BOUNDEDNESS OF THE FRACTIONAL MAXIMAL OPERATOR IN LOCAL MORREY-TYPE SPACES

A. BURENKOV, A. GOGATISHVILI, V.S. GULIYEV AND R. MUSTAFAYEV

Abstract

The problem of the boundedness of the fractional maximal operator $M_{\alpha}, 0 \leq \alpha<n$ in local Morrey-type spaces is reduced to the problem of the boundedness of the Hardy operator in weighted L_{p}-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for the boundedness for all admissible values of the parameters.

1. Introduction

If E is a nonempty measurable subset on \mathbb{R}^{n} and f is a measurable function on E, then we put

$$
\begin{gathered}
\|g\|_{L_{p}(E)}:=\left(\int_{E}|f(y)|^{p} d y\right)^{\frac{1}{p}}, 0<p<+\infty \\
\|f\|_{L_{\infty}(E)}:=\sup \{\alpha:|\{y \in E:|f(y)| \geq \alpha\}|>0\} .
\end{gathered}
$$

If I a nonempty measurable subset on $(0,+\infty)$ and g is a measurable function on I, then we define $\|g\|_{L_{p}(I)}$ and $\|g\|_{L_{\infty}(I)}$ correspondingly.

For $x \in \mathbb{R}^{n}$ and $r>0$, let $B(x, r)$ denote the open ball centered at x of radius r and ${ }^{\mathrm{c}} B(x, r)$ denote the set $\mathbb{R}^{n} \backslash B(x, r)$.

Let $f \in L_{1}^{\text {loc }}\left(\mathbb{R}^{n}\right)$. The fractional maximal operator M_{α} and the Riesz potential I_{α} is defined by

$$
M_{\alpha} f(x)=\sup _{t>0}|B(x, t)|^{-1+\frac{\alpha}{n}} \int_{B(x, t)}|f(y)| d y, 0 \leq \alpha<n,
$$

1991 Mathematics Subject Classification. primary, 42B20, 42B25, 42B35, 46E30 .
Key words and phrases. Fractional integral operator; Local and global Morrey-type spaces; Hardy operator on the cone of monotonic functions.

The research of V. Burenkov was partially supported by the grant of the Russian Foundation for Basic Research (Grant 06-01-00341). The research of V. Burenkov, A.Gogatishvili and V. Guliyev was partially supported by the grant of INTAS (project 05-1000008-8157). The research of A. Gogatishvili was partialy supported by the grant no. 201/05/2033 and 201/08/0383 of the Grant Agency of the Czech Republic, by the Institutional Research Plan no. AV0Z10190503 of AS CR. The research of V. Guliyev was partially supported by the grant of BGP II (project ANSF Award / AZM1-3110-BA-08) and by the grant of Tubitak (project B.02.TBT.0.06.01-220.01-619-48891). The research of R. Mustafayev was supported by a Post Doctoral Fellowship of INTAS (Grant 06-1000015-6385).

$$
I_{\alpha} f(x)=\int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y, 0<\alpha<n
$$

where $0 \leq \alpha<n$ and $|B(x, t)|$ is the Lebesgue measure of the ball $B(x, t)$. If $\alpha=0$, then $M \equiv M_{0}$ is the Hardy-Littlewood maximal operator.

The operators $M \equiv M_{0}, M_{\alpha}$ and I_{α} play an important role in real and harmonic analysis. (see, for example [15] and [16])

In the theory of partial differential equations, together with weighted $L_{p, w}$ spaces, Morrey spaces $\mathcal{M}_{p, \lambda}$ play an important role. They were introduced by C. Morrey in 1938 [19] and defined as follows: For $\lambda \geq 0,1 \leq p \leq \infty, f \in \mathcal{M}_{p, \lambda}$ if $f \in L_{p}^{\text {loc }}\left(\mathbb{R}^{n}\right)$ and

$$
\|f\|_{\mathcal{M}_{p, \lambda}} \equiv\|f\|_{\mathcal{M}_{p, \lambda}\left(\mathbb{R}^{n}\right)}=\sup _{x \in \mathbb{R}^{n}, r>0} r^{-\lambda / p}\|f\|_{L_{p}(B(x, r))}<\infty
$$

holds .
These spaces appeared to be quite useful in the study of local behavior of the solutions of elliptic partial differential equations.

Also by $W \mathcal{M}_{p, \lambda}$ we denote the weak Morrey space of all functions $f \in \mathrm{WL}_{p}^{\text {loc }}\left(\mathbb{R}^{n}\right)$ for which

$$
\|f\|_{W \mathcal{M}_{p, \lambda}} \equiv\|f\|_{W \mathcal{M}_{p, \lambda}\left(\mathbb{R}^{n}\right)}=\sup _{x \in \mathbb{R}^{n}, r>0} r^{-\lambda / p}\|f\|_{W L_{p}(B(x, r))}<\infty,
$$

where WL_{p} denotes the weak L_{p}-space.
Spanne (see [22]) and Adams [1] studied the boundedness of the fractional maximal operator M_{α} for $0<\alpha<n$ in Morrey spaces $\mathcal{M}_{p, \lambda}$. Later on Chiarenza and Frasca [11] studied the boundedness of the maximal operator M in these spaces. Their results can be summarized as follows:

Theorem 1.1. (1) Let $0 \leq \alpha<n, 1<p_{1}<n / \alpha, 0<\lambda<n-\alpha p_{1}$ and $1 / p_{1}-1 / p_{2}=\alpha / n-\lambda$. Then M_{α} is bounded from $\mathcal{M}_{p_{1}, \lambda}$ to $\mathcal{M}_{p_{2}, \lambda}$.
(2) Let $0 \leq \alpha<n, 0<\lambda<n-\alpha$ and $1-1 / p_{2}=\alpha /(n-\lambda)$. Then M_{α} is bounded from $\mathcal{M}_{1, \lambda}$ to $W \mathcal{M}_{p_{2}, \lambda}$.

If in the place of the power function $r^{-\lambda / p}$ in the definition of $\mathcal{M}_{p, \lambda}$ we consider any positive weight function w defined on $(0, \infty)$, then it becomes the Morreytype space $\mathcal{M}_{p, w}$. T. Mizuhara [17] and E. Nakai [20] extended the above results to these spaces and obtained the following sufficient conditions on a weight w ensuring the boundedness of the maximal operator M and the fractional maximal operator M_{α}.
Theorem 1.2. Let w be a positive decreasing function satisfying the following condition: there exists $1 \leq c_{1}<2^{n / p}$, such that

$$
w(r) \leq c_{1} w(2 r)
$$

for all $r>0$.
For $1<p<\infty M$ is bounded from $\mathcal{M}_{p, w}$ to $\mathcal{M}_{p, w}$, and for $p=1 M$ is bounded from $\mathcal{M}_{1, w}$ to $W \mathcal{M}_{1, w}$

Theorem 1.3. Let w be a positive decreasing function satisfying the following condition: there exists $c_{2}>0$, such that

$$
\begin{equation*}
0<r \leq t \leq 2 r \Rightarrow w(r) \leq c_{2}^{-1} w(t) \leq w(r) \leq c_{2} w(t) \tag{1.1}
\end{equation*}
$$

Moreover, let $\alpha=n\left(1 / p_{1}-1 / p_{2}\right)$ and let for some $c_{3}>0$ for all $r>0$

$$
\begin{equation*}
\int_{r}^{\infty} \frac{d t}{w^{p_{1}}(t) t^{n+1-\alpha p_{1}}} \leq \frac{c_{3}}{w^{p_{1}}(r) r^{n p_{1} / p_{2}}} \tag{1.2}
\end{equation*}
$$

(1) For $1<p_{1}=p_{2}<\infty M_{\alpha}$ is bounded from $\mathcal{M}_{p_{1}, w}$ to $\mathcal{M}_{p_{1}, w}$, and for $p=1$ M is bounded from $\mathcal{M}_{1, w}$ to $W \mathcal{M}_{1, w}$.
(2) For $1<p_{1}<p_{2}<\infty M_{\alpha}$ is bounded from $\mathcal{M}_{p_{1}, w}$ to $\mathcal{M}_{p_{2}, w}$, and for $p_{1}=1$ M_{α} is bounded from $\mathcal{M}_{1, w}$ to $W \mathcal{M}_{p_{2}, w}$.

Theorem 1.2 was proved by Mizuhara [17] and Theorem 1.3 by Nakai. Note that Theorem 3 implies Theorem 2.

In [2] D.R.Adams introduced a variant of Morrey-type spaces as follows: For $0 \leq \lambda \leq n, 1 \leq p, \theta \leq \infty, f \in \mathcal{M}_{p \theta, \lambda}$ if $f \in L_{p}^{\text {loc }}\left(\mathbb{R}^{n}\right)$ and

$$
\|f\|_{\mathcal{M}_{p \theta, \lambda}} \equiv\|f\|_{\mathcal{M}_{p \theta, \lambda}\left(\mathbb{R}^{n}\right)}=\sup _{x \in \mathbb{R}^{n}}\left\|r^{-\frac{\lambda}{p}}\right\| f\left\|_{L_{p}(B(x, r))}\right\|_{L_{\theta}(0, \infty)}<\infty
$$

(If $\theta=\infty$, then $\mathcal{M}_{p \theta, \lambda}=\mathcal{M}_{p, \lambda}$.)
In [5]-[8] the boundedness of maximal and fractional maximal operators from $L M_{p_{1} \theta_{1}, w_{1}}$ to $L M_{p_{2} \theta_{2}, w_{2}}$ and from $G M_{p_{1} \theta_{1}, w_{1}}$ to $G M_{p_{2} \theta_{2}, w_{2}}$ have been investigated. Moreover, for some values of the parameters necessary and sufficient conditions for the operators $M f$ and $M_{\alpha} f$ to be bounded from $L M_{p_{1} \theta_{1}, w_{1}}$ to $L M_{p_{2} \theta_{2}, w_{2}}$ were obtained.

Theorem 1.4. Let $1<p_{1}<\infty, 0<p_{2}<\infty, n\left(1 / p_{1}-1 / p_{2}\right)_{+} \leq \alpha<n$, $0<\theta_{2} \leq \infty, \omega_{2} \in \Omega_{\theta_{2}}$.

1. For $\alpha<n / p_{1}$, let $\omega_{1} \in \Omega_{\theta_{1}}$ and

$$
\begin{equation*}
\left\|\omega_{2}(r) r^{n / p_{2}}\right\| \omega_{1}^{-1}(t) t^{\alpha-n / p_{1}-1 / \min \left\{p_{1}, \theta_{1}\right\}}\left\|_{L_{s}(r, \infty)}\right\|_{L_{\theta_{2}}(0, \infty)}<\infty \tag{1.3}
\end{equation*}
$$

where $s=p_{1} \theta_{1} /\left(\theta_{1}-p_{1}\right)_{+}$. (If $\theta_{1} \leq p_{1}$, then $\left.s=\infty\right)$ Then M_{α} is bounded from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$.
2. For $\alpha=n / p_{1}$, let

$$
\begin{equation*}
\omega_{2}(r) r^{\alpha-n\left(1 / p_{1}-1 / p_{2}\right)} \in L_{\theta_{2}}(0, \infty) . \tag{1.4}
\end{equation*}
$$

Then M_{α} is bounded from $L_{p_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$.
Theorem 1.5. 1. If $0 \leq p_{1} \leq \infty, 0<p_{2} \leq \infty, 0 \leq \alpha<n, 0<\theta_{1}, \theta_{2} \leq \infty$, $\omega_{1} \in \Omega_{\theta_{1}}$ and $\omega_{2} \in \Omega_{\theta_{2}}$, then the condition

$$
\begin{equation*}
t^{\alpha-n / p_{1}+\min \left\{n-\alpha, n / p_{2}\right\}}\left\|\omega_{2}(r) \frac{r^{n / p_{2}}}{(t+r)^{\min \left\{n-\alpha, n / p_{2}\right\}}}\right\|_{L_{\theta_{2}}(0, \infty)} \leq c\left\|\omega_{1}\right\|_{L_{\theta_{1}}(t, \infty)} \tag{1.5}
\end{equation*}
$$

for all $t>0$, where $c>0$ is independent of t, is necessary for the boundedness of M_{α} from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$.
2. If $1<p_{1}<\infty, 0<p_{2}<\infty, 0<\theta_{1} \leq \theta_{2} \leq \infty, \theta_{1} \leq p_{1} n\left(1 / p_{1}-1 / p_{2}\right)_{+} \leq$ $\alpha<n / p_{1}, \omega_{1} \in \Omega_{\theta_{1}}$ and $\omega_{2} \in \Omega_{\theta_{2}}$, then the condition

$$
\begin{equation*}
\left\|\omega_{2}(r) \frac{r^{n / p_{2}}}{(t+r)^{n / p_{1}-\alpha}}\right\|_{L_{\theta_{2}}(0, \infty)} \leq c\left\|\omega_{1}\right\|_{L_{\theta_{1}}(t, \infty)} \tag{1.6}
\end{equation*}
$$

for all $t>0$, where $c>0$ is independent of t, is sufficient for the boundedness of M_{α} from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$ and from $G M_{p_{1} \theta_{1}, \omega_{1}}$ to $G M_{p_{2} \theta_{2}, \omega_{2}}$. (In the latter case we assume that $\omega_{1} \in \Omega_{p_{1}, \theta_{1}}, \omega_{2} \in \Omega_{p_{2}, \theta_{2}}$)
3. In particular, if $1<p_{1} \leq p_{2}<\infty, 0<\theta_{1} \leq \theta_{2} \leq \infty, \theta_{1} \leq p_{1}, \alpha=$ $n\left(1 / p_{1}-1 / p_{2}\right), \omega_{1} \in \Omega_{\theta_{1}}$ and $\omega_{2} \in \Omega_{\theta_{2}}$, then the condition

$$
\begin{equation*}
\left\|\omega_{2}(r)\left(\frac{r}{t+r}\right)^{n / p_{2}}\right\|_{L_{\theta_{2}}(0, \infty)} \leq c\left\|\omega_{1}\right\|_{L_{\theta_{1}}(t, \infty)} \tag{1.7}
\end{equation*}
$$

for all $t>0$, where $c>0$ is independent of t, is necessary and sufficient for the boundedness of M_{α} from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$.

Theorem 1.4 and Theorem 1.5 were proved in [8].
In this paper we improve the estimate of L_{p} norm of the farctional maximal operator over balls obtained in [8], and find sufficient conditions for the boundedness of M_{α} from $L M_{p_{1} \theta_{1}, w_{1}}$ to $L M_{p_{2} \theta_{2}, w_{2}}$ for all admissible values of parameters. It is evident that these conditions are sufficient for the boundedness of M_{α} from $G M_{p_{1} \theta_{1}, w_{1}}$ to $G M_{p_{2} \theta_{2}, w_{2}}$ too.

2. Definitions and basic properties of Morrey-type spaces

Definition 2.1. Let $0<p, \theta \leq \infty$ and let w be a non-negative measurable function on $(0, \infty)$. We denote by $L M_{p_{1}, \theta_{1}, \omega_{1}}, G M_{p, \theta, \omega}$, the local Morrey-type spaces, the global Morrey-type spaces respectively, the spaces of all functions $f \in L_{p}^{\text {loc }}\left(\mathbb{R}^{n}\right)$ with finite quasinorms

$$
\begin{gathered}
\|f\|_{L M_{p_{1}, \theta_{1}, \omega_{1}}} \equiv\|f\|_{L M_{p_{1}, \theta_{1}, \omega_{1}}\left(\mathbb{R}^{n}\right)}=\|w(r)\| f\left\|_{L_{p}(B(0, r))}\right\|_{L_{\theta}(0, \infty)}, \\
\|f\|_{G M_{p, \theta, \omega}}=\sup _{x \in \mathbb{R}^{n}}\|f(x+\cdot)\|_{L M_{p_{1}, \theta_{1}, \omega_{1}}}
\end{gathered}
$$

respectively.
Note that

$$
\|f\|_{L M_{p \propto, 1}}=\|f\|_{G M_{p \propto, 1}}=\|f\|_{L_{p}} .
$$

Furthermore, $G M_{p \infty, r^{-\lambda / p}} \equiv \mathcal{M}_{p, \lambda}, 0<\lambda<n$. The interpolation properties of the spaces $G M_{p \infty, w}$ were studied by S. Spanne in [22]. The spaces $G M_{p \theta, r^{-\lambda}}$ were used by G. Lu [21] for studying the embedding theorems for vector fields of Hörmander type. The boundedness of various integral operators in the spaces $G M_{p \infty, w}$ was studied by T. Mizuhara [17] and E. Nakai [20]. In [5, 6] the boundedness of the maximal operator M from $L M_{p_{1} \theta_{1}, w_{1}}$ to $L M_{p_{2} \theta_{2}, w_{2}}$ and from $G M_{p_{1} \theta_{1}, w_{1}}$ to $G M_{p_{2} \theta_{2}, w_{2}}$ was investigated.

In [6] the following statement was proved.
Lemma 2.2. Let $0<p, \theta \leq \infty$ and let w be a non-negative measurable function on $(0, \infty)$.

1. If for all $t>0$

$$
\begin{equation*}
\|w(r)\|_{L_{\theta}(t, \infty)}=\infty \tag{2.1}
\end{equation*}
$$

then $L M_{p_{1}, \theta_{1}, \omega_{1}}=G M_{p, \theta, \omega}=\Theta$, where Θ is the set of all functions equivalent to 0 on \mathbb{R}^{n}.
2. If for all $t>0$

$$
\begin{equation*}
\left\|w(r) r^{n / p}\right\|_{L_{\theta}(0, t)}=\infty \tag{2.2}
\end{equation*}
$$

then, for all functions $f \in L M_{p_{1}, \theta_{1}, \omega_{1}}$, continuous at $0, f(0)=0$, and for $0<p<$ $\infty G M_{p, \theta, \omega}=\Theta$.
Definition 2.3. Let $0<p, \theta \leq \infty$. We denote by Ω_{θ} the set of all functions w which are non-negative, measurable on $(0, \infty)$, not equivalent to 0 and such that for some $t>0$

$$
\begin{equation*}
\|w(r)\|_{L_{\theta}(t, \infty)}<\infty . \tag{2.3}
\end{equation*}
$$

Moreover, we denote by $\Omega_{p, \theta}$ the set of all functions w which are non-negative, measurable on $(0, \infty)$, not equivalent to 0 and such that for some $t_{1}, t_{2}>0$

$$
\begin{equation*}
\|w(r)\|_{L_{\theta}\left(t_{1}, \infty\right)}<\infty, \quad\left\|w(r) r^{n / p}\right\|_{L_{\theta}\left(0, t_{2}\right)}<\infty \tag{2.4}
\end{equation*}
$$

In the sequel, keeping in mind Lemma 2.2, we always assume that either $w \in \Omega_{\theta}$ or $w \in \Omega_{p, \theta}$.

In [9] the following statements were proved.
Lemma 2.4. Let $1<p_{1} \leq \infty, 0<p_{2} \leq \infty, 0 \leq \alpha<n, 0<\theta_{1}, \theta_{2} \leq \infty$, $\omega_{1} \in \Omega_{\theta_{1}}$, and $\omega_{2} \in \Omega_{\theta_{2}}$. Then the condition

$$
\alpha \leq \frac{n}{p_{1}}
$$

is necessary for the boundedness of M_{α} from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$.
Lemma 2.5. Let $1 \leq p_{1} \leq \infty, 0<p_{2} \leq \infty, 0 \leq \alpha<n, 0<\theta_{1}, \theta_{2} \leq \infty$, $\omega_{1} \in \Omega_{\theta_{1}}$, and $\omega_{2} \in \Omega_{\theta_{2}}$. Moreover, let $\omega_{1} \in L_{\theta_{1}}(0, \infty)$. Then the condition ${ }^{1}$

$$
\begin{equation*}
\alpha \geq n\left(\frac{n}{p_{1}}-\frac{n}{p_{2}}\right)_{+} \tag{2.5}
\end{equation*}
$$

is necessary for the boundedness of M_{α} from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$.
Remark 2.6. If $\omega_{1} \in \Omega_{\theta_{1}}$ but $\omega_{1} \notin L_{\theta_{1}}(0, \infty)$, then condition (2.5) is not necessary for the boundedness of M_{α} from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$.

Throughout this paper $a \lesssim b,(b \gtrsim a)$, means that $a \leq \lambda b$, where $\lambda>0$ depends on inessential parameters. If $b \lesssim a \lesssim b$, then we write $a \approx b$.

[^0]
3. L_{p}-estimates of Fractional maximal function over balls

The following Theorem is true.
Theorem 3.1. Let $1<p<\infty$, and $f \in L_{p}^{\text {loc }}\left(\mathbb{R}^{n}\right)$. Then for any ball $B=B(x, r)$ in \mathbb{R}^{n}

$$
\begin{equation*}
\left\|M_{\alpha} f\right\|_{L_{p}(B)} \lesssim\left\|M_{\alpha}\left(f \chi_{(2 B)}\right)\right\|_{L_{p}(B)}+|B|^{\frac{1}{p}}\left(\sup _{t \geq 2 r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right) \tag{3.1}
\end{equation*}
$$

Proof. It is obvious that for any ball $B=B(x, r)$

$$
\left\|M_{\alpha} f\right\|_{L_{p}(B)} \leq\left\|M_{\alpha}\left(f \chi_{(2 B)}\right)\right\|_{L_{p}(B)}+M_{\alpha}\left(f \chi_{\mathbb{R}^{n} \backslash(2 B)}\right) \|_{L_{p}(B)}
$$

Let y be an arbitrary point from B. If $B(y, t) \cap\left\{\mathbb{R}^{n} \backslash(2 B)\right\} \neq \emptyset$, then $t>r$. Indeed, if $z \in B(y, t) \cap\left\{\mathbb{R}^{n} \backslash(2 B)\right\}$, then $t \geq|z-y| \geq|z-x|-|x-y|>2 r-r=r$.

On the other hand $B(y, t) \cap\left\{\mathbb{R}^{n} \backslash(2 B)\right\} \subset B(x, 2 t)$. Indeed, $z \in B(y, t) \cap$ $\left\{\mathbb{R}^{n} \backslash(2 B)\right\}$, then we get $|z-x| \leq|z-y|+|y-x| \leq t+r \leq 2 t$.

Hence

$$
\begin{aligned}
& M_{\alpha}\left(f \chi_{\mathbb{R}^{n} \backslash(2 B)}\right)(y)=\sup _{t>0} \frac{1}{|B(y, t)|^{1-\frac{\alpha}{n}}} \int_{B(y, t) \cap\left\{\mathbb{R}^{n} \backslash(2 B)\right\}}|f| \\
\lesssim & \sup _{t \geq r} \frac{1}{|B(x, 2 t)|^{1-\frac{\alpha}{n}}} \int_{B(x, 2 t)}|f|=\sup _{t \geq 2 r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f| .
\end{aligned}
$$

Thus

$$
\left\|M_{\alpha} f\right\|_{L_{p}(B)} \lesssim\left\|M_{\alpha}\left(f \chi_{(2 B)}\right)\right\|_{L_{p}(B)}+|B|^{\frac{1}{p}}\left(\sup _{t \geq 2 r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right)
$$

Theorem 3.2. Let $1<p<\infty$, and $f \in L_{p}^{\text {loc }}\left(\mathbb{R}^{n}\right)$. Then for any ball $B=B(x, r)$ in \mathbb{R}^{n}

$$
\begin{equation*}
\left\|M_{\alpha} f\right\|_{L_{p}(B)} \gtrsim|B|^{\frac{1}{p}}\left(\sup _{t>r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right) \tag{3.2}
\end{equation*}
$$

Proof. Since $B\left(x, \frac{t}{2}\right) \subset B(y, t), t>2 r$, then

$$
M_{\alpha} f(y) \gtrsim \sup _{t>2 r} \frac{1}{\left|B\left(x, \frac{t}{2}\right)\right|^{1-\frac{\alpha}{n}}} \int_{B\left(x, \frac{t}{2}\right)}=\sup _{t>r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|,
$$

thus

$$
\begin{equation*}
\left\|M_{\alpha} f\right\|_{L_{p}(B)} \gtrsim|B|^{\frac{1}{p}}\left(\sup _{t>r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right) \tag{3.3}
\end{equation*}
$$

The following Lemma is true

Lemma 3.3. Let $0 \leq \alpha<n, 0<p_{2}<\infty$. Moreover, let $1<\frac{p_{2} n}{n+\alpha p_{2}} \leq p_{1}<\infty$, or $\frac{p_{2} n}{n+\alpha p_{2}}<1 \leq p_{1}<\infty$, or $\frac{p_{2} n}{n+\alpha p_{2}}=1<p_{1}<\infty$. Then

$$
\begin{equation*}
\left\|M_{\alpha}\left(f \chi_{B(0,2 r)}\right)\right\|_{L_{p_{2}}(B(0, r))} \lesssim r^{\alpha-n\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}\|f\|_{L_{p_{1}}(B(0,2 r))} \tag{3.4}
\end{equation*}
$$

for all $r>0$ and $f \in L_{p_{1}}^{\text {loc }}\left(\mathbb{R}^{n}\right)$.
Proof. Since

$$
\begin{equation*}
M_{\alpha} f(x) \lesssim I_{\alpha}(|f|)(x), \tag{3.5}
\end{equation*}
$$

then statement immediately follows from Lemma 3.1 in [4].
From Theorem 3.1 and Lemma 3.3 follows next statement.
Lemma 3.4. Let $0 \leq \alpha<n, 0<p_{2}<\infty, f \in L_{p_{1}}^{\text {loc }}\left(\mathbb{R}^{n}\right)$. Moreover, let $1<\frac{p_{2 n} n}{n+\alpha p_{2}} \leq p_{1}<\infty$, or $\frac{p_{2 n}}{n+\alpha p_{2}}<1 \leq p_{1}<\infty$, or $\frac{p_{2 n}}{n+\alpha p_{2}}=1<p_{1}<\infty$. Then for any ball $B=B(x, r) \subset \mathbb{R}^{n}$

$$
\begin{align*}
& \left\|M_{\alpha} f\right\|_{L_{p_{2}}(B)} \\
& \left.\quad \leq c|B|^{\frac{1}{p_{2}}}\left(\sup _{t \geq 2 r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right)+c|B|^{\frac{\alpha}{n}-\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right.}\right)\|f\|_{L_{p_{1}}(2 B)}, \tag{3.6}
\end{align*}
$$

where constant c does not depend on $|B|$.
The following Lemma is true.
Lemma 3.5. Let $0<\alpha<n, 0<p_{2}<\infty, f \in L_{p_{1}}^{\text {loc }}\left(\mathbb{R}^{n}\right)$. Moreover, let $1<\frac{p_{2 n} n}{n+\alpha p_{2}} \leq p_{1}<\infty$, or $\frac{p_{2 n} n}{n+\alpha p_{2}}<1 \leq p_{1}<\infty$, or $\frac{p_{2} n}{n+\alpha p_{2}}=1<p_{1}<\infty$. Then for any ball $B=B(x, r) \subset \mathbb{R}^{n}$

$$
\begin{equation*}
\left\|M_{\alpha} f\right\|_{L_{p_{2}}(B)} \leq c|B|^{\frac{1}{p_{2}}}\left(\sup _{t \geq r} \frac{1}{|B(x, t)|^{\frac{1}{p_{1}}-\frac{\alpha}{n}}}\left(\int_{B(x, t)}|f|^{p_{1}}\right)^{\frac{1}{p_{1}}}\right) \tag{3.7}
\end{equation*}
$$

where constant c does not depend on $|B|$.
Proof. Denote by

$$
M_{1}:=|B|^{\frac{1}{p_{2}}}\left(\sup _{t \geq 2 r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right), M_{2}:=|B|^{\frac{\alpha}{n}-\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}\|f\|_{L_{p_{1}}(2 B)} .
$$

Applying Hölder's inequality, we get

$$
M_{1} \lesssim|B|^{\frac{1}{p_{2}}}\left(\sup _{t \geq 2 r} \frac{1}{|B(x, t)|^{\frac{1}{p_{1}}-\frac{\alpha}{n}}}\left(\int_{B(x, t)}|f|^{p_{1}}\right)^{\frac{1}{p_{1}}}\right)
$$

On the other hand

$$
|B|^{\frac{1}{p_{2}}}\left(\sup _{t \geq 2 r} \frac{1}{|B(x, t)|^{\frac{1}{p_{1}}-\frac{\alpha}{n}}}\left(\int_{B(x, t)}|f|^{p_{1}}\right)^{\frac{1}{p_{1}}}\right)
$$

$$
\gtrsim|B|^{\frac{1}{p_{2}}}\left(\sup _{t \geq 2 r}|B(x, t)|^{\frac{\alpha}{n}-\frac{1}{p_{1}}}\right)\|f\|_{L_{p_{1}}(2 B)} \approx M_{2}
$$

Since by Lemma 3.4

$$
\left\|M_{\alpha} f\right\|_{L_{p_{2}}(B)} \leq M_{1}+M_{2}
$$

we arrive at (3.7).
Remark 3.6. Inequality (3.7) improves the inequality (22) in [8]

$$
\left\|M_{\alpha} f\right\|_{L_{p_{2}}(B(0, r))} \leq c r^{\frac{n}{p_{2}}}\left(\int_{r}^{\infty}\left(\int_{B(0, t)}|f(x)|^{p_{1}} d x\right) \frac{d t}{t^{n-\alpha p_{1}+1}}\right)^{\frac{1}{p_{1}}}
$$

This follows since

$$
\sup _{t \geq r} \frac{1}{|B(0, t)|^{\frac{1}{p_{1}}-\frac{\alpha}{n}}}\left(\int_{B(0, t)}|f|^{p_{1}}\right)^{\frac{1}{p_{1}}} \leq\left(\int_{r}^{\infty}\left(\int_{B(0, t)}|f(x)|^{p_{1}} d x\right) \frac{d t}{t^{n-\alpha p_{1}+1}}\right)^{\frac{1}{p_{1}}}
$$

Indeed, by easy calculation and the Fubini theorem, we get

$$
\begin{gathered}
\sup _{t \geq r} \frac{1}{|B(0, t)|^{\frac{1}{p_{1}}-\frac{\alpha}{n}}}\left(\int_{B(0, t)}|f|^{p_{1}}\right)^{\frac{1}{p_{1}}} \\
\leq \sup _{t \geq r} \frac{1}{|B(0, t)|^{\frac{1}{p_{1}}-\frac{\alpha}{n}}}\left(\int_{B(0, r)}|f|^{p_{1}}\right)^{\frac{1}{p_{1}}}+\sup _{t \geq r} \frac{1}{|B(0, t)|^{\frac{1}{p_{1}}-\frac{\alpha}{n}}}\left(\int_{B(0, t) \backslash B(0, r)}|f|^{p_{1}}\right)^{\frac{1}{p_{1}}} \\
\leq \frac{1}{|B(0, r)|^{\frac{1}{p_{1}}-\frac{\alpha}{n}}}\left(\int_{B(0, r)}|f|^{p_{1}}\right)^{\frac{1}{p_{1}}}+\left(\int_{\mathbb{R}^{n} \backslash B(0, r)} \frac{|f(x)|^{p_{1}}}{|x|^{n-\alpha p_{1}}} d x\right)^{\frac{1}{p_{1}}} \\
\\
\lesssim\left(\int_{r}^{\infty}\left(\int_{B(0, r)}|f|^{p_{1}}\right) \frac{d t}{t^{n-\alpha p_{1}+1}}\right)^{\frac{1}{p_{1}}} \\
+\left(\int_{r}^{\infty}\left(\int_{B(0, t) \backslash B(0, r)}|f(x)|^{p_{1}} d x\right) \frac{d t}{t^{n-\alpha p_{1}+1}}\right)^{\frac{1}{p_{1}}} \\
\lesssim\left(\int_{r}^{\infty}\left(\int_{B(0, t)}|f(x)|^{p_{1}} d x\right) \frac{d t}{t^{n-\alpha p_{1}+1}}\right)^{\frac{1}{p_{1}}} .
\end{gathered}
$$

The following Theorem is true.
Theorem 3.7. Let $0 \leq \alpha<n, 0<p<\infty, \frac{p n}{n+\alpha p}<1$, and $f \in L_{p}^{\text {loc }}\left(\mathbb{R}^{n}\right)$. Then for any ball $B=B(x, r) \subset \mathbb{R}^{n}$

$$
\begin{equation*}
\left\|M_{\alpha} f\right\|_{L_{p}(B)} \approx r^{\frac{n}{p}}\left(\sup _{t>r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right) \tag{3.8}
\end{equation*}
$$

Proof. In view of the Theorem 3.2 we need only to prove that

$$
\left\|M_{\alpha} f\right\|_{L_{p}(B)} \lesssim r^{\frac{n}{p}}\left(\sup _{t>r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right) .
$$

By Lemma 3.4, we have

$$
\left\|M_{\alpha} f\right\|_{L_{p}(B)} \lesssim|B|^{\frac{\alpha}{n}-\left(1-\frac{1}{p}\right)}\|f\|_{L_{1}(2 B)}+|B|^{\frac{1}{p}}\left(\sup _{t \geq 2 r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right) .
$$

But

$$
\begin{aligned}
|B|^{\frac{\alpha}{n}-\left(1-\frac{1}{p}\right)}\|f\|_{L_{1}(2 B)} & \approx|B|^{\frac{1}{p}} \frac{1}{|2 B|^{1-\frac{\alpha}{n}}} \int_{2 B}|f(y)| d y \\
& \leq|B|^{\frac{1}{p}}\left(\sup _{t \geq 2 r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|M_{\alpha} f\right\|_{L_{p}(B)} & \lesssim r^{\frac{n}{p}}\left(\sup _{t>2 r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right) \\
& \leq r^{\frac{n}{p}}\left(\sup _{t>r} \frac{1}{|B(x, t)|^{1-\frac{\alpha}{n}}} \int_{B(x, t)}|f|\right) .
\end{aligned}
$$

4. Fractional maximal operator and Hardy-type operator involving suprema

Let $\mathfrak{M}(0, \infty)$ be the set of all Lebesgue-measurable functions on $(0, \infty)$ and $\mathfrak{M}^{+}(0, \infty)$ its subset consisting of all nonnegative functions on $(0, \infty)$. We denote by $\mathfrak{M}^{+}(0, \infty ; \uparrow)$ the cone of all functions in $\mathfrak{M}^{+}(0, \infty)$ which are non-decreasing on $(0, \infty)$ and

$$
\mathbb{A}=\left\{f \in \mathfrak{M}^{+}(0, \infty ; \uparrow): \lim _{t \rightarrow 0+} f(t)=0\right\}
$$

Let u be a continous weight on $(0, \infty)$. We define the Hardy-type operator involving suprema H_{u} on $g \in \mathfrak{M}^{+}(0, \infty)$ by

$$
\left(H_{u} g\right)(t) ;=\sup _{t \leq r<\infty} u(r) g(r), t \in(0, \infty) .
$$

The following Lemma is true.
Lemma 4.1. Let $0 \leq \alpha<n, 0<p_{2}<\infty, 0<\theta_{2} \leq \infty$ and $\omega_{2} \in \Omega_{\theta_{2}}$. Moreover, let $1<\frac{p_{2 n}}{n+\alpha p_{2}} \leq p_{1}<\infty$, or $\frac{p_{2 n}}{n+\alpha p_{2}}<1 \leq p_{1}<\infty$, or $\frac{p_{2 n}}{n+\alpha p_{2}}=1<p_{1}<\infty$.

Then

$$
\begin{equation*}
\left\|M_{\alpha} f\right\|_{L M_{p_{2}, \theta_{2}, \omega_{2}}} \lesssim\left\|H_{u} g\right\|_{L_{\theta_{2}, v_{2}}(0, \infty)} \tag{4.1}
\end{equation*}
$$

for all $f \in L_{p}^{\text {loc }}\left(\mathbb{R}^{n}\right)$, where

$$
\begin{gather*}
g(t)=\|f\|_{L_{p_{1}}(B(0, t))}, \tag{4.2}\\
u(r)=r^{\alpha-\frac{n}{p_{1}}} \tag{4.3}
\end{gather*}
$$

and

$$
\begin{equation*}
v_{2}(r)=\omega_{2}^{\theta_{2}}(r) r^{\theta_{2} \frac{n}{p_{2}}} . \tag{4.4}
\end{equation*}
$$

Proof. By Lemma 3.5 we have

$$
\begin{align*}
\left\|M_{\alpha} f\right\|_{L M_{p_{2}, \theta_{2}, \omega_{2}}} & \lesssim\left\|\omega_{2}(t) t^{\frac{n}{p_{2}}} \sup _{t \leq r<\infty} r^{\alpha-\frac{n}{p_{1}}}\right\| f\left\|_{L_{p_{1}}(B(0, r))}\right\|_{L_{\theta_{2}}(0, \infty)} \tag{4.5}\\
& =\left\|H_{u} g\right\|_{L_{\theta_{2}, v_{2}}(0, \infty)} .
\end{align*}
$$

Theorem 4.2. Let $0 \leq \alpha<n, 0<p_{2}<\infty, 0<\theta_{1}, \theta_{2} \leq \infty, \omega_{1} \in \Omega_{\theta_{1}}$ and $\omega_{2} \in \Omega_{\theta_{2}}$. Moreover, let $1<\frac{p_{2} n}{n+\alpha p_{2}} \leq p_{1}$, or $\frac{p_{2} n}{n+\alpha p_{2}}<1 \leq p_{1}$, or $\frac{p_{2} n}{n+\alpha p_{2}}=1<p_{1}$.

Assume that the operator H_{u} is bounded from $L_{\theta_{1}, v_{1}}(0, \infty)$ to $L_{\theta_{2}, v_{2}}(0, \infty)$ on A, that is,

$$
\begin{equation*}
\left\|H_{u} g\right\|_{L_{\theta_{2}, v_{2}}(0, \infty)} \lesssim\|g\|_{L_{\theta_{1}, v_{1}}(0, \infty)} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{1}(r)=\omega_{1}^{\theta_{1}}(r) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{2}(r)=\omega_{2}^{\theta_{2}}(r) r^{\theta_{2} \frac{n}{p_{2}}} . \tag{4.8}
\end{equation*}
$$

Then M_{α} is bounded from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$.
Proof. Since g is non-negative and non-decreasing function on $(0, \infty)$ and H_{u} is bounded from $L_{\theta_{1}, v_{1}}$ to $L_{\theta_{2}, v_{2}}$ on the cone of functions containing g, by Lemma 4.1 we have

$$
\left\|M_{\alpha} f\right\|_{L M_{p_{2}, \theta_{2}, \omega_{2}}} \lesssim\|g\|_{L_{\theta_{1}, v_{1}}(0, \infty)}=\left(\int_{0}^{\infty} v_{1}(r)(g(r))^{\theta_{1}} d r\right)^{\frac{1}{\theta_{1}}}
$$

Hence

$$
\left\|M_{\alpha} f\right\|_{L M_{p_{2}, \theta_{2}, \omega_{2}}} \lesssim\left\|\omega_{1}(r)\right\| f\left\|_{L_{p_{1}}(B(0, r))}\right\|_{L_{\theta_{1}}(0, \infty)}=\|f\|_{L M_{p_{1}, \theta_{1}, \omega_{1}}}
$$

5. Weighted inequalities for Hardy-type operators involving SUPREMA

Note that the inequality

$$
\begin{equation*}
\left\|H_{u} \varphi\right\|_{L_{\theta_{2}, w_{2}}} \lesssim\|\varphi\|_{L_{\theta_{1}, w_{1}}}, \varphi \in \mathbb{A} \tag{5.1}
\end{equation*}
$$

that is

$$
\begin{equation*}
\left(\int_{0}^{\infty} w_{2}(t)(\underset{t \leq r<\infty}{\operatorname{ess} \sup } u(r) \varphi(r))^{\theta_{2}} d t\right)^{\frac{1}{\theta_{2}}} \lesssim\left(\int_{0}^{\infty} w_{1}(t)(\varphi(t))^{\theta_{1}} d t\right)^{\frac{1}{\theta_{1}}} \tag{5.2}
\end{equation*}
$$

is equivalent to the inequality

$$
\begin{equation*}
\left(\int_{0}^{\infty} w_{2}(t)\left(\underset{t \leq r<\infty}{\operatorname{ess} \sup }\left(u(r)^{\theta_{1}} \varphi(r)\right)^{\frac{\theta_{2}}{\theta_{1}}} d t\right)^{\frac{\theta_{1}}{\theta_{2}}} \lesssim \int_{0}^{\infty} w_{1}(t) \varphi(t) d t, \varphi \in \mathbb{A}\right. \tag{5.3}
\end{equation*}
$$

Given $\varphi \in \mathbb{A}$, there is a sequence $\left\{h_{n}\right\}$ of positive functions such that

$$
\begin{equation*}
\int_{0}^{t} h_{n}(s) d s \nearrow \varphi, t \in(0, \infty) \tag{5.4}
\end{equation*}
$$

By the Fatou lemma, we see that (5.1) holds if and only if the inequality

$$
\begin{align*}
\left(\int _ { 0 } ^ { \infty } w _ { 2 } (t) \left(\sup _{t \leq r<\infty}\right.\right. & \left.\left.(u(r))^{\theta_{1}} \int_{0}^{r} h(s) d s\right)^{\frac{\theta_{2}}{\theta_{1}}} d t\right)^{\frac{\theta_{1}}{\theta_{2}}} \tag{5.5}\\
& \lesssim \int_{0}^{\infty} w_{1}(t)\left(\int_{0}^{t} h(s) d s\right) d t
\end{align*}
$$

are satisfied for all $h \in \mathfrak{M}^{+}(0, \infty)$. Summarizing, By Fubini theorem, we obtain that (5.1) holds if and only if the inequality

$$
\begin{array}{r}
\left(\int_{0}^{\infty} w_{2}(t)\left(\sup _{t \leq r<\infty}(u(r))^{\theta_{1}} \int_{0}^{r} h(s) d s\right)^{\frac{\theta_{2}}{\theta_{1}}} d t\right)^{\frac{\theta_{1}}{\theta_{2}}} \tag{5.6}\\
\quad \lesssim \int_{0}^{\infty} h(s)\left(\int_{s}^{\infty} w_{1}(t) d t\right) d s
\end{array}
$$

are satisfied for all $h \in \mathfrak{M}^{+}(0, \infty)$.
Let us recall the following Theorem. (see Theorem 4.1 and Theorem 4.4 in [3] Theorem 5.1. Let $0<q<\infty$ and let u be a continuous weight. Let v and w be weights such that $0<\int_{0}^{x} v(t) d t<\infty$ and $0<\int_{0}^{x} w(t) d t<\infty$ for every $x \in(0, \infty)$.
(i) Let $1 \leq q$. Then the inequality

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left[\sup _{t \leq s<\infty} \frac{u(s)}{s} \int_{0}^{s} g(y) d y\right]^{q} w(t) d t\right)^{1 / q} \lesssim \int_{0}^{\infty} g(t) v(t) d t \tag{5.7}
\end{equation*}
$$

holds on $\mathfrak{M}^{+}(0, \infty)$ if and only if

$$
\begin{equation*}
\sup _{x>0}\left(\left(\frac{\bar{u}(x)}{x}\right)^{q} \int_{0}^{x} w(t) d t+\int_{x}^{\infty}\left(\frac{\bar{u}(t)}{t}\right)^{q} w(t) d t\right)^{1 / q} \underset{0<t<x}{\operatorname{ess} \sup } \frac{1}{v(t)}<\infty \tag{5.8}
\end{equation*}
$$

where

$$
\bar{u}(t)=t \sup _{t \leq \tau<\infty} \frac{u(\tau)}{\tau}, t \in(0, \infty)
$$

(ii) Let $q<1$. Then the inequality (5.7) holds on $\mathfrak{M}^{+}(0, \infty)$ if and only if

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left(\int_{t}^{\infty}\left(\frac{\bar{u}(s)}{s}\right)^{q} w(s) d s\right)^{\frac{q}{1-q}}\left(\frac{\bar{u}(t)}{t}\right)^{q}\left[\underset{\substack{\operatorname{ess} \sup }}{ } \frac{1}{v(\tau)}\right]^{\frac{q}{1-q}} w(t) d t\right)^{\frac{1-q}{q}}<\infty \tag{5.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left(\int_{0}^{t} w(s) d s\right)^{\frac{q}{1-q}}\left[\sup _{t \leq \tau<\infty} \frac{\bar{u}(\tau)}{\tau} \underset{0<s<\tau}{\operatorname{ess} \sup } \frac{1}{v(s)}\right]^{\frac{q}{1-q}} w(t) d t\right)^{\frac{1-q}{q}}<\infty \tag{5.10}
\end{equation*}
$$

The following Theorem is true.
Theorem 5.2. Let $q=\infty$ and u be a continuous weight on $(0, \infty)$. Let v and w be weights such that $0<\operatorname{ess} \sup _{0<t<x}(v(t))^{-1}<\infty$ and $0<\operatorname{ess}^{\sup } 0_{0<t<x} w(t)<\infty$ for every $x \in(0, \infty)$. Then the inequality (5.7) holds on $\mathfrak{M}^{+}(0, \infty)$ if and only if

$$
\begin{equation*}
\sup _{t>0}\left(\int_{t}^{\infty} \frac{u(s)}{s}(\underset{0<r<s}{\operatorname{ess} \sup } w(r)) d s\right) \underset{0<r<t}{\operatorname{ess} \sup } \frac{1}{v(r)}<\infty \tag{5.11}
\end{equation*}
$$

Proof. When $q=\infty$, the inequality (5.7) takes the form

$$
\begin{equation*}
\underset{t>0}{\operatorname{ess} \sup } \sup _{t \leq s<\infty} w(t)\left(\frac{u(s)}{s} \int_{0}^{s} g(y) d y\right) \lesssim \int_{0}^{\infty} g(t) v(t) d t . \tag{5.12}
\end{equation*}
$$

Applying the Fubini Theorem to the left hand side of (5.12), we get the inequality

$$
\begin{equation*}
\sup _{s>0}\left(\frac{u(s)}{s} \underset{0<t \leq s}{\operatorname{ess} \sup } w(t)\right) \int_{0}^{s} g(y) d y \lesssim \int_{0}^{\infty} g(t) v(t) d t . \tag{5.13}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \int_{0}^{\infty} w(x) \int_{0}^{x} f(t) d t \lesssim \int_{0}^{\infty} f(x) v(x) d x \\
\Leftrightarrow & \sup _{r>0}\left(\int_{r}^{\infty} w(x) d x\right) \underset{\substack{\operatorname{ess} \sup \\
0<x<r}}{ } \frac{1}{v(x)}<\infty
\end{aligned}
$$

(see Theorem 2 on p. 42 in [18]), the inequality (5.13) holds on $\mathfrak{M}^{+}(0, \infty)$ if and only if the condition (5.11) holds.

The following Theorem is true.
Theorem 5.3. Let $0<q<\infty$ and let u be a continuous weight. Let v and w be weights such that $0<\operatorname{ess} \sup _{t \leq y<\infty} v(y)<\infty$ for any $t>0$, $\operatorname{ess}_{\sup _{t>0}} v(t)=\infty$.

Then the inequality

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left[\sup _{t \leq s<\infty} \frac{u(s)}{s} \int_{0}^{s} g(y) d y\right]^{q} w(t) d t\right)^{1 / q} \lesssim \underset{t>0}{\operatorname{esssup}} v(t) \int_{0}^{t} g(s) d s \tag{5.14}
\end{equation*}
$$

holds on $\mathfrak{M}^{+}(0, \infty)$ if and only if

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left(\underset{t<s<\infty}{\operatorname{ess} \sup } \frac{u(s)}{s} \frac{1}{\operatorname{ess} \sup _{s<y<\infty} v(y)}\right)^{q} w(t) d t\right)^{\frac{1}{q}}<\infty . \tag{5.15}
\end{equation*}
$$

Proof. Whenever F, G are non-negative functions on $(0, \infty)$ and F is non-decreasing, then

$$
\begin{equation*}
\underset{t \in(0, \infty)}{\operatorname{ess} \sup } F(t) G(t)=\underset{t \in(0, \infty)}{\operatorname{ess} \sup } F(t) \underset{s \in(t, \infty)}{\operatorname{ess} \sup } G(s), t \in(0, \infty) . \tag{5.16}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\underset{t>0}{\operatorname{esss} \sup } v(t) \int_{0}^{t} g(s) d s=\underset{t>0}{\operatorname{ess} \sup }\left(\int_{0}^{t} g(s) d s\right) \underset{t<y<\infty}{\operatorname{ess} \sup } v(y) . \tag{5.17}
\end{equation*}
$$

At first let us to prove sufficiency. Assume that the condition (5.15) holds. Then

$$
\begin{align*}
& \left(\int_{0}^{\infty}\left[\sup _{t \leq s<\infty} \frac{u(s)}{s} \int_{0}^{s} g(y) d y\right]^{q} w(t) d t\right)^{1 / q} \\
& =\left(\int_{0}^{\infty}\left[\underset{\operatorname{ess} \sup }{t \leq s<\infty} \frac{u(s)}{s} \frac{\operatorname{ess}_{\sup }^{s<y<\infty}}{} \frac{\operatorname{ess}_{s u p} v(y)}{s} \sup _{s<y<\infty} v(y) \quad \int_{0}^{s} g(y) d y\right]^{q} w(t) d t\right)^{1 / q} \\
& \leq \sup _{t>0} \operatorname{ess} \sup v(y) \int_{0}^{t} g(s) d s \times \tag{5.18}\\
& \times\left(\int_{0}^{\infty}\left(\operatorname{esssup}_{t<s<\infty} \frac{u(s)}{s} \frac{1}{\operatorname{ess} \sup _{s<y<\infty} v(y)}\right)^{q} w(t) d t\right)^{\frac{1}{q}} \\
& \leq c \sup _{t>0} \operatorname{ess} \sup v(y) \int_{0}^{t} g(s) d s .
\end{align*}
$$

To prove necessity note that, for every non-decreasing function Φ on ($0, \infty$), there is a sequence $\left\{H_{n}\right\}_{n=1}^{\infty}$ of smooth increasing functions such that $H_{n} \nearrow \Phi$ as $n \rightarrow \infty$. The functions H_{n}, being smooth, can be represented as $H_{n}(t)=$ $\int_{0}^{t} h_{n}(s) d s+H_{n}(0)$ for some positive measurable functions h_{n} on $(0, \infty)$. Applying this to the non-decreasing function $\Phi(t)=\left(\operatorname{esssup}_{t<y<\infty} v(y)\right)^{-1}$, let $\left\{h_{n}\right\}$ be a sequence of positive measurable functions on $(0, \infty)$, such that

$$
\begin{equation*}
\int_{0}^{t} h_{n}(s) d s \nearrow \Phi(t), n \rightarrow \infty \text { a.e. on }(0, \infty) \tag{5.19}
\end{equation*}
$$

For the right hand side of the inequality

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left[\sup _{t \leq s<\infty} \frac{u(s)}{s} \int_{0}^{s} h_{n}(y) d y\right]^{q} w(t) d t\right)^{1 / q} \lesssim \operatorname{ess}_{t>0}^{\operatorname{esp}} v(t) \int_{0}^{t} h_{n}(s) d s \tag{5.20}
\end{equation*}
$$

we have

$$
\begin{equation*}
\underset{t>0}{\operatorname{ess} \sup } v(t) \int_{0}^{t} h_{n}(s) d s \leq \underset{t>0}{\operatorname{ess} \sup } v(t)(\underset{t<y<\infty}{\operatorname{esssup}} v(y))^{-1} \leq 1 \text {. } \tag{5.21}
\end{equation*}
$$

In view of the fact, that from (5.19) follows that

$$
\sup _{t \leq s<\infty} \frac{u(s)}{s} \int_{0}^{s} g(y) d y \nearrow \operatorname{esssup}_{t \leq s<\infty}^{\operatorname{ess}} \frac{u(s)}{s} \Phi(s), n \rightarrow \infty \text { a.e. on }(0, \infty)
$$

(5.20) and (5.21), by Fatou's lemma, imply (5.15).

Theorem 5.4. Let $q=\infty$ and Let u be a continuous weight. Let v and w be weights such that $0<\operatorname{ess}^{\sup }{ }_{t \leq y<\infty} v(y)<\infty$ for any $t>0$, ess $\sup _{t>0} v(t)=\infty$.

Then the inequality (5.14) holds on $\mathfrak{M}^{+}(0, \infty)$ if and only if

$$
\begin{equation*}
\underset{t>0}{\operatorname{ess} \sup } \frac{u(r)}{r} \frac{\operatorname{ess} \sup _{0<t \leq r} w_{2}(t)}{\operatorname{ess} \sup _{r<y<\infty} v(y)}<\infty . \tag{5.22}
\end{equation*}
$$

Proof. If $q=\infty$, then the inequality (5.14) takes the form

$$
\begin{equation*}
\underset{t>0}{\operatorname{esssup}} w_{2}(t) \sup _{t \leq r<\infty} \frac{u(r)}{r} \int_{0}^{r} g(y) d y \lesssim \underset{t>0}{\operatorname{ess} \sup } w_{1}(t) \int_{0}^{t} g(y) d y . \tag{5.23}
\end{equation*}
$$

Applying the Fubini theorem to the left hand side and in view of (5.17) for right hand side, we can write (5.23) in the following form

$$
\begin{equation*}
\underset{t>0}{\operatorname{ess} \sup } \frac{u(r)}{r}\left(\underset{0<t \leq r}{\operatorname{ess} \sup } w_{2}(t)\right) \int_{0}^{r} g(y) d y \lesssim \underset{t>0}{\operatorname{ess} \sup }\left(\int_{0}^{t} g(s) d s\right) \underset{t<y<\infty}{\operatorname{ess} \sup } v(y) . \tag{5.24}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \operatorname{ess} \sup \\
& t>0 \\
& =\underset{t>0}{\operatorname{ess} \sup } \frac{u(r)}{r}\left(\underset{0<t \leq r}{\operatorname{ess} \sup } w_{2}(t)\right) \int_{0}^{r} g(y) d y \\
& \left.\leq \underset{0<t \leq r}{\operatorname{ess} \sup _{2}} w_{2}(t)\right) \frac{u}{\operatorname{ess} \sup _{r<y<\infty} v(y)} \int_{0}^{r} g(y) d y \\
& \leq \underset{t>0}{\operatorname{ess} \sup _{r<y<\infty} v(y)} \frac{u(r)}{r} \frac{\operatorname{ess}^{2} \sup _{0<t \leq r} w_{2}(t)}{\operatorname{ess} \sup _{r<y<\infty} v(y)} \underset{t>0}{\operatorname{esssup}}\left(\int_{0}^{t} g(s) d s\right) \underset{t<y<\infty}{\operatorname{ess} \sup v(y),}
\end{aligned}
$$

we get, that the condition (5.22) is sufficient for the inequality (5.23) to be hold.
The necessity part can be proved in similar way, as it was done in the proof of Theorem 5.3.

From Theorem 5.3 immediately follows next Corollary.
Corollary 5.5. Let $0<\theta_{1}, \theta_{2}<\infty$ and u be a continuous weight. Let w_{1} and w_{2} be weights such that $0<\int_{0}^{x} \int_{t}^{\infty} w_{1}(s) d s d t<\infty$ and $0<\int_{0}^{x} w_{2}(t) d t<\infty$ for every $x \in(0, \infty)$.
(i) Let $\theta_{1} \leq \theta_{2}$. Then the inequality (5.6) holds on $\mathfrak{M}^{+}(0, \infty)$ if and only if

$$
\begin{align*}
& \sup _{x>0}\left(\left(\sup _{x \leq \tau<\infty}(u(\tau))^{\theta_{2}}\right) \int_{0}^{x} \omega_{2}(t) d t+\int_{x}^{\infty}\left(\sup _{t \leq \tau<\infty}(u(\tau))^{\theta_{2}}\right) \omega_{2}(t) d t\right)^{\frac{\theta_{1}}{\theta_{2}}} \times \tag{5.25}\\
& \times\left(\int_{x}^{\infty} \omega_{1}(\tau) d \tau\right)^{-1}<\infty
\end{align*}
$$

(ii) Let $\theta_{2}<\theta_{1}$. Then the inequality (5.6) holds on $\mathfrak{M}^{+}(0, \infty)$ if and only if

$$
\begin{array}{r}
\left(\int_{0}^{\infty}\left(\int_{t}^{\infty}\left(\sup _{s \leq \tau<\infty}(u(\tau))^{\theta_{2}}\right) w_{2}(s) d s\right)^{\frac{\theta_{2}}{\theta_{1}-\theta_{2}}}\left(\sup _{t \leq \tau<\infty}(u(\tau))^{\theta_{2}}\right) \times\right. \\
\left.\times\left(\int_{t}^{\infty} \omega_{1}(s) d s\right)^{\frac{\theta_{2}}{\theta_{2}-\theta_{1}}} w_{2}(t) d t\right)^{\frac{\theta_{1}-\theta_{2}}{\theta_{2}}}<\infty, \tag{5.26}
\end{array}
$$

and

$$
\begin{align*}
& \left(\int _ { 0 } ^ { \infty } (\int _ { 0 } ^ { t } w _ { 2 } (s) d s) ^ { \frac { \theta _ { 2 } } { \theta _ { 1 } - \theta _ { 2 } } } \left[\sup _{t \leq \tau<\infty}\left(\sup _{\tau \leq y<\infty}(u(y))^{\theta_{1}}\right) \times\right.\right. \\
& \left.\left.\quad \times\left(\int_{\tau}^{\infty} \omega_{1}(y) d y\right)^{-1}\right]^{\frac{\theta_{2}}{\theta_{1}-\theta_{2}}} w_{2}(t) d t\right)^{\frac{\theta_{1}-\theta_{2}}{\theta_{2}}}<\infty \tag{5.27}
\end{align*}
$$

6. Sufficient conditions

Theorem 6.1. Let $0 \leq \alpha<n, 0<p_{2}<\infty, 0<\theta_{1}, \theta_{2} \leq \infty, \omega_{1} \in \Omega_{\theta_{1}}$ and $\omega_{2} \in \Omega_{\theta_{2}}$. Moreover, let $1<\frac{p_{2} n}{n+\alpha p_{2}} \leq p_{1}$, or $\frac{p_{2} n}{n+\alpha p_{2}}<1 \leq p_{1}$, or $\frac{p_{2} n}{n+\alpha p_{2}}=1<p_{1}$.
(i) Let $\theta_{1} \leq \theta_{2}$. If

$$
\begin{equation*}
\sup _{x>0} \frac{\left\|\left(\min \left\{\frac{t}{x}, 1\right\}\right)^{\frac{n}{p_{1}}-\alpha} \omega_{2}(t) t^{\alpha-n\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}\right\|_{L_{\theta_{2}}(0, \infty)}}{\left\|\omega_{1}\right\|_{L_{\theta_{1}}(x, \infty)}}<\infty \tag{6.1}
\end{equation*}
$$

then M_{α} is bounded from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$ and from $G M_{p_{1} \theta_{1}, \omega_{1}}$ to $G M_{p_{1} \theta_{2}, \omega_{2}}$. (In the latter case we assume that $\omega_{1} \in \Omega_{p_{1}, \theta_{1}}, \omega_{2} \in \Omega_{p_{2}, \theta_{2}}$)
(ii) Let $\theta_{2}<\theta_{1}$. If

$$
\begin{align*}
& \left(\int_{0}^{\infty}\left(\int_{t}^{\infty} s^{\theta_{2}\left(\alpha-\frac{n}{p_{1}}+\frac{n}{p_{2}}\right)} w_{2}^{\theta_{2}}(s) d s\right)^{\frac{\theta_{2}}{\theta_{1}-\theta_{2}}} t^{\theta_{2}\left(\alpha-\frac{n}{p_{1}}+\frac{n}{p_{2}}\right)} \times\right. \\
& \left.\quad \times\left(\int_{t}^{\infty} \omega_{1}^{\theta_{1}}(s) d s\right)^{\frac{\theta_{2}}{\theta_{2}-\theta_{1}}} w_{2}^{\theta_{2}}(t) d t\right)^{\frac{\theta_{1}-\theta_{2}}{\theta_{2}}}<\infty \tag{6.2}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\int _ { 0 } ^ { \infty } (\int _ { 0 } ^ { t } s ^ { \theta _ { 2 } \frac { n } { p _ { 2 } } } w _ { 2 } ^ { \theta _ { 2 } } (s) d s) ^ { \frac { \theta _ { 2 } } { \theta _ { 1 } - \theta _ { 2 } } } \left[\sup _{t \leq \tau<\infty} \tau^{\theta_{1}\left(\alpha-\frac{n}{p_{1}}\right)} \times\right.\right. \\
& \left.\left.\times\left(\int_{\tau}^{\infty} \omega_{1}^{\theta_{1}}(y) d y\right)^{-1}\right]^{\frac{\theta_{2}}{\theta_{1}-\theta_{2}}} t^{\theta_{2} \frac{n}{p_{2}}} w_{2}(t) d t\right)^{\frac{\theta_{1}-\theta_{2}}{\theta_{2}}}<\infty, \tag{6.3}
\end{align*}
$$

then M_{α} is bounded from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$ and from $G M_{p_{1} \theta_{1}, \omega_{1}}$ to $G M_{p_{1} \theta_{2}, \omega_{2}}$. (In the latter case we assume that $\omega_{1} \in \Omega_{p_{1}, \theta_{1}}, \omega_{2} \in \Omega_{p_{2}, \theta_{2}}$)
(iii) Let $0<\theta_{1}<\infty, \theta_{2}=\infty$. Moreover, assume that

$$
0<\left\|\omega_{1}\right\|_{L_{\theta_{1}}(x, \infty)}^{-1}<\infty
$$

and $0<\operatorname{ess} \sup _{0<t<x} \omega_{2}(t) t^{\frac{n}{p_{2}}}<\infty$ for every $x \in(0, \infty)$. If

$$
\begin{equation*}
\sup _{t>0}\left\|s^{\alpha-\frac{n}{p_{1}}} \underset{0<r<s}{\operatorname{ess} \sup } \omega_{2}(r) r^{\frac{n}{p_{2}}}\right\|_{L_{\theta_{1}}(t, \infty)}\left\|\omega_{1}\right\|_{L_{\theta_{1}}(t, \infty)}^{-1}<\infty \tag{6.4}
\end{equation*}
$$

then M_{α} is bounded from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{1}, \infty, \theta_{2}}$ and from $G M_{p_{1}, \theta_{1}, \omega_{1}}$ to $G M_{p_{1}, \infty, \omega_{2}}$. (In the latter case we assume that $\omega_{1} \in \Omega_{p_{1}, \theta_{1}}, \omega_{2} \in \Omega_{p_{2}, \infty}$)
(iv) Let $\theta_{1}=\infty, 0<\theta_{2}<\infty$. Moreover, assume that $0<\operatorname{ess}_{\sup }^{t \leq y<\infty} \omega_{1}(y)<$ ∞ for any $t>0$, ess $\sup _{t>0} \omega(t)=\infty$. If

$$
\begin{equation*}
\left\|\omega_{2}(t) t^{\frac{n}{p_{2}}} \operatorname{ess} \sup _{t<s<\infty} \frac{s^{\alpha-\frac{n}{p_{1}}}}{\operatorname{ess}^{2} \sup _{s<y<\infty} \omega_{1}(y)}\right\|_{L_{\theta_{2}}(0, \infty)}<\infty \tag{6.5}
\end{equation*}
$$

then M_{α} is bounded from $L M_{p_{1}, \infty, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$ and from $G M_{p_{1}, \infty, \omega_{1}}$ to $G M_{p_{1}, \theta_{2}, \omega_{2}}$. (In the latter case we assume that $\omega_{1} \in \Omega_{p_{1}, \infty}, \omega_{2} \in \Omega_{p_{2}, \theta_{2}}$)
(v) Let $\theta_{1}=\theta_{2}=\infty$. Moreover, assume that $0<\operatorname{esssup}_{t \leq y<\infty} \omega_{1}(y)<\infty$ for any $t>0$, $\operatorname{esssup}_{t>0} \omega(t)=\infty$. If

$$
\begin{equation*}
\underset{r>0}{\operatorname{ess} s u p} r^{\alpha-\frac{n}{p_{1}}} \frac{\operatorname{ess} \sup _{0<t \leq r} \omega_{2}(t) t^{\frac{n}{p_{2}}}}{\operatorname{ess} \sup _{r<t<\infty} \omega_{1}(t)}<\infty, \tag{6.6}
\end{equation*}
$$

then M_{α} is bounded from $L M_{p_{1}, \infty, \omega_{1}}$ to $L M_{p_{2}, \infty, \omega_{2}}$ and from $G M_{p_{1}, \infty, \omega_{1}}$ to $G M_{p_{1}, \infty, \omega_{2}}$. (In the latter case we assume that $\omega_{1} \in \Omega_{p_{1}, \infty}, \omega_{2} \in \Omega_{p_{2}, \infty}$)
Proof. (iii) Let $0<\theta_{1}<\infty, \theta_{2}=\infty$. Theorem 4.2 states, that if

$$
\begin{equation*}
\operatorname{ess~sup}_{t>0} \omega_{2}(t) t^{\frac{n}{p_{2}}} \sup _{t \leq r<\infty} r^{\alpha-\frac{n}{p_{1}}} \varphi(r) \lesssim\left(\int_{0}^{\infty} \omega_{1}^{\theta_{1}}(t)(\varphi(t))^{\theta_{1}} d t\right)^{\frac{1}{\theta_{1}}} \text { on } \mathbb{A}, \tag{6.7}
\end{equation*}
$$

then M_{α} is bounded from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{1}, \infty, \theta_{2}}$. But the inequality is equivalent to the following inequality

$$
\begin{equation*}
\underset{t>0}{\operatorname{ess} \sup } \omega_{2}^{\theta_{1}}(t) t^{\theta_{1} \frac{n}{p_{2}}} \underset{t \leq r<\infty}{\operatorname{ess} \sup } r^{\theta_{1}\left(\alpha-\frac{n}{p_{1}}\right)} g(r) \lesssim \int_{0}^{\infty} g(t)\left(\int_{t}^{\infty} \omega_{1}^{\theta_{1}}(s) d s\right) \tag{6.8}
\end{equation*}
$$

on $\mathfrak{M}^{+}(0, \infty)$ (see Section 6). By Theorem 5.2, we get, that the inequality (6.8) holds if and only if the condition

$$
\begin{equation*}
\sup _{t>0}\left(\int_{t}^{\infty} s^{\theta_{1}\left(\alpha-\frac{n}{p_{1}}\right)}\left(\underset{0<r<s}{\operatorname{ess} \sup } \omega_{2}^{\theta_{1}}(r) r^{\theta_{1} \frac{n}{p_{2}}}\right) d s\right)\left(\int_{t}^{\infty} \omega_{1}^{\theta_{1}}(\tau) d \tau\right)^{-1}<\infty, \tag{6.9}
\end{equation*}
$$

that is, the condition (6.4) holds.
(iv) Let $\theta_{1}=\infty, 0<\theta_{2}<\infty$. Theorem 4.2 and argumentations at the beginning of Section show, that if

$$
\begin{equation*}
\left(\int_{0}^{\infty} \omega_{2}^{\theta_{2}}(t) t^{\theta_{2} \frac{n}{p_{2}}}\left[\sup _{t \leq r<\infty} r^{\alpha-\frac{n}{p_{1}}} \int_{0}^{r} g(s) d s\right]^{\theta_{2}} d t\right)^{\frac{1}{\theta_{2}}} \lesssim \underset{t>0}{\operatorname{ess} \sup } \omega_{1}(r) \int_{0}^{r} g(s) d s \tag{6.10}
\end{equation*}
$$

on $\mathfrak{M}^{+}(0, \infty)$, then M_{α} is bounded from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{1}, \infty, \theta_{2}}$. By Theorem 5.3, the inequality (6.10) holds if and only if the condition

$$
\left(\int_{0}^{\infty}\left(\underset{t<s<\infty}{\operatorname{ess} \sup } \frac{s^{\alpha-\frac{n}{p_{1}}}}{\operatorname{ess}^{\sup }}{ }_{s<y<\infty} \omega_{1}(y)\right)^{\theta_{2}} \omega_{2}^{\theta_{2}}(t) t^{\theta_{2} \frac{n}{p_{2}}} d t\right)^{\frac{1}{\theta_{2}}}<\infty
$$

that is, the condition (6.5) holds.
(v) Let $\theta_{1}=\theta_{2}=\infty$. Theorem 4.2 and argumentations at the beginning of Section show, that if

$$
\begin{equation*}
\underset{t>0}{\operatorname{ess} \sup } \omega_{2}(t) t^{\frac{n}{p_{2}}} \sup _{t \leq r<\infty} r^{\alpha-\frac{n}{p_{1}}} \int_{0}^{r} g(s) d s \lesssim \underset{t>0}{\operatorname{esssup}} \omega_{1}(r) \int_{0}^{r} g(s) d s \tag{6.11}
\end{equation*}
$$

on $\mathfrak{M}^{+}(0, \infty)$, then M_{α} is bounded from $L M_{p_{1}, \infty, \omega_{1}}$ to $L M_{p_{1}, \infty, \theta_{2}}$. By Theorem 5.3 , the inequality (6.10) holds if and only if the condition

$$
\underset{r>0}{\operatorname{ess} \sup } r^{\alpha-\frac{n}{p_{1}}} \frac{\operatorname{ess}_{\operatorname{ssp}}^{0<t \leq r}}{} \omega_{2}(t) t^{\frac{n}{p_{2}}}{\operatorname{ess} \sup _{r<t<\infty} \omega_{1}(t)}_{\infty}
$$

holds.
Remark 6.2. Let $0 \leq \alpha<n, 0<p_{2}<\infty, 1<\frac{p_{2} n}{n+\alpha p_{2}} \leq p_{1}$, or $\frac{p_{2} n}{n+\alpha p_{2}}<1 \leq p_{1}$, or $\frac{p_{2} n}{n+\alpha p_{2}}=1<p_{1}$. Moreover, let $1<\theta_{1} \leq \theta_{2}<\infty$, and β such that

$$
\beta+\frac{1}{\theta_{2}}<0, \beta+\frac{n}{p_{2}}+\frac{1}{\theta_{2}}>0, \beta+\frac{n}{p_{2}}+\frac{1}{\theta_{2}}+\alpha-\frac{n}{p_{1}}<0
$$

then it is easy calculate that the weight functions $\omega_{1}(t)=t^{\beta+\frac{n}{p_{2}}+\frac{1}{\theta_{2}}+\alpha-\frac{n}{p_{1}}-\frac{1}{\theta_{1}}}$, $\omega_{2}(t)=t^{\beta}$ satisfy the condition (i) of the Theorem 6.1. Thus M_{α} is bounded from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$. But no power function can satisfy the condition (1.3).

Remark 6.3. For $1<p_{1}<p_{2}<\infty, \alpha=n\left(1 / p_{1}-p_{2}\right), \omega_{1} \in \Omega_{p_{1}, \infty}, \omega_{2} \in \Omega_{p_{2}, \infty}$ Theorem 6.1 states that if

$$
\begin{equation*}
\underset{r>0}{\operatorname{esssup}} r^{\alpha-\frac{n}{p_{1}}} \frac{\operatorname{ess} \sup _{0<t \leq r} \omega_{2}(t) t^{\frac{n}{p_{2}}}}{\operatorname{ess} \sup _{r<t<\infty} \omega_{1}(t)}<\infty, \tag{6.12}
\end{equation*}
$$

then M_{α} is bounded from $\mathcal{M}_{p_{1}, \omega_{1}}$ to $\mathcal{M}_{p_{2}, \omega_{2}}$. Let $\omega=\omega_{1}=\omega_{2}$ and (1.1) holds. Then (6.13) takes the form

$$
\begin{equation*}
\underset{0<t \leq r}{\operatorname{ess} \sup } \omega(t) t^{\frac{n}{p_{2}}} \lesssim \omega(r) r^{\frac{n}{p_{1}}-\alpha} . \tag{6.13}
\end{equation*}
$$

Note that the condition (6.13) follows from the condition (1.2). Indeed, if the condition (1.2) holds, then for any $t \leq r$ we get

$$
\int_{r}^{2 r} \frac{d s}{w^{p_{1}}(s) s^{n+1-\alpha p_{1}}} \lesssim \frac{1}{w^{p_{1}}(t) t^{n p_{1} / p_{2}}}
$$

By (1.1), we have

$$
\frac{1}{w^{p_{1}}(r) r^{n-\alpha p_{1}}} \lesssim \frac{1}{w^{p_{1}}(t) t^{n p_{1} / p_{2}}}
$$

Hence

$$
\omega(t) t^{\frac{n}{p_{2}}} \lesssim \omega(r) r^{\frac{n}{p_{1}}-\alpha} .
$$

Therefore

$$
\underset{0<t \leq r}{\operatorname{ess} \sup } \omega(t) t^{\frac{n}{p_{2}}} \lesssim \omega(r) r^{\frac{n}{p_{1}}-\alpha} .
$$

The weight function $\omega(t)=t^{\alpha-\frac{n}{p_{1}}}$ satisfies our condition and it is easy to see that the condition (1.2) does not hold for ω, since

$$
\int_{t}^{\infty} \frac{d s}{\omega(s)^{p_{1}} s^{n+1-\alpha p_{1}}}=\infty
$$

Theorem 6.4. Let $1<p_{1} \leq p_{2}<\infty, 0<\theta_{1} \leq \theta_{2} \leq \infty, \alpha=n\left(1 / p_{1}-1 / p_{2}\right)$, $\omega_{1} \in \Omega_{\theta_{1}}$ and $\omega_{2} \in \Omega_{\theta_{2}}$, then the condition

$$
\begin{equation*}
\left\|\omega_{2}(r)\left(\frac{r}{t+r}\right)^{n / p_{2}}\right\|_{L_{\theta_{2}(0, \infty)}} \leq c\left\|\omega_{1}\right\|_{L_{\theta_{1}}(t, \infty)} \tag{6.14}
\end{equation*}
$$

for all $t>0$, where $c>0$ is independent of t, is necessary and sufficient for the boundedness of M_{α} from $L M_{p_{1}, \theta_{1}, \omega_{1}}$ to $L M_{p_{2}, \theta_{2}, \omega_{2}}$.

Proof. The necessity foolows from Theorem 1.5 item (1). The sufficiency follows from Theorem 6.1 item (i).

Remark 6.5. Note that, in the case $\theta_{1} \leq p_{1}$ Theorem 6.4 was proved in [8].

Acknowledgement. Rza Mustafayev would like to express his gratitude to INTAS for the possibility to visit the Institute of Mathematics of Academy of Sciences of Czech Republic during 2007/8, under his INTAS YSF Post Doctoral programme and also the Institute of Mathematics of Academy of Sciences of Czech Republic for its hospitality.

References

[1] D.R.Adams A note on Riesz potentials . Duke Math., 42 (1975), p.765-778.
[2] D.R.Adams Lectures on L^{p}-Potential Theory. Umea U., 1981, Report no. 2, 1-74.
[3] A.Gogatishvili, B.Opic, L.Pick Weighted inequalities for Hardy-type operators involving suprema. Collect. Math. Vol. 57, No. 3 (2006), p.227-255.
[4] V.Burenkov, A.Gogatishvili, V.Guliyev, R.Mustafayev, Sufficient conditions for boundedness of the fractional integral operators in local Morrey-type spaces. Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-21.
[5] V.I.Burenkov, H.V.Guliyev, Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces. (in Russian) Doklady Ross. Akad. Nauk, 391(2003), 591-594.
[6] V.I.Burenkov, H.V.Guliyev, Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces. Studia Mathematica, 163 (2) (2004), p.157-176.
[7] V.I.Burenkov, H.V.Guliyev, V.S.Guliyev Necessary and sufficient conditions for the boundedness of the fractional maximal operator in the local Morrey-type spaces. Doklady Ross. Akad. Nauk, (409) 2006, N0. 4, 441-447.
[8] V.I.Burenkov, H.V.Guliyev, V.S.Guliyev, Necessary and sufficient conditions for boundedness of the fractional maximal operators in the local Morrey-type spaces. J. of Comt. and Appl. Math. 208 (1) (2007), p.280-301.
[9] V.I.Burenkov, H.V.Guliyev, V.S.Guliyev Necessary and sufficient conditions for the boundedness of the Riesz operator in the local Morrey-type spaces. Doklady Ross. Akad. Nauk, (412) 2007, 1-5.
[10] V.I.Burenkov, V.S.Guliyev Necessary and sufficient conditions for the boundedness of the Riesz operator in the local Morrey-type spaces. (to appear).
[11] F.Chiarenza, M.Frasca, Morrey spaces and Hardy-Littlewood maximal function. Rend. Math. 7 (1987), 273-279.
[12] V.S.Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in \mathbb{R}^{n}. Doctor's degree dissertation, Moscow, Mat. Inst. Steklov, 1994, 1-329. (Russian)
[13] V.S.Guliyev, R.Ch.Mustafayev, Integral operators of potential type in spaces of homogeneous type. (Russian) Doklady Ross. Akad. Nauk, (354) 1997, no.6, 730-732.
[14] V.S.Guliyev, R.Ch.Mustafayev, Fractional integrals in spaces of functions defined on spaces of homogeneous type. (Russian) Anal. Math. 24 (1998), no.3, 181-200.
[15] E.M.Stein, Singular integrals and differentiability of functions. Princeton Univ. Press, Princeton, NJ, 1970.
[16] E.M.Stein, G.Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton Univ. Press, Princeton, NJ, 1971.
[17] T.Mizuhara, Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis (S. Igari, Editor), ICM 90 Satellite Proceedings, Springer - Verlag, Tokyo (1991), 183-189.
[18] V.G.Maz'ya, Sobolev Spaces. (Russian) Liningrad Univ., Leningrad, 1985, 416 pp.; English translation from the Russian by T.O.Shaposhnikova. Springer-Verlag, Berlin-New York, 1985. xix +486 pp .
[19] C.B.Morrey, On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43 (1938), 126-166.
[20] E.Nakai, Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces. Math. Nachr. 166 (1994), 95-103.
[21] G.Lu, Embedding theorems on Campanato-Morrey spaces for vector fields and applications. C.R.Acad. Sci. Paris 320 (1995), 429-434.
[22] S. Spanne, Sur l'interpolation entre les espaces $\mathcal{L}_{k}^{p, \Phi}$. Ann. Schola Norm. Sup. Pisa. 20 (1966), 625-648.

Viktor Burenkov
Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, United Kingdom

E-mail: burenkov@cardiff.ac.uk
Amiran Gogatishvili
Institute of Mathematics of the Academy of Sciences of the Czech Republic, Źitna 25, 11567 Prague 1, Czech Republic

E-mail: gogatish@math.cas.cz
Vagif Guliyev
Institute of Mathematics and Mechanics, Academy of Sciences of Azerbaijan, F. Agayev St. 9, Baku, AZ 1141, Azerbaijan

E-mail: vagif@guliyev.com
Rza Mustafayev
Institute of Mathematics and Mechanics, Academy of Sciences of Azerbaijan, F. Agayev St. 9, Baku, AZ 1141, Azerbaijan

E-mail: rzamustafayev@mail.az

[^0]: ${ }^{1}$ Here and in the sequel $t_{+}=t$ if $t \geq 0$ and $t_{+}=0$ if $t<0$ and $t_{-}=-t$ if $t \leq 0$ and $t_{-}=0$ if $t>0$.

