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Abstract. The problem of the boundedness of the fractional maximal oper-
ator Mα, 0 ≤ α < n in local Morrey-type spaces is reduced to the problem of
the boundedness of the Hardy operator in weighted Lp-spaces on the cone of
non-negative non-increasing functions. This allows obtaining sharp sufficient
conditions for the boundedness for all admissible values of the parameters.

1. Introduction

If E is a nonempty measurable subset on Rn and f is a measurable function
on E, then we put

‖g‖Lp(E) :=

(∫
E

|f(y)|pdy

) 1
p

, 0 < p < +∞,

‖f‖L∞(E) := sup{α : |{y ∈ E : |f(y)| ≥ α}| > 0}.
If I a nonempty measurable subset on (0, +∞) and g is a measurable function
on I, then we define ‖g‖Lp(I) and ‖g‖L∞(I) correspondingly.

For x ∈ Rn and r > 0, let B(x, r) denote the open ball centered at x of radius

r and
{
B(x, r) denote the set Rn\B(x, r).

Let f ∈ Lloc
1 (Rn). The fractional maximal operator Mα and the Riesz potential

Iα is defined by

Mαf(x) = sup
t>0

|B(x, t)|−1+α
n

∫
B(x,t)

|f(y)|dy, 0 ≤ α < n,
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Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy, 0 < α < n,

where 0 ≤ α < n and |B(x, t)| is the Lebesgue measure of the ball B(x, t). If
α = 0, then M ≡ M0 is the Hardy-Littlewood maximal operator.

The operators M ≡ M0, Mα and Iα play an important role in real and harmonic
analysis. (see, for example [15] and [16])

In the theory of partial differential equations, together with weighted Lp,w

spaces, Morrey spaces Mp,λ play an important role. They were introduced by C.
Morrey in 1938 [19] and defined as follows: For λ ≥ 0, 1 ≤ p ≤ ∞, f ∈ Mp,λ if
f ∈ Lloc

p (Rn) and

‖f‖Mp,λ
≡ ‖f‖Mp,λ(Rn) = sup

x∈Rn, r>0
r−λ/p‖f‖Lp(B(x,r)) < ∞

holds .
These spaces appeared to be quite useful in the study of local behavior of the

solutions of elliptic partial differential equations.
Also by WMp,λ we denote the weak Morrey space of all functions f ∈ WLloc

p (Rn)
for which

‖f‖WMp,λ
≡ ‖f‖WMp,λ(Rn) = sup

x∈Rn, r>0
r−λ/p‖f‖WLp(B(x,r)) < ∞,

where WLp denotes the weak Lp-space.
Spanne (see [22]) and Adams [1] studied the boundedness of the fractional

maximal operator Mα for 0 < α < n in Morrey spaces Mp,λ. Later on Chiarenza
and Frasca [11] studied the boundedness of the maximal operator M in these
spaces. Their results can be summarized as follows:

Theorem 1.1. (1) Let 0 ≤ α < n, 1 < p1 < n/α, 0 < λ < n − αp1 and
1/p1 − 1/p2 = α/n− λ. Then Mα is bounded from Mp1,λ to Mp2,λ.

(2) Let 0 ≤ α < n, 0 < λ < n − α and 1 − 1/p2 = α/(n − λ). Then Mα is
bounded from M1,λ to WMp2,λ.

If in the place of the power function r−λ/p in the definition of Mp,λ we consider
any positive weight function w defined on (0,∞), then it becomes the Morrey-
type space Mp,w. T. Mizuhara [17] and E. Nakai [20] extended the above results
to these spaces and obtained the following sufficient conditions on a weight w
ensuring the boundedness of the maximal operator M and the fractional maximal
operator Mα.

Theorem 1.2. Let w be a positive decreasing function satisfying the following
condition: there exists 1 ≤ c1 < 2n/p, such that

w(r) ≤ c1w(2r)

for all r > 0.
For 1 < p < ∞ M is bounded from Mp,w to Mp,w, and for p = 1 M is bounded

from M1,w to WM1,w
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Theorem 1.3. Let w be a positive decreasing function satisfying the following
condition: there exists c2 > 0, such that

0 < r ≤ t ≤ 2r ⇒ w(r) ≤ c−1
2 w(t) ≤ w(r) ≤ c2w(t). (1.1)

Moreover, let α = n(1/p1 − 1/p2) and let for some c3 > 0 for all r > 0∫ ∞

r

dt

wp1(t)tn+1−αp1
≤ c3

wp1(r)rnp1/p2
. (1.2)

(1) For 1 < p1 = p2 < ∞ Mα is bounded from Mp1,w to Mp1,w, and for p = 1
M is bounded from M1,w to WM1,w.

(2) For 1 < p1 < p2 < ∞ Mα is bounded from Mp1,w to Mp2,w, and for p1 = 1
Mα is bounded from M1,w to WMp2,w.

Theorem 1.2 was proved by Mizuhara [17] and Theorem 1.3 by Nakai. Note
that Theorem 3 implies Theorem 2.

In [2] D.R.Adams introduced a variant of Morrey-type spaces as follows: For
0 ≤ λ ≤ n, 1 ≤ p, θ ≤ ∞, f ∈Mpθ,λ if f ∈ Lloc

p (Rn) and

‖f‖Mpθ,λ
≡ ‖f‖Mpθ,λ(Rn) = sup

x∈Rn

‖r−
λ
p ‖f‖Lp(B(x,r))‖Lθ(0,∞) < ∞.

(If θ = ∞, then Mpθ,λ = Mp,λ.)
In [5]-[8] the boundedness of maximal and fractional maximal operators from

LMp1θ1,w1 to LMp2θ2,w2 and from GMp1θ1,w1 to GMp2θ2,w2 have been investigated.
Moreover, for some values of the parameters necessary and sufficient conditions
for the operators Mf and Mαf to be bounded from LMp1θ1,w1 to LMp2θ2,w2 were
obtained.

Theorem 1.4. Let 1 < p1 < ∞, 0 < p2 < ∞, n(1/p1 − 1/p2)+ ≤ α < n,
0 < θ2 ≤ ∞, ω2 ∈ Ωθ2.

1. For α < n/p1, let ω1 ∈ Ωθ1 and

‖ω2(r)r
n/p2‖ω−1

1 (t)tα−n/p1−1/ min{p1,θ1}‖Ls(r,∞)‖Lθ2
(0,∞) < ∞, (1.3)

where s = p1θ1/(θ1 − p1)+. (If θ1 ≤ p1, then s = ∞) Then Mα is bounded from
LMp1,θ1,ω1 to LMp2,θ2,ω2.

2. For α = n/p1, let

ω2(r)r
α−n(1/p1−1/p2) ∈ Lθ2(0,∞). (1.4)

Then Mα is bounded from Lp1 to LMp2,θ2,ω2.

Theorem 1.5. 1. If 0 ≤ p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α < n, 0 < θ1, θ2 ≤ ∞,
ω1 ∈ Ωθ1 and ω2 ∈ Ωθ2, then the condition

tα−n/p1+min{n−α,n/p2}
∥∥∥∥ω2(r)

rn/p2

(t + r)min{n−α,n/p2}

∥∥∥∥
Lθ2

(0,∞)

≤ c‖ω1‖Lθ1
(t,∞) (1.5)

for all t > 0, where c > 0 is independent of t, is necessary for the boundedness of
Mα from LMp1,θ1,ω1 to LMp2,θ2,ω2.
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2. If 1 < p1 < ∞, 0 < p2 < ∞, 0 < θ1 ≤ θ2 ≤ ∞, θ1 ≤ p1 n(1/p1 − 1/p2)+ ≤
α < n/p1, ω1 ∈ Ωθ1 and ω2 ∈ Ωθ2, then the condition∥∥∥∥ω2(r)

rn/p2

(t + r)n/p1−α

∥∥∥∥
Lθ2

(0,∞)

≤ c‖ω1‖Lθ1
(t,∞) (1.6)

for all t > 0, where c > 0 is independent of t, is sufficient for the boundedness of
Mα from LMp1,θ1,ω1 to LMp2,θ2,ω2 and from GMp1θ1,ω1 to GMp2θ2,ω2. (In the latter
case we assume that ω1 ∈ Ωp1,θ1, ω2 ∈ Ωp2,θ2)

3. In particular, if 1 < p1 ≤ p2 < ∞, 0 < θ1 ≤ θ2 ≤ ∞, θ1 ≤ p1, α =
n(1/p1 − 1/p2), ω1 ∈ Ωθ1 and ω2 ∈ Ωθ2, then the condition∥∥∥∥∥ω2(r)

(
r

t + r

)n/p2

∥∥∥∥∥
Lθ2

(0,∞)

≤ c‖ω1‖Lθ1
(t,∞) (1.7)

for all t > 0, where c > 0 is independent of t, is necessary and sufficient for the
boundedness of Mα from LMp1,θ1,ω1 to LMp2,θ2,ω2.

Theorem 1.4 and Theorem 1.5 were proved in [8].
In this paper we improve the estimate of Lp norm of the farctional maximal

operator over balls obtained in [8], and find sufficient conditions for the bound-
edness of Mα from LMp1θ1,w1 to LMp2θ2,w2 for all admissible values of parameters.
It is evident that these conditions are sufficient for the boundedness of Mα from
GMp1θ1,w1 to GMp2θ2,w2 too.

2. Definitions and basic properties of Morrey-type spaces

Definition 2.1. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable
function on (0,∞). We denote by LMp1,θ1,ω1 , GMp,θ,ω, the local Morrey-type
spaces, the global Morrey-type spaces respectively, the spaces of all functions
f ∈ Lloc

p (Rn) with finite quasinorms

‖f‖LMp1,θ1,ω1
≡ ‖f‖LMp1,θ1,ω1

(Rn) =
∥∥w(r)‖f‖Lp(B(0,r))

∥∥
Lθ(0,∞)

,

‖f‖GMp,θ,ω
= sup

x∈Rn

‖f(x + ·)‖LMp1,θ1,ω1

respectively.

Note that
‖f‖LMp∞,1

= ‖f‖GMp∞,1
= ‖f‖Lp .

Furthermore, GMp∞,r−λ/p ≡Mp,λ, 0 < λ < n. The interpolation properties of the
spaces GMp∞,w were studied by S. Spanne in [22]. The spaces GMpθ,r−λ were used
by G. Lu [21] for studying the embedding theorems for vector fields of Hörmander
type. The boundedness of various integral operators in the spaces GMp∞,w was
studied by T. Mizuhara [17] and E. Nakai [20]. In [5, 6] the boundedness of
the maximal operator M from LMp1θ1,w1 to LMp2θ2,w2 and from GMp1θ1,w1 to
GMp2θ2,w2 was investigated.
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In [6] the following statement was proved.

Lemma 2.2. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function
on (0,∞).

1. If for all t > 0
‖w(r)‖Lθ(t,∞) = ∞, (2.1)

then LMp1,θ1,ω1 = GMp,θ,ω = Θ, where Θ is the set of all functions equivalent to
0 on Rn.

2. If for all t > 0
‖w(r)rn/p‖Lθ(0,t) = ∞, (2.2)

then, for all functions f ∈ LMp1,θ1,ω1 , continuous at 0, f(0) = 0, and for 0 < p <
∞ GMp,θ,ω = Θ.

Definition 2.3. Let 0 < p, θ ≤ ∞. We denote by Ωθ the set of all functions w
which are non-negative, measurable on (0,∞), not equivalent to 0 and such that
for some t > 0

‖w(r)‖Lθ(t,∞) < ∞. (2.3)

Moreover, we denote by Ωp,θ the set of all functions w which are non-negative,
measurable on (0,∞), not equivalent to 0 and such that for some t1, t2 > 0

‖w(r)‖Lθ(t1,∞) < ∞, ‖w(r)rn/p‖Lθ(0,t2) < ∞. (2.4)

In the sequel, keeping in mind Lemma 2.2, we always assume that either w ∈ Ωθ

or w ∈ Ωp,θ.
In [9] the following statements were proved.

Lemma 2.4. Let 1 < p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α < n, 0 < θ1, θ2 ≤ ∞,
ω1 ∈ Ωθ1 , and ω2 ∈ Ωθ2. Then the condition

α ≤ n

p1

is necessary for the boundedness of Mα from LMp1,θ1,ω1 to LMp2,θ2,ω2.

Lemma 2.5. Let 1 ≤ p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α < n, 0 < θ1, θ2 ≤ ∞,
ω1 ∈ Ωθ1 , and ω2 ∈ Ωθ2. Moreover, let ω1 ∈ Lθ1(0,∞). Then the condition 1

α ≥ n

(
n

p1

− n

p2

)
+

(2.5)

is necessary for the boundedness of Mα from LMp1,θ1,ω1 to LMp2,θ2,ω2.

Remark 2.6. If ω1 ∈ Ωθ1 but ω1 6∈ Lθ1(0,∞), then condition (2.5) is not neces-
sary for the boundedness of Mα from LMp1,θ1,ω1 to LMp2,θ2,ω2 .

Throughout this paper a . b, (b & a), means that a ≤ λb, where λ > 0 depends
on inessential parameters. If b . a . b, then we write a ≈ b.

1Here and in the sequel t+ = t if t ≥ 0 and t+ = 0 if t < 0 and t− = −t if t ≤ 0 and t− = 0
if t > 0.
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3. Lp-estimates of Fractional maximal function over balls

The following Theorem is true.

Theorem 3.1. Let 1 < p < ∞, and f ∈ Lloc
p (Rn). Then for any ball B = B(x, r)

in Rn

‖Mαf‖Lp(B) . ‖Mα(fχ(2B))‖Lp(B) + |B|
1
p

(
sup
t≥2r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

(3.1)

Proof. It is obvious that for any ball B = B(x, r)

‖Mαf‖Lp(B) ≤ ‖Mα(fχ(2B))‖Lp(B) + Mα(fχRn\(2B))‖Lp(B).

Let y be an arbitrary point from B. If B(y, t)∩{Rn\(2B)} 6= ∅, then t > r. Indeed,
if z ∈ B(y, t) ∩ {Rn\(2B)}, then t ≥ |z − y| ≥ |z − x| − |x− y| > 2r − r = r.

On the other hand B(y, t) ∩ {Rn\(2B)} ⊂ B(x, 2t). Indeed, z ∈ B(y, t) ∩
{Rn\(2B)}, then we get |z − x| ≤ |z − y|+ |y − x| ≤ t + r ≤ 2t.

Hence

Mα(fχRn\(2B))(y) = sup
t>0

1

|B(y, t)|1−α
n

∫
B(y,t)∩{Rn\(2B)}

|f |

. sup
t≥r

1

|B(x, 2t)|1−α
n

∫
B(x,2t)

|f | = sup
t≥2r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |.

Thus

‖Mαf‖Lp(B) . ‖Mα(fχ(2B))‖Lp(B) + |B|
1
p

(
sup
t≥2r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

�

Theorem 3.2. Let 1 < p < ∞, and f ∈ Lloc
p (Rn). Then for any ball B = B(x, r)

in Rn

‖Mαf‖Lp(B) & |B|
1
p

(
sup
t>r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

(3.2)

Proof. Since B(x, t
2
) ⊂ B(y, t), t > 2r, then

Mαf(y) & sup
t>2r

1

|B(x, t
2
)|1−α

n

∫
B(x, t

2
)

= sup
t>r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |,

thus

‖Mαf‖Lp(B) & |B|
1
p

(
sup
t>r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

. (3.3)

�

The following Lemma is true
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Lemma 3.3. Let 0 ≤ α < n, 0 < p2 < ∞. Moreover, let 1 < p2n
n+αp2

≤ p1 < ∞,

or p2n
n+αp2

< 1 ≤ p1 < ∞, or p2n
n+αp2

= 1 < p1 < ∞. Then

‖Mα(fχB(0,2r))‖Lp2 (B(0,r)) . r
α−n

�
1

p1
− 1

p2

�
‖f‖Lp1 (B(0,2r)), (3.4)

for all r > 0 and f ∈ Lloc
p1

(Rn).

Proof. Since

Mαf(x) . Iα(|f |)(x), (3.5)

then statement immediately follows from Lemma 3.1 in [4]. �

From Theorem 3.1 and Lemma 3.3 follows next statement.

Lemma 3.4. Let 0 ≤ α < n, 0 < p2 < ∞, f ∈ Lloc
p1

(Rn). Moreover, let
1 < p2n

n+αp2
≤ p1 < ∞, or p2n

n+αp2
< 1 ≤ p1 < ∞, or p2n

n+αp2
= 1 < p1 < ∞. Then for

any ball B = B(x, r) ⊂ Rn

‖Mαf‖Lp2 (B)

≤c|B|
1

p2

(
sup
t≥2r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

+ c|B|
α
n
−
�

1
p1
− 1

p2

�
‖f‖Lp1 (2B),

(3.6)

where constant c does not depend on |B|.

The following Lemma is true.

Lemma 3.5. Let 0 < α < n, 0 < p2 < ∞, f ∈ Lloc
p1

(Rn). Moreover, let
1 < p2n

n+αp2
≤ p1 < ∞, or p2n

n+αp2
< 1 ≤ p1 < ∞, or p2n

n+αp2
= 1 < p1 < ∞. Then for

any ball B = B(x, r) ⊂ Rn

‖Mαf‖Lp2 (B) ≤ c|B|
1

p2

(
sup
t≥r

1

|B(x, t)|
1

p1
−α

n

(∫
B(x,t)

|f |p1

) 1
p1

)
, (3.7)

where constant c does not depend on |B|.

Proof. Denote by

M1 := |B|
1

p2

(
sup
t≥2r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

, M2 := |B|
α
n
−
�

1
p1
− 1

p2

�
‖f‖Lp1 (2B).

Applying Hölder’s inequality, we get

M1 . |B|
1

p2

(
sup
t≥2r

1

|B(x, t)|
1

p1
−α

n

(∫
B(x,t)

|f |p1

) 1
p1

)
.

On the other hand

|B|
1

p2

(
sup
t≥2r

1

|B(x, t)|
1

p1
−α

n

(∫
B(x,t)

|f |p1

) 1
p1

)
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& |B|
1

p2

(
sup
t≥2r

|B(x, t)|
α
n
− 1

p1

)
‖f‖Lp1 (2B) ≈ M2.

Since by Lemma 3.4
‖Mαf‖Lp2 (B) ≤ M1 + M2,

we arrive at (3.7). �

Remark 3.6. Inequality (3.7) improves the inequality (22) in [8]

‖Mαf‖Lp2 (B(0,r)) ≤ cr
n
p2

(∫ ∞

r

(∫
B(0,t)

|f(x)|p1dx

)
dt

tn−αp1+1

) 1
p1

.

This follows since

sup
t≥r

1

|B(0, t)|
1

p1
−α

n

(∫
B(0,t)

|f |p1

) 1
p1

≤
(∫ ∞

r

(∫
B(0,t)

|f(x)|p1dx

)
dt

tn−αp1+1

) 1
p1

Indeed, by easy calculation and the Fubini theorem, we get

sup
t≥r

1

|B(0, t)|
1

p1
−α

n

(∫
B(0,t)

|f |p1

) 1
p1

≤ sup
t≥r

1

|B(0, t)|
1

p1
−α

n

(∫
B(0,r)

|f |p1

) 1
p1

+ sup
t≥r

1

|B(0, t)|
1

p1
−α

n

(∫
B(0,t)\B(0,r)

|f |p1

) 1
p1

≤ 1

|B(0, r)|
1

p1
−α

n

(∫
B(0,r)

|f |p1

) 1
p1

+

(∫
Rn\B(0,r)

|f(x)|p1

|x|n−αp1
dx

) 1
p1

.

(∫ ∞

r

(∫
B(0,r)

|f |p1

)
dt

tn−αp1+1

) 1
p1

+

(∫ ∞

r

(∫
B(0,t)\B(0,r)

|f(x)|p1dx

)
dt

tn−αp1+1

) 1
p1

.

(∫ ∞

r

(∫
B(0,t)

|f(x)|p1dx

)
dt

tn−αp1+1

) 1
p1

.

The following Theorem is true.

Theorem 3.7. Let 0 ≤ α < n, 0 < p < ∞, pn
n+αp

< 1, and f ∈ Lloc
p (Rn). Then

for any ball B = B(x, r) ⊂ Rn

‖Mαf‖Lp(B) ≈ r
n
p

(
sup
t>r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

. (3.8)

Proof. In view of the Theorem 3.2 we need only to prove that

‖Mαf‖Lp(B) . r
n
p

(
sup
t>r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

.
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By Lemma 3.4, we have

‖Mαf‖Lp(B) . |B|
α
n
−(1− 1

p)‖f‖L1(2B) + |B|
1
p

(
sup
t≥2r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

.

But

|B|
α
n
−(1− 1

p)‖f‖L1(2B) ≈ |B|
1
p

1

|2B|1−α
n

∫
2B

|f(y)|dy

≤ |B|
1
p

(
sup
t≥2r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

.

Hence

‖Mαf‖Lp(B) . r
n
p

(
sup
t>2r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

≤ r
n
p

(
sup
t>r

1

|B(x, t)|1−α
n

∫
B(x,t)

|f |
)

.

�

4. Fractional maximal operator and Hardy-type operator
involving suprema

Let M(0,∞) be the set of all Lebesgue-measurable functions on (0,∞) and
M+(0,∞) its subset consisting of all nonnegative functions on (0,∞). We denote
by M+(0,∞; ↑) the cone of all functions in M+(0,∞) which are non-decreasing
on (0,∞) and

A =

{
f ∈ M+(0,∞; ↑) : lim

t→0+
f(t) = 0

}
.

Let u be a continous weight on (0,∞). We define the Hardy-type operator
involving suprema Hu on g ∈ M+(0,∞) by

(Hug)(t); = sup
t≤r<∞

u(r)g(r), t ∈ (0,∞).

The following Lemma is true.

Lemma 4.1. Let 0 ≤ α < n, 0 < p2 < ∞, 0 < θ2 ≤ ∞ and ω2 ∈ Ωθ2. Moreover,
let 1 < p2n

n+αp2
≤ p1 < ∞, or p2n

n+αp2
< 1 ≤ p1 < ∞, or p2n

n+αp2
= 1 < p1 < ∞.

Then
‖Mαf‖LMp2,θ2,ω2

. ‖Hug‖Lθ2,υ2
(0,∞) (4.1)

for all f ∈ Lloc
p (Rn), where

g(t) = ‖f‖Lp1 (B(0,t)), (4.2)

u(r) = r
α− n

p1 (4.3)

and
υ2(r) = ωθ2

2 (r)r
θ2

n
p2 . (4.4)
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Proof. By Lemma 3.5 we have

‖Mαf‖LMp2,θ2,ω2
.

∥∥∥∥ω2(t)t
n
p2 sup

t≤r<∞
r

α− n
p1 ‖f‖Lp1 (B(0,r))

∥∥∥∥
Lθ2

(0,∞)

=‖Hug‖Lθ2,υ2
(0,∞).

(4.5)

�

Theorem 4.2. Let 0 ≤ α < n, 0 < p2 < ∞, 0 < θ1, θ2 ≤ ∞, ω1 ∈ Ωθ1 and
ω2 ∈ Ωθ2. Moreover, let 1 < p2n

n+αp2
≤ p1, or p2n

n+αp2
< 1 ≤ p1, or p2n

n+αp2
= 1 < p1.

Assume that the operator Hu is bounded from Lθ1,υ1(0,∞) to Lθ2,υ2(0,∞) on
A, that is,

‖Hug‖Lθ2,υ2
(0,∞) . ‖g‖Lθ1,υ1

(0,∞), (4.6)

where
υ1(r) = ωθ1

1 (r) (4.7)

and
υ2(r) = ωθ2

2 (r)r
θ2

n
p2 . (4.8)

Then Mα is bounded from LMp1,θ1,ω1 to LMp2,θ2,ω2.

Proof. Since g is non-negative and non-decreasing function on (0,∞) and Hu is
bounded from Lθ1,υ1 to Lθ2,υ2 on the cone of functions containing g, by Lemma
4.1 we have

‖Mαf‖LMp2,θ2,ω2
. ‖g‖Lθ1,υ1

(0,∞) =

(∫ ∞

0

υ1(r)(g(r))θ1dr

) 1
θ1

.

Hence

‖Mαf‖LMp2,θ2,ω2
. ‖ω1(r)‖f‖Lp1 (B(0,r))‖Lθ1

(0,∞) = ‖f‖LMp1,θ1,ω1
.

�

5. Weighted inequalities for Hardy-type operators involving
suprema

Note that the inequality

‖Huϕ‖Lθ2,w2
. ‖ϕ‖Lθ1,w1

, ϕ ∈ A, (5.1)

that is(∫ ∞

0

w2(t)

(
ess sup
t≤r<∞

u(r)ϕ(r)

)θ2

dt

) 1
θ2

.

(∫ ∞

0

w1(t) (ϕ(t))θ1 dt

) 1
θ1

(5.2)

is equivalent to the inequality(∫ ∞

0

w2(t)

(
ess sup
t≤r<∞

(u(r)θ1ϕ(r)

) θ2
θ1

dt

) θ1
θ2

.
∫ ∞

0

w1(t)ϕ(t)dt, ϕ ∈ A. (5.3)
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Given ϕ ∈ A, there is a sequence {hn} of positive functions such that∫ t

0

hn(s)ds ↗ ϕ, t ∈ (0,∞). (5.4)

By the Fatou lemma, we see that (5.1) holds if and only if the inequality(∫ ∞

0

w2(t)

(
sup

t≤r<∞
(u(r))θ1

∫ r

0

h(s)ds

) θ2
θ1

dt

) θ1
θ2

.
∫ ∞

0

w1(t)

(∫ t

0

h(s)ds

)
dt

(5.5)

are satisfied for all h ∈ M+(0,∞). Summarizing, By Fubini theorem, we obtain
that (5.1) holds if and only if the inequality(∫ ∞

0

w2(t)

(
sup

t≤r<∞
(u(r))θ1

∫ r

0

h(s)ds

) θ2
θ1

dt

) θ1
θ2

.
∫ ∞

0

h(s)

(∫ ∞

s

w1(t)dt

)
ds

(5.6)

are satisfied for all h ∈ M+(0,∞).
Let us recall the following Theorem. (see Theorem 4.1 and Theorem 4.4 in [3]

Theorem 5.1. Let 0 < q < ∞ and let u be a continuous weight. Let υ and
w be weights such that 0 <

∫ x

0
υ(t)dt < ∞ and 0 <

∫ x

0
w(t)dt < ∞ for every

x ∈ (0,∞).
(i) Let 1 ≤ q. Then the inequality(∫ ∞

0

[
sup

t≤s<∞

u(s)

s

∫ s

0

g(y)dy

]q

w(t)dt

)1/q

.
∫ ∞

0

g(t)υ(t)dt (5.7)

holds on M+(0,∞) if and only if

sup
x>0

((
u(x)

x

)q ∫ x

0

w(t)dt +

∫ ∞

x

(
u(t)

t

)q

w(t)dt

)1/q

ess sup
0<t<x

1

υ(t)
< ∞, (5.8)

where

u(t) = t sup
t≤τ<∞

u(τ)

τ
, t ∈ (0,∞).

(ii) Let q < 1. Then the inequality (5.7) holds on M+(0,∞) if and only if(∫ ∞

0

(∫ ∞

t

(
u(s)

s

)q

w(s)ds

) q
1−q
(

u(t)

t

)q [
ess sup
0<τ<t

1

υ(τ)

] q
1−q

w(t)dt

) 1−q
q

< ∞,

(5.9)
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and(∫ ∞

0

(∫ t

0

w(s)ds

) q
1−q
[

sup
t≤τ<∞

u(τ)

τ
ess sup
0<s<τ

1

υ(s)

] q
1−q

w(t)dt

) 1−q
q

< ∞, (5.10)

The following Theorem is true.

Theorem 5.2. Let q = ∞ and u be a continuous weight on (0,∞). Let υ and w
be weights such that 0 < ess sup0<t<x(υ(t))−1 < ∞ and 0 < ess sup0<t<x w(t) < ∞
for every x ∈ (0,∞). Then the inequality (5.7) holds on M+(0,∞) if and only if

sup
t>0

(∫ ∞

t

u(s)

s

(
ess sup
0<r<s

w(r)

)
ds

)
ess sup
0<r<t

1

υ(r)
< ∞ (5.11)

Proof. When q = ∞, the inequality (5.7) takes the form

ess sup
t>0

sup
t≤s<∞

w(t)

(
u(s)

s

∫ s

0

g(y)dy

)
.
∫ ∞

0

g(t)υ(t)dt. (5.12)

Applying the Fubini Theorem to the left hand side of (5.12), we get the inequality

sup
s>0

(
u(s)

s
ess sup
0<t≤s

w(t)

)∫ s

0

g(y)dy .
∫ ∞

0

g(t)υ(t)dt. (5.13)

Since ∫ ∞

0

w(x)

∫ x

0

f(t)dt .
∫ ∞

0

f(x)υ(x)dx

⇔ sup
r>0

(∫ ∞

r

w(x)dx

)
ess sup
0<x<r

1

υ(x)
< ∞

(see Theorem 2 on p.42 in [18]), the inequality (5.13) holds on M+(0,∞) if and
only if the condition (5.11) holds. �

The following Theorem is true.

Theorem 5.3. Let 0 < q < ∞ and let u be a continuous weight. Let υ and w be
weights such that 0 < ess supt≤y<∞ υ(y) < ∞ for any t > 0, ess supt>0 υ(t) = ∞.

Then the inequality(∫ ∞

0

[
sup

t≤s<∞

u(s)

s

∫ s

0

g(y)dy

]q

w(t)dt

)1/q

. ess sup
t>0

υ(t)

∫ t

0

g(s)ds (5.14)

holds on M+(0,∞) if and only if(∫ ∞

0

(
ess sup
t<s<∞

u(s)

s

1

ess sups<y<∞ υ(y)

)q

w(t)dt

) 1
q

< ∞. (5.15)
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Proof. Whenever F, G are non-negative functions on (0,∞) and F is non-decreasing,
then

ess sup
t∈(0,∞)

F (t)G(t) = ess sup
t∈(0,∞)

F (t) ess sup
s∈(t,∞)

G(s), t ∈ (0,∞). (5.16)

Therefore

ess sup
t>0

υ(t)

∫ t

0

g(s)ds = ess sup
t>0

(∫ t

0

g(s)ds

)
ess sup
t<y<∞

υ(y). (5.17)

At first let us to prove sufficiency. Assume that the condition (5.15) holds. Then(∫ ∞

0

[
sup

t≤s<∞

u(s)

s

∫ s

0

g(y)dy

]q

w(t)dt

)1/q

=

(∫ ∞

0

[
ess sup
t≤s<∞

u(s)

s

ess sups<y<∞ υ(y)

ess sups<y<∞ υ(y)

∫ s

0

g(y)dy

]q

w(t)dt

)1/q

≤ sup
t>0

ess sup
t<y<∞

υ(y)

∫ t

0

g(s)ds×

×
(∫ ∞

0

(
ess sup
t<s<∞

u(s)

s

1

ess sups<y<∞ υ(y)

)q

w(t)dt

) 1
q

≤ c sup
t>0

ess sup
t<y<∞

υ(y)

∫ t

0

g(s)ds.

(5.18)

To prove necessity note that, for every non-decreasing function Φ on (0,∞),
there is a sequence {Hn}∞n=1 of smooth increasing functions such that Hn ↗ Φ
as n → ∞. The functions Hn, being smooth, can be represented as Hn(t) =∫ t

0
hn(s)ds+Hn(0) for some positive measurable functions hn on (0,∞). Applying

this to the non-decreasing function Φ(t) = (ess supt<y<∞ υ(y))−1, let {hn} be a
sequence of positive measurable functions on (0,∞), such that∫ t

0

hn(s)ds ↗ Φ(t), n →∞ a.e. on (0,∞). (5.19)

For the right hand side of the inequality(∫ ∞

0

[
sup

t≤s<∞

u(s)

s

∫ s

0

hn(y)dy

]q

w(t)dt

)1/q

. ess sup
t>0

υ(t)

∫ t

0

hn(s)ds (5.20)

we have

ess sup
t>0

υ(t)

∫ t

0

hn(s)ds ≤ ess sup
t>0

υ(t)(ess sup
t<y<∞

υ(y))−1 ≤ 1. (5.21)

In view of the fact, that from (5.19) follows that

sup
t≤s<∞

u(s)

s

∫ s

0

g(y)dy ↗ ess sup
t≤s<∞

u(s)

s
Φ(s), n →∞ a.e. on (0,∞),
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(5.20) and (5.21), by Fatou’s lemma, imply (5.15). �

Theorem 5.4. Let q = ∞ and Let u be a continuous weight. Let υ and w be
weights such that 0 < ess supt≤y<∞ υ(y) < ∞ for any t > 0, ess supt>0 υ(t) = ∞.

Then the inequality (5.14) holds on M+(0,∞) if and only if

ess sup
t>0

u(r)

r

ess sup0<t≤r w2(t)

ess supr<y<∞ υ(y)
< ∞. (5.22)

Proof. If q = ∞, then the inequality (5.14) takes the form

ess sup
t>0

w2(t) sup
t≤r<∞

u(r)

r

∫ r

0

g(y)dy . ess sup
t>0

w1(t)

∫ t

0

g(y)dy. (5.23)

Applying the Fubini theorem to the left hand side and in view of (5.17) for right
hand side, we can write (5.23) in the following form

ess sup
t>0

u(r)

r

(
ess sup
0<t≤r

w2(t)

)∫ r

0

g(y)dy . ess sup
t>0

(∫ t

0

g(s)ds

)
ess sup
t<y<∞

υ(y).

(5.24)
Since

ess sup
t>0

u(r)

r

(
ess sup
0<t≤r

w2(t)

)∫ r

0

g(y)dy

= ess sup
t>0

u(r)

r

(
ess sup
0<t≤r

w2(t)

)
ess supr<y<∞ υ(y)

ess supr<y<∞ υ(y)

∫ r

0

g(y)dy

≤ ess sup
t>0

u(r)

r

ess sup0<t≤r w2(t)

ess supr<y<∞ υ(y)
ess sup

t>0

(∫ t

0

g(s)ds

)
ess sup
t<y<∞

υ(y),

we get, that the condition (5.22) is sufficient for the inequality (5.23) to be hold.
The necessity part can be proved in similar way, as it was done in the proof of

Theorem 5.3. �

From Theorem 5.3 immediately follows next Corollary.

Corollary 5.5. Let 0 < θ1, θ2 < ∞ and u be a continuous weight. Let w1 and
w2 be weights such that 0 <

∫ x

0

∫∞
t

w1(s)dsdt < ∞ and 0 <
∫ x

0
w2(t)dt < ∞ for

every x ∈ (0,∞).
(i) Let θ1 ≤ θ2. Then the inequality (5.6) holds on M+(0,∞) if and only if

sup
x>0

((
sup

x≤τ<∞
(u(τ))θ2

)∫ x

0

ω2(t)dt +

∫ ∞

x

(
sup

t≤τ<∞
(u(τ))θ2

)
ω2(t)dt

) θ1
θ2

×

×
(∫ ∞

x

ω1(τ)dτ

)−1

< ∞

(5.25)
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(ii) Let θ2 < θ1. Then the inequality (5.6) holds on M+(0,∞) if and only if

(∫ ∞

0

(∫ ∞

t

(
sup

s≤τ<∞
(u(τ))θ2

)
w2(s)ds

) θ2
θ1−θ2

(
sup

t≤τ<∞
(u(τ))θ2

)
×

×
(∫ ∞

t

ω1(s)ds

) θ2
θ2−θ1

w2(t)dt

) θ1−θ2
θ2

< ∞,

(5.26)

and ∫ ∞

0

(∫ t

0

w2(s)ds

) θ2
θ1−θ2

[
sup

t≤τ<∞

(
sup

τ≤y<∞
(u(y))θ1

)
×

×
(∫ ∞

τ

ω1(y)dy

)−1
] θ2

θ1−θ2

w2(t)dt


θ1−θ2

θ2

< ∞,

(5.27)

6. Sufficient conditions

Theorem 6.1. Let 0 ≤ α < n, 0 < p2 < ∞, 0 < θ1, θ2 ≤ ∞, ω1 ∈ Ωθ1 and
ω2 ∈ Ωθ2. Moreover, let 1 < p2n

n+αp2
≤ p1, or p2n

n+αp2
< 1 ≤ p1, or p2n

n+αp2
= 1 < p1.

(i) Let θ1 ≤ θ2. If

sup
x>0

∥∥∥∥(min{ t
x
, 1}
) n

p1
−α

ω2(t)t
α−n

�
1

p1
− 1

p2

�∥∥∥∥
Lθ2

(0,∞)

‖ω1‖Lθ1
(x,∞)

< ∞, (6.1)

then Mα is bounded from LMp1,θ1,ω1 to LMp2,θ2,ω2 and from GMp1θ1,ω1 to GMp1θ2,ω2 .
(In the latter case we assume that ω1 ∈ Ωp1,θ1 , ω2 ∈ Ωp2,θ2)

(ii) Let θ2 < θ1. If

(∫ ∞

0

(∫ ∞

t

s
θ2

�
α− n

p1
+ n

p2

�
wθ2

2 (s)ds

) θ2
θ1−θ2

t
θ2

�
α− n

p1
+ n

p2

�
×

×
(∫ ∞

t

ωθ1
1 (s)ds

) θ2
θ2−θ1

wθ2
2 (t)dt

) θ1−θ2
θ2

< ∞,

(6.2)
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and ∫ ∞

0

(∫ t

0

s
θ2

n
p2 wθ2

2 (s)ds

) θ2
θ1−θ2

[
sup

t≤τ<∞
τ

θ1

�
α− n

p1

�
×

×
(∫ ∞

τ

ωθ1
1 (y)dy

)−1
] θ2

θ1−θ2

t
θ2

n
p2 w2(t)dt


θ1−θ2

θ2

< ∞,

(6.3)

then Mα is bounded from LMp1,θ1,ω1 to LMp2,θ2,ω2 and from GMp1θ1,ω1 to GMp1θ2,ω2 .
(In the latter case we assume that ω1 ∈ Ωp1,θ1 , ω2 ∈ Ωp2,θ2)

(iii) Let 0 < θ1 < ∞, θ2 = ∞. Moreover, assume that

0 < ‖ω1‖−1
Lθ1

(x,∞) < ∞

and 0 < ess sup0<t<x ω2(t)t
n
p2 < ∞ for every x ∈ (0,∞). If

sup
t>0

∥∥∥∥sα− n
p1 ess sup

0<r<s
ω2(r)r

n
p2

∥∥∥∥
Lθ1

(t,∞)

‖ω1‖−1
Lθ1

(t,∞) < ∞, (6.4)

then Mα is bounded from LMp1,θ1,ω1 to LMp1,∞,θ2 and from GMp1,θ1,ω1 to GMp1,∞,ω2 .
(In the latter case we assume that ω1 ∈ Ωp1,θ1 , ω2 ∈ Ωp2,∞)

(iv) Let θ1 = ∞, 0 < θ2 < ∞. Moreover, assume that 0 < ess supt≤y<∞ ω1(y) <
∞ for any t > 0, ess supt>0 ω(t) = ∞. If∥∥∥∥∥ω2(t)t

n
p2 ess sup

t<s<∞

s
α− n

p1

ess sups<y<∞ ω1(y)

∥∥∥∥∥
Lθ2

(0,∞)

< ∞, (6.5)

then Mα is bounded from LMp1,∞,ω1 to LMp2,θ2,ω2 and from GMp1,∞,ω1 to GMp1,θ2,ω2 .
(In the latter case we assume that ω1 ∈ Ωp1,∞, ω2 ∈ Ωp2,θ2)

(v) Let θ1 = θ2 = ∞. Moreover, assume that 0 < ess supt≤y<∞ ω1(y) < ∞ for
any t > 0, ess supt>0 ω(t) = ∞. If

ess sup
r>0

r
α− n

p1

ess sup0<t≤r ω2(t)t
n
p2

ess supr<t<∞ ω1(t)
< ∞, (6.6)

then Mα is bounded from LMp1,∞,ω1 to LMp2,∞,ω2 and from GMp1,∞,ω1 to GMp1,∞,ω2 .
(In the latter case we assume that ω1 ∈ Ωp1,∞, ω2 ∈ Ωp2,∞)

Proof. (iii) Let 0 < θ1 < ∞, θ2 = ∞. Theorem 4.2 states, that if

ess sup
t>0

ω2(t)t
n
p2 sup

t≤r<∞
r

α− n
p1 ϕ(r) .

(∫ ∞

0

ωθ1
1 (t) (ϕ(t))θ1 dt

) 1
θ1

on A, (6.7)

then Mα is bounded from LMp1,θ1,ω1 to LMp1,∞,θ2 . But the inequality is equivalent
to the following inequality

ess sup
t>0

ωθ1
2 (t)t

θ1
n
p2 ess sup

t≤r<∞
r

θ1

�
α− n

p1

�
g(r) .

∫ ∞

0

g(t)

(∫ ∞

t

ωθ1
1 (s)ds

)
(6.8)
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on M+(0,∞) (see Section 6). By Theorem 5.2, we get, that the inequality (6.8)
holds if and only if the condition

sup
t>0

(∫ ∞

t

s
θ1

�
α− n

p1

�(
ess sup
0<r<s

ωθ1
2 (r)r

θ1
n
p2

)
ds

)(∫ ∞

t

ωθ1
1 (τ)dτ

)−1

< ∞, (6.9)

that is, the condition (6.4) holds.
(iv) Let θ1 = ∞, 0 < θ2 < ∞. Theorem 4.2 and argumentations at the

beginning of Section show, that if(∫ ∞

0

ωθ2
2 (t)t

θ2
n
p2

[
sup

t≤r<∞
r

α− n
p1

∫ r

0

g(s)ds

]θ2

dt

) 1
θ2

. ess sup
t>0

ω1(r)

∫ r

0

g(s)ds

(6.10)

on M+(0,∞), then Mα is bounded from LMp1,θ1,ω1 to LMp1,∞,θ2 . By Theorem
5.3, the inequality (6.10) holds if and only if the condition∫ ∞

0

(
ess sup
t<s<∞

s
α− n

p1

ess sups<y<∞ ω1(y)

)θ2

ωθ2
2 (t)t

θ2
n
p2 dt

 1
θ2

< ∞,

that is, the condition (6.5) holds.
(v) Let θ1 = θ2 = ∞. Theorem 4.2 and argumentations at the beginning of

Section show, that if

ess sup
t>0

ω2(t)t
n
p2 sup

t≤r<∞
r

α− n
p1

∫ r

0

g(s)ds . ess sup
t>0

ω1(r)

∫ r

0

g(s)ds (6.11)

on M+(0,∞), then Mα is bounded from LMp1,∞,ω1 to LMp1,∞,θ2 . By Theorem
5.3, the inequality (6.10) holds if and only if the condition

ess sup
r>0

r
α− n

p1

ess sup0<t≤r ω2(t)t
n
p2

ess supr<t<∞ ω1(t)
< ∞

holds. �

Remark 6.2. Let 0 ≤ α < n, 0 < p2 < ∞, 1 < p2n
n+αp2

≤ p1, or p2n
n+αp2

< 1 ≤ p1,

or p2n
n+αp2

= 1 < p1. Moreover, let 1 < θ1 ≤ θ2 < ∞, and β such that

β +
1

θ2

< 0, β +
n

p2

+
1

θ2

> 0, β +
n

p2

+
1

θ2

+ α− n

p1

< 0,

then it is easy calculate that the weight functions ω1(t) = t
β+ n

p2
+ 1

θ2
+α− n

p1
− 1

θ1 ,
ω2(t) = tβ satisfy the condition (i) of the Theorem 6.1. Thus Mα is bounded
from LMp1,θ1,ω1 to LMp2,θ2,ω2 . But no power function can satisfy the condition
(1.3).
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Remark 6.3. For 1 < p1 < p2 < ∞, α = n(1/p1 − p2), ω1 ∈ Ωp1,∞, ω2 ∈ Ωp2,∞
Theorem 6.1 states that if

ess sup
r>0

r
α− n

p1

ess sup0<t≤r ω2(t)t
n
p2

ess supr<t<∞ ω1(t)
< ∞, (6.12)

then Mα is bounded from Mp1,ω1 to Mp2,ω2 . Let ω = ω1 = ω2 and (1.1) holds.
Then (6.13) takes the form

ess sup
0<t≤r

ω(t)t
n
p2 . ω(r)r

n
p1
−α

. (6.13)

Note that the condition (6.13) follows from the condition (1.2). Indeed, if the
condition (1.2) holds, then for any t ≤ r we get∫ 2r

r

ds

wp1(s)sn+1−αp1
.

1

wp1(t)tnp1/p2
.

By (1.1), we have

1

wp1(r)rn−αp1
.

1

wp1(t)tnp1/p2
.

Hence

ω(t)t
n
p2 . ω(r)r

n
p1
−α

.

Therefore

ess sup
0<t≤r

ω(t)t
n
p2 . ω(r)r

n
p1
−α

.

The weight function ω(t) = t
α− n

p1 satisfies our condition and it is easy to see that
the condition (1.2) does not hold for ω, since∫ ∞

t

ds

ω(s)p1sn+1−αp1
= ∞.

Theorem 6.4. Let 1 < p1 ≤ p2 < ∞, 0 < θ1 ≤ θ2 ≤ ∞, α = n(1/p1 − 1/p2),
ω1 ∈ Ωθ1 and ω2 ∈ Ωθ2, then the condition∥∥∥∥∥ω2(r)

(
r

t + r

)n/p2

∥∥∥∥∥
Lθ2

(0,∞)

≤ c‖ω1‖Lθ1
(t,∞) (6.14)

for all t > 0, where c > 0 is independent of t, is necessary and sufficient for the
boundedness of Mα from LMp1,θ1,ω1 to LMp2,θ2,ω2.

Proof. The necessity foolows from Theorem 1.5 item (1). The sufficiency follows
from Theorem 6.1 item (i). �

Remark 6.5. Note that, in the case θ1 ≤ p1 Theorem 6.4 was proved in [8].
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