C8R‖u‖L2(G)n , ‖Dũ‖L2(G)n ≤ C8‖u‖L2(G)n ,

where the constant C8 does not depend on R and u(x).

For an arbitrary function g(x) = (g1(x), . . . , gn(x)) ∈ L1(Ω)n we define:

M
(s)
i,m[gk] =

1

measB
(s,3)
i,m

∫
B

(s,3)
i,m

gk(x) dx, M
(s,t)
i,m [gk] =

1

measB
(s,t)
i,m

∫
B

(s,t)
i,m

gk(x) dx,

M̂
(s)
i,p [gk] =

1

mesB̂
(s)
i,p

∫
B̂

(s)
i,p

gk(x) dx, M̄
(s)
j,r [gk] =

1

measD
(s)
j,r

∫
D

(s)
j,r

gk(x) dx,

where i ∈ I ′′(s), m = 1, . . . ,M(i, s), t = 1, 2, p = 1, . . . , P (i, s), j ∈ I ′(s),
r = 1, . . . , R(i, s), k = 1, . . . , n.
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Let us denote by

u
(s)
i,m =

(
M

(s)
i,m[u

(0)
1 ], . . . ,M

(s)
i,m[u

(0)
n ]

)
, u

(s,t)
i,m =

(
M

(s,t)
i,m [u

(0)
1 ], . . . ,M

(s,t)
i,m [u

(0)
n ]

)
,

û
(s)
i,p =

(
M̂

(s)
i,p [u

(0)
1 ], . . . , M̂

(s)
i,p [u

(0)
n ]

)
, ū

(s)
j,r =

(
M̄

(s)
j,r [u

(0)
1 ], . . . , M̄

(s)
j,r [u

(0)
n ]

)
,

f
(s)
i,m =

(
M

(s)
i,m[f1], . . . ,M

(s)
i,m[fn]

)
, f

(s,t)
i,m =

(
M

(s,t)
i,m [f1], . . . ,M

(s,t)
i,m [fn]

)
,

f̂
(s)
i,p =

(
M̂

(s)
i,p [f1], . . . , M̂

(s)
i,p [fn]

)
, f̄

(s)
j,r =

(
M̄

(s)
j,r [f1], . . . , M̄

(s)
j,r [fn]

)
.

Using Theorem 2, we denote functions

v
(s)
k,i,m = curl ṽ

(s)
k,i,m(x), u

(s)
i,m−u(0)(x) = curl ũ

(s)
i,m(x), u

(s,t)
i,m −u(0)(x) = curl ũ

(s,t)
i,m (x),

ū
(s)
i,r −u(0)(x) = curl ˜̄u

(s)
i,r (x), û

(s)
i,p −u(0)(x) = curl ˜̂u

(s)
i,p (x), f

(s)
i,m− f(x) = curl f̃

(s)
i,m(x),

f
(s,t)
i,m − f(x) = curl f̃

(s,t)
i,m (x), f̄

(s)
i,r − f(x) = curl ˜̄f

(s)

i,r (x), f̂
(s)
i,p − f(x) = curl

˜̂
f
(s)

i,p (x),

with the mentioned properties.

We define the asymptotic expansion of the solution of problem (1) by equality:

u(s) = u(0)(x) + r(s)(x) +

4∑
j=1

r
(s)
j (x) + ws(x), (25)

where

r(s)(x) =
∑
i∈I′′s

M(i,s)∑
m=1

curl
{ n∑

k=1

v
(s)
k,i,m(x)u

(s)
i,m,kϕ

(s)
i,m(x)

}
,

r
(s)
1 (x) =

∑
i∈I′s

R(i,s)∑
r=1

curl
{(

[ū
(s)
i,r − u(0)(x)] + [f(x)− f̄ i,r]

)
ω

(s)
i,r (x)

}

+
∑
i∈I′′s

M(i,s)∑
m=1

(
curl

{(
[u

(s)
i,m − u(0)(x)] + [f(x)− f

(s)
i,m]

)
ϕ

(s)
i,m(x)

}

+

2∑
t=1

curl
{(

[u
(s,t)
i,m − u(0)(x)] + [f(x)− f

(s,t)
i,m ]

)
ψ

(s,t)
i,m (x)

})

+
∑
i∈I′′s

P (i,s)∑
p=1

curl
{(

[û
(s)
i,p − u(0)(x)] + [f(x)− f̂

(s)
i,p ]

)
χ

(s)
i,p (x)

}
,

r
(s)
2 (x) =

∑
i∈I′s

R(i,s)∑
r=1

curl
{ n∑

k=1

v̄
(s)
k,i,r(x)[f̄

(s)
i,r,k − u

(s)
i,r,k]ω

(s)
i,r (x)

}
,

r
(s)
3 (x) =

∑
i∈I′′s

M(i,s)∑
m=1

2∑
t=1

curl
{ n∑

k=1

v
(s,t)
k,i,m(x)[f

(s,t)
i,m,k − u

(s,t)
i,m,k]ψ

(s,t)
i,m (x)

}
,
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r
(s)
4 (x) =

∑
i∈I′′(s)

P (i,s)∑
p=1

curl
{ n∑

k=1

v̂
(s)
k,i,p(x)[f̂

(s)
i,p,k − ũ

(s)
i,p,k]χ

(s)
i,p (x)

}
,

and

v̄
(s)
k,i,r(x) = vk(x;D

(s)
i,r , D

(s)
i,r ∩ [F (s) ∩ ∂Ω]),

v
(s,t)
k,i,m(x) = vk(x;B

(s,t)
i,m , B

(s,t)
i,m ∩ [F (s) ∩ ∂Ω]),

v
(s)
k,i,p(x) = vk(x; B̂

(s)
i,p , B̂

(s)
i,p ∩ [F (s) ∩ ∂Ω]).

By ws(x) ∈ H(Ωs) we denote the remainder term of asymptotic expansion.

We recall asymptotic properties which were proved in [18]:

lim
s→∞

∑
i∈I′′(s)

M(i, s)
[ρ

(s)
i ]n

λs
= 0, lim

s→∞

∑
i∈I′′(s)

M(i, s)[ρ
(s)
i ]n−2 = 0, (26)

lim
s→∞

∑
i∈I′(s)

R(i, s)[d
(s)
i ]n−2 = lim

s→∞

∑
i∈I′(s)

[d
(s)
i ]n−3 = 0, (27)

lim
s→∞

∑
i∈I′′(s)

λ−2
s P (i, s)[ρ

(s)
i ]n−2 = 0. (28)

In order to investigate of behavior of r(s)(x) and r
(s)
j (x) as s→∞ from asymptotic

expansion (25) we use the pointwise and integral estimates from Theorem 1, and the

construction and properties of cut - off functions. In such way we can prove the following

results:

Theorem 3 Suppose that conditions (i)−(v) are satisfied. Then the sequence of func-

tions {r(s)
j (x)}∞s=1, j = 1, 2, 3, 4, converge to zero strongly in H(Ω) as s→∞.

Theorem 4 Suppose that conditions (i) − (v) are satisfied. Then the sequence of so-

lutions {r(s)(x)}∞s=1 converges to zero strongly in W 1,ϑ(Ω)n for any 0 < ϑ < 2 and

weakly in H(Ω) as s→∞.

The proofs of these theorems are similar to proofs of analogous results in [18] and

they are omitted here.

Using Theorems 3,4 and integral identity (2), we can study the behavior of the

reminder term ωs(x) of asymptotic expansion (25). As a result, we obtain:

Theorem 5 Suppose that conditions (i)−(v) are satisfied. Then the sequence of func-

tions {ωs(x)}∞s=1 converges to zero strongly in H(Ω) as s→∞.

Proof It follows from construction of function (25) that ws(x) converges to zero weakly

as s → ∞. We will prove that ws(x) converges to zero strongly in H(Ω). Testing the

integral identity (2) by ϕs(x) = ws(x), we get∫
Ωs

ν∇u(s)∇ws dx−
∫
Ωs

(u(s) · ∇)ws · u(s)dx = −
∫
Ωs

fws dx (29)
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From the weak convergence ws(x) to zero in H(Ω) we have

lim
s→∞

∫
Ωs

fwsdx = 0.

Let us consider the second integral in the left-hand side of (29)∫
Ωs

(u(s) · ∇)ws · u(s)dx

=

∫
Ωs

((u(0) + r(s) +

4∑
j=1

r
(s)
j + ωs) · ∇)ws · (u(0) + r(s) +

4∑
j=1

r
(s)
j + ωs)dx.

Then we obtain

lim
s→∞

∫
Ωs

(u(0) · ∇)ws · u(0)dx = 0

since ws(x) converges to zero weakly in H(Ω) as s→∞.

From strong convergence of (r(s) +
∑4

j=1 r
(s)
j ) and ws(x) in L2(Ω)n to zero and

boundedness of |u(0)(x)| and ‖∇ws‖L2(Ω)n by constant independent of s we deduce:

lim
s→∞

∫
Ωs

(u(0) · ∇)ws · (r(s) +

4∑
j=1

r
(s)
j )dx = 0,

lim
s→∞

∫
Ωs

((r(s) +

4∑
j=1

r
(s)
j ) · ∇)ws · u(0)dx = 0,

lim
s→∞

∫
Ωs

(ws(x)·∇)ws·u(0)dx ≤ C lim
s→∞

(∫
Ωs

|ws(x)|2 dx
)1/2(∫

Ωs

|∇ws(x)|2 dx
)1/2

= 0

lim
s→∞

∫
Ωs

((r(s) +

4∑
j=1

r
(s)
j ) · ∇)ws · (r(s) +

4∑
j=1

r
(s)
j )dx

≤ C lim
s→∞

(∫
Ωs

|r(s) +

4∑
j=1

r
(s)
j |4 dx

)1/2(∫
Ωs

|∇ws(x)|2 dx
)1/2

= 0,

lim
s→∞

∫
Ωs

(u(s) · ∇)ws · u(s)dx ≤ lim
s→∞

(∫
Ωs

|ws(x)|4 dx
)1/2(∫

Ωs

|∇ws(x)|2 dx
)1/2

= 0.

Now we consider the first integral in the left-hand side of (29)

∫
Ωs

∇u(s)∇ws dx ≤ C

∫
Ωs

(∇u(0) +∇r(s) +∇

 4∑
j=1

r
(s)
j

 +∇ws)∇ws dx.
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Since |∇u(0)(x)| is bounded inΩ, and∇(
∑4

j=1 r
(s)
j ) converges strongly to zero,∇ws(x)

converges weakly to zero in L2(Ω)n as s→∞, we obtain

lim
s→∞

∫
Ωs

∇u(0)∇ws dx = 0,

lim
s→∞

∫
Ωs

∇

 4∑
j=1

r
(s)
j

∇ws dx = 0.

Using definition of the function v
(s)
k,i,m(x) and asymptotic properties (26), (28), it can

be shown that

lim
s→∞

∫
Ωs

∇r(s)∇ws dx = 0.

This means that

lim
s→∞

∫
Ωs

(∇ws,∇ws) dx = 0,

which prove the theorem.

Now we shall present the method of construction of the problem for limit function

u(0)(x). Let h(x, t) be an arbitrary function of class H(Ω). Let us introduce a sequence

hs(x) = h(s)(x)−
4∑

j=1

h
(s)
j (x), (30)

where

h(s)(x) =
∑
i∈I′′s

M(i,s)∑
m=1

curl
{ n∑

k=1

v
(s)
k,i,m(x)h

(s)
i,m,kϕ

(s)
i,m(x)

}
,

h
(s)
1 (x) =

∑
i∈I′s

R(i,s)∑
r=1

curl
{(

[h̄
(s)
i,r − h(x)]

)
ω

(s)
i,r (x)

}

+
∑
i∈I′′s

M(i,s)∑
m=1

(
curl

{(
[h

(s)
i,m − h(x)]

)
ϕ

(s)
i,m(x)

}
+

2∑
t=1

curl
{(

[h
(s,t)
i,m − h(x)]

)
ψ

(s,t)
i,m (x)

})

+
∑
i∈I′′s

P (i,s)∑
p=1

curl
{(

[ĥ
(s)
i,p − h(x)]

)
χ

(s)
i,p (x)

}
,

h
(s)
2 (x) = −

∑
i∈I′s

R(i,s)∑
r=1

curl
{ n∑

k=1

v̄
(s)
k,i,r(x)h̄

(s)
i,r,kω

(s)
i,r (x)

}
,

h
(s)
3 (x) = −

∑
i∈I′′s

M(i,s)∑
m=1

2∑
t=1

curl
{ n∑

k=1

v
(s,t)
k,i,m(x)h

(s,t)
i,m,kψ

(s,t)
i,m (x)

}
,
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h
(s)
4 (x) = −

∑
i∈I′′(s)

P (i,s)∑
p=1

curl
{ n∑

k=1

v̂
(s)
k,i,p(x)h̃

(s)
i,p,kχ

(s)
i,p (x)

}
,

here we keep for the function h(x) all notations from (25) and

h
(s)
i,m − h(x) = curl h̃

(s)
i,m(x), h

(s,t)
i,m − h(x) = curl h̃

(s,t)
i,m (x),

h̄
(s)
i,r − h(x) = curl ˜̄h

(s)

i,r (x), ĥ
(s)
i,p − h(x) = curl

˜̂
h

(s)

i,p (x).

Substituting the function ϕ(s)(x) = hs(x) into integral identity (2), we get:∫
Ω

(ν∇u(0)∇h− (u(0) · ∇)h · u(0)) dx+

∫
Ω

(f ,h) dx

+ν
∑
i∈I′′s

M(i,s)∑
m=1

n∑
k,`=1

∫
Ω

(∇v
(s)
k,i,m,∇v

(s)
`,i,m)h

(s)
i,m,ku

(s)
i,m,`dx = Υ (m, s), (31)

where

|Υ (m, s)| ≤ γ
(s)
1 + γ

(m)
2 ,

and sequences γ
(s)
1 , γ

(m)
2 are such that lims→∞ γ

(s)
1 = 0, limm→∞ γ

(m)
2 = 0. Finally,

using the condition (vi) in the left-hand side of (31) and passing to the limit as s→∞,

m → ∞, we obtain that the limit function u(0)(x) is a weak solution of the following

averaged problem:

ν∆u(x)− (u · ∇)u− νc(x)u(x) = ∇p(x) + f(x), x in Ω,

divu(x) = 0, x in Ω, (32)

u(x)|∂Ω = 0.

The weak solution we understand in the sense of the following definition:

Definition 2 We say that u(x) ∈ H(Ω) is a weak solution of problem (32), if the

integral identity∫
Ω

(ν∇u∇ϕ− (u · ∇)ϕ · u) dx+

∫
Ω

νc(x)uϕ dx = −
∫
Ω

(f ,ϕ) dx

is satisfied for every ϕ ∈ H(Ω).

The main result of this paper is the following:

Theorem 6 Suppose that conditions (i)−(vi) are satisfied. Then the sequence of solu-

tions {u(s)(x)}∞s=1 of problems (1) converges to function u(0)(x) strongly in W 1,ϑ(Ω)n

for any 0 < ϑ < 2 as s → ∞ and the function u(0)(x) is a weak solution of problem

(32).
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