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VLADIMIR MÜLLER AND YURI TOMILOV

Abstract. Let c = {cp,q} ⊂ C, p, q ∈ N, p > q, be such that D −
limp→∞ cp,q = 0 for each q ∈ N, and let T be a power bounded operator
on a Hilbert space H with infinite peripheral spectrum and empty point
peripheral spectrum. We prove that c can be interpolated by the orbits
of T in the sense that the set of x’s from H with 〈T nkx, T nk′ x〉 = cnk,nk′

for a certain increasing sequence {nk} ⊂ N (depending on x) and all
k, k′ ∈ N, k > k′, is dense in H. In particular, the set of weakly wandering
vectors for such T is dense in H. This extends previous similar results
known only in the context of unitary representations of groups. Our
results are optimal as far as spectral conditions are concerned. Moreover,
our technique allows to treat operators whose sequence of powers is
unbounded.

1. Introduction

A classical result going back to Krengel [13] says that if U is a unitary
operator on a Hilbert space H then U has continuous spectrum if and only
if for every x ∈ H and ε > 0 there exists y ∈ H and an infinite increasing
sequence {ni} ⊂ N such that ‖x−y‖ < ε and the vectors {Uniy} are mutually
orthogonal.

The Krengel result was extended for unitary representations of various
types of groups by Bergelson, Mityagin, and Kornfeld, Leibman, Gracham,
del Junco and Begun, see [8], [3], [4], [2] [6], [1]. Their approaches relied on
a) a kind of involved inductive construction of Uniy with strictly decaying
deviation from orthogonality (Krengel), b) a tricky application of a Banach
fixed point theorem on an appropriate subset of l2(Z) (Bergelson, Mityagin,
Kornfeld, Leibman), c) a spectral theorem for unitary operators (represen-
tations) thus reducing the problem to a certain result on Fourier transforms
of finite measures (del Junco) or Fourier coefficients of orthonormal systems
in L2 (Begun) requiring in turn nevertheless an application of a fixed point
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theorem again. In all of these approaches the assumption of unitarity (iso-
metricity) was indispensable and the corresponding reasonings in b) and c)
could not be even started otherwise.

We treat the problem of weak wandering from the point of view of abstract
operator theory. The purpose of the paper is to create a general framework
for the study of weakly wandering vectors of operators being in general far
from unitary ones.

Our result on weak wandering is a consequence of a (formally) more gen-
eral theorem on interpolation of weak orbits of power bounded operators on
Hilbert spaces. The study of weak orbits for power bounded operators at-
tracted a considerable attention last years in view of similarity problems, see,
for instance, [22], [23], [5]. There the fact that weak orbits of contractions
and power bounded operators have different ”interpolation properties” was
exploited, in particular, to produce new examples of power bounded op-
erators not similar to contractions. On the other hand, while the former
activity concentrated on constructing operators with a weak orbit interpo-
lating a fixed sequence, in this paper we are interested in interpolation of
a fixed sequence by the orbits of a fixed operator. This seems to be much
more difficult task. Given a power bounded operator T subject to certain
necessary spectral conditions, we show, in particular, that any sequence in
c0(N) contains a subsequence that can be interpolated by the corresponding
subsequence of a weak orbit of T , see Theorem 4.1. However, the price we
have to pay is that we have no, in general, control over the distribution of
”interpolation nodes”.

2. Weak wandering and peripheral spectrum

Let H be a complex Hilbert space, and let B(H) be the space of bounded
linear operators on H. As usual, denote by σ(T ) and σp(T ) the spectrum
and the point spectrum of T ∈ B(H) respectively.

As our arguments will depend on the notion of convergence in density we
will give some basic definitions and properties of this type of convergence.
Let A ⊂ N. The lower and upper density of A are defined by

Dens A = lim inf
n→∞

n−1card {a ∈ A : a ≤ n}

and
Dens A = lim sup

n→∞
n−1card {a ∈ A : a ≤ n},

respectively. If the lower and upper densities of A coincide, then the common
value is called the density of A and denoted by Dens A.

A sequence {xn} of elements of a normed space converges to x in density
if there exists a subset A ⊂ N,Dens(A) = 0, such that limn→∞,n6∈A xn = x.
Equivalently, D− limn→∞ xn = x if and only if there exists a subset A ⊂ N
with Dens A = 0 with the property that for each ε > 0 there exists n0 ∈ N
such that ‖xn − x‖ < ε, n ≥ n0, n /∈ A.
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Recall that

D− lim
n→∞

xn = x ⇐⇒ lim
n→∞

1
n

n∑
k=1

‖xk − x‖ = 0.

We will need the following ‘density’ version of the famous de Leeuw-Glicksberg
theorem. Let T := {λ ∈ C : |λ| = 1}.

Theorem 2.1. Let H be a Hilbert space and let T be a power bounded
operator on H. Then

H = H0 ⊕H1, where
H1 := c.l.s{x ∈ H : Tx = λ x, λ ∈ T};
H0 := {x ∈ H : 0 belongs to the weak closure of {Tnx : n ≥ 0}}

= {x ∈ H : D− lim
n→∞

〈Tnx, y〉 = 0 for every y ∈ H}.

A simple proof of this statement can be found in [9]. Alternatively, see
[14, p.108-109]. Thus, if T ∈ B(H) is a power bounded operator then

σp(T ) ∩ T = ∅ ⇐⇒ D− lim
n→∞

〈Tnx, y〉 = 0 for all x, y ∈ H.

This property will be an important tool in our construction.
Note also that if {Nk : k ≥ 1} is a sequence of subsets of N of density 1

then there exists N0 ⊂ N of density 1 such that N0 \ Nk is finite for every
k, see, in particular, [10, Lemma 1], [14, p. 102], and also [21, Lemma 9.1].
Hence if H is separable, then the subspace H0 can be characterized by the
next condition. There exists M ⊂ N, Dens(M) = 0, such that

w − lim
k→∞,
nk 6∈M

Tnkx = 0 for every x ∈ H0.

So for separable H the D-limit in Theorem 2.1 can be chosen along a sub-
sequence {nk} independent of x and y in H. This fact, however, will not be
used in the sequel.

The second important tool in our considerations is the ‘fine’ spectral the-
ory. Let T ∈ B(H) be an operator with spectral radius r(T ) equal to 1.
Suppose that σp(T ) ∩ T = ∅, and let λ ∈ σ(T ) ∩ T. Since σ(T ) ⊂ {z ∈
C : |z| ≤ 1}, we have λ ∈ ∂σ(T ) and consequently, λ is an element of
the approximate point spectrum of T . Moreover, λ ∈ σe(T ) = {z ∈ C :
T − z is not Fredholm}. Indeed, if λ ∈ σ(T ) \ σe(T ) then ind (T − λ) = 0,
and so λ ∈ σp(T ), a contradiction. Hence λ ∈ ∂σe(T ) ⊂ σπe(T ), see [19,
Theorem III.16.8 and Proposition III.19.1], where σπe(T ) denotes the essen-
tial approximate point spectrum of T . This means that for every ε > 0
and every subspace M ⊂ H of finite codimension there exists a unit vector
x ∈ M called approximate eigenvector such that ‖(T − λ)x‖ < ε. It is also
easy to see that for each n0 ∈ N we can even find a unit vector x ∈ M such
that ‖Tnx − λnx‖ < ε for all n ≤ n0. Moreover, since the choice of M is
arbitrary, we are able to keep control over orthogonality relations defined in
terms of finite number of approximate eigenvectors and their images under
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finite number of iterates of T . See, in particular, [15]-[18] and [19] where
this idea was used for the study of orbits of operators.

Now we recall the notion of a weakly wandering vector.

Definition 2.2. A vector x ∈ H is called weakly wandering for T if there ex-
ists an increasing sequence of positive integers {nk} such that 〈Tnkx, Tnsx〉 =
0 for all k, s ∈ N, k 6= s.

Equivalently, x is a weakly wandering vector for T if the orbit {Tnx}n∈N
of T at x contains infinitely many mutually orthogonal vectors.

The notion of weak wandering corresponds to the ‘trivial’ case of subse-
quence interpolation by the orbits of power bounded operators.

To motivate our results we start with the two observations.
Observation 1. If x is a weakly wandering vector for power bounded

T, then x ∈ H0. Indeed, without loss of generality we can assume then
infi ‖Tnix‖ > 0. Then by the orthogonality of {Tnix} and the Bessel in-
equality: ∑

i≥1

∣∣∣〈 Tnix

‖Tnix‖
, y

〉∣∣∣2 ≤ ‖y‖2

for every y ∈ H, so Tnix → 0, i →∞, weakly.
If, moreover, the set of weakly wandering vectors of T is dense then by

Theorem 2.1, we have H1 = {0}, or, equivalently σp(T ) ∩ T = ∅. In other
words, the latter condition is necessary for density of weakly wandering
vectors of T.

In case of unitary T this was the only spectral condition in the Krengel
theorem to guarantee weak wandering property for a dense set of vectors.
However for some power bounded T this assumption does not suffice. Let
us consider several instructive examples.

Example 2.3. Let T = diag ( n
n+1 : n = 1, 2, . . . ). Then T is a selfad-

joint operator, T k = diag (( n
n+1)k : n = 1, 2, . . . ) and the numerical range

W (T k) = conv σ(T k) = [2−k, 1].
If x is any non-zero vector, ‖x‖ = 1, and k, l ∈ N, then 〈T kx, T lx〉 =

〈T k+lx, x〉 ∈ W (T k+l) 63 0. Hence no orbit of T for a non-zero x contains
two orthogonal vectors. Note that σp(T ) ∩ T = ∅ and card (σ(T ) ∩ T) = 1.

Example 2.4. Let k ∈ N and let H be the Hilbert space with an orthonormal
basis ejs, j = 0, . . . , k − 1, s ∈ N. Define T ∈ B(H) by Tejs = s

s+1ηjejs,
where η = e2πi/k. Then the orbit of any non-zero vector contains at most k
mutually orthogonal vectors. Indeed, let x 6= 0, x =

∑
αjsejs. Suppose that

there are n1 < n2 < · · · < nk+1 such that the vectors Tn1x, . . . , Tnk+1x are
mutually orthogonal. Then there are s, r ∈ N such that s < r, s = r (mod k)
and 〈T rx, T sx〉 = 0. Then

0 = 〈T rx, T sx〉 =
k−1∑
j=0

∞∑
s=1

|αjs|2
( s

s + 1
)s+r

.
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Hence αjs = 0 for all j, s and x = 0.
Clearly σp(T ) ∩ T = ∅ and card (σ(T ) ∩ T) = k.

The previous example can give the impression that if the peripheral spec-
trum σ(T ) ∩ T contains at least k points then there are orbits containing
at least k mutually orthogonal vectors. The next example shows that the
situation is more complicated.

Example 2.5. Let T be the operator constructed in Example 2.3 and let S =
T ⊕αT ⊕α3T , where α = e2πi/7. Then no non-zero orbit of T contains two
orthogonal vectors. Indeed, since T is normal, then as in the first example,
W (T k) = conv σ(T k) for every k ∈ N, and, moreover,

conv σ(T k) = conv
{

1, αk, α3k,
1
2k

,
αk

2k
,
α3k

2k
, k ∈ N

}
.

Since according [11] (see also [24], [12]), conv {1, αk, α3k} 63 0, k ∈ N,
geometric considerations show that conv σ(T k) 63 0, k ∈ N, and therefore
W (T k) 63 0, k ∈ N. It remains to observe that for r ≥ s

{〈T rx, T sx〉 : x ∈ H \ {0}} = {〈T r−sT sx, T sx〉 : x ∈ H \ {0}}
= {W (T r−s)‖T sx‖2 : x ∈ H \ {0}}.

Since W (T r−s), r ≥ s, does not contain zero, the latter set does not contain
zero either. So no orbit of a non-zero vector x contains two orthogonal
vectors. Note that in this case σp(T ) ∩ T = ∅ and card (σ(T ) ∩ T) = 3.

Observation 2. Thus, to prove the existence of weakly wandering vectors
for a general power bounded T it is reasonable to assume that the peripheral
spectrum of T is infinite.

Now Observations 1 and 2 suggest that if T is power bounded then the
strongest result on weak wandering we may hope to obtain for T is that
the conditions σ(T ) ∩ T is infinite and σp(T ) ∩ T = ∅ imply the existence of
a dense subset of weakly wandering vectors for T . This is one of the main
results of the paper. Moreover, weakly wandering vectors exist and are dense
even for a large class of operators whose powers might grow arbitrarily fast.

Three more natural questions arise regarding weakly wandering vectors.
The first question is how large the set of weakly wandering vectors can be.

If T is a nilpotent operator then obviously every vector is weakly wandering.
On the other hand, if T is not nilpotent then weakly wandering vectors form
necessarily a set of first category. In fact, even the set of all vectors whose
orbit contains at least two orthogonal vectors is of first category.

Proposition 2.6. Let T ∈ B(H) be a non-nilpotent operator. Then the
set of all vectors x whose orbit {Tnx : n = 0, 1, . . . } contains at least two
orthogonal vectors is of first category. Consequently, the set of all weakly
wandering vectors for T is of first category.

Proof. Fix non-negative integers m,n, m > n. We show that the set Mm,n =
{x ∈ H : Tmx ⊥ Tnx} is of first category.
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Clearly Mm,n is closed. Suppose on the contrary that Mm,n contains a
non-empty open set U . Let x ∈ U and let y ∈ H be arbitrary. Consider the
function f defined by f(t) = 〈Tm((1− t)x+ ty), Tn((1− t)x+ ty)〉, t ∈ [0, 1].
Then f is a quadratic function. For all t ∈ [0, 1] small enough we have
(1 − t)x + ty ∈ U , and so f(t) = 0. Hence f is identically equal to 0. In
particular, 〈Tmy, Tny〉 = f(1) = 0.

Thus 〈Tm−nu, u〉 = 0 for each u from the range R(Tn) of Tn, and so for
each u ∈ R(Tn). Therefore Tm−n|

R(T n)
= 0, and so Tm = 0, a contradiction.

Hence Mm,n is of first category for all m,n, m > n. Consequently, the
set

⋃
m>n Mm,n of all vectors whose orbit contains at least two orthogonal

vectors is of first category. �

Thus, in particular, the set of weakly wandering vectors is not closed
whenever it is dense.

Note that the set of all weakly wandering vectors may contain a dense lin-
ear manifold. (Consider the unilateral shift on l2(N) and the vectors in l2(N)
with finite support.) It is also possible that the set of all weakly wandering
vectors contains an infinite-dimensional closed subspace. (Consider the uni-
lateral shift on l2(N,H),dim H = ∞ and the subspace {(x, 0, 0, . . . ) : x ∈ H}
of l2(N,H).)

Secondly, for applications, it is important to know how sparse the subse-
quences {nk} along which weak wandering takes place can be (see Definition
2.2). Let us consider the case of unitary T . Recall that the set U of unitary
operators T on H such that Tmk → I, k → ∞, strongly for some subse-
quence {mk} ⊂ N (such operators are called rigid), and σp(T ) ∩ T = ∅ is
residual in the group of unitary operators with a natural metric making it
complete metric space; use for instance, [20, Theorem 8.25] combined with
an easy argument from the proof of [25, Theorem 5.2, (3)⇒(1)].

If T ∈ U then for any x ∈ H there is a subsequence of {nk} denoted
by the same symbol such that ‖Tmk−m′kx − x‖ < 1

2‖x‖, for all k, k′ ∈ N.
By Krengel’s theorem every T ∈ U has a dense set of weakly wandering
vectors. On the other hand, if x wanders along a subsequence {mk} of
positive upper density then ‖Tnk−nk′x − x‖ =

√
2‖x‖, k, k′ ∈ N. Recall

that the set of differences D − D of any set D of positive upper density
intersects nontrivially any set of differences of any infinite subset of N (since
the latter set is a recurrence set, and such sets are intersective, see [7, p.74-
76, p.176-177], [26, Proposition IV.20], for this statement, terminology and
more details.) Hence for some k we must have nk − n′k = mk − m′

k, a
contradiction. Thus, even for the most of unitary operators, we cannot
expect, in general, that wandering takes place along ”massive” subsets of N.
The fact that necessarily Dens ({nk}) = 0 if T is a rigid unitary operator
was noted (with less details) in [3, p. 1133].

Note that by, for example, [20, Theorem ] one has σ(T ) = T if a unitary
T as above is induced by a measure preserving transformation of a finite
measure space so that the size of peripheral spectrum of T does not influence,
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in general, how sparse the subsequence {mk} is. (But it does help to prove
the density of the set of weakly wandering vectors as it was remarked above.)

Third, observe finally that the set of weakly wandering vectors is not in
general a linear set. Consider, for instance, a unitary operator (Tf)(z) =
zf(z) on L2(T, ρ(z)dz), where

ρ(z) = 3 +
∑

n∈N∪{0}

1
2n

(z2n+1 + z−2n−1), |z| = 1.

Then the vectors 1 and z are weakly wandering for T but a routine compu-
tation shows that their sum, 1 + z, is not.

3. Approximation lemmas

We start with several purely combinatorial lemmas.
The first lemma is known in a greater generality but we provide a simple

argument available in our particular situation.

Lemma 3.1. Let λ1, . . . , λk ∈ T, ε > 0. Then there exists r ∈ N such that
for each n0 ∈ N there exists n, n0 ≤ n ≤ n0 + r with |λn

j − 1| < ε, j =
1, . . . , k.

Proof. Let λj = e2πitj , j = 1, . . . , k, where 0 ≤ tj < 1. Let θ0 = 1 and let
θ1, . . . θm be real numbers linearly independent over the field Q of rational
numbers such that the numbers tj can be expressed as tj =

∑m
s=0 αjsθs,

where αjs ∈ Q.
Let d ∈ N satisfy dαjs ∈ Z for all j, s. Let

c = max{|dαjs| : j = 1, . . . , k, s = 0, . . . ,m}.

By the Kronecker theorem, there exists r0 ∈ N such that

{(e2πibθ1 , . . . , e2πibθm) : b = 1, . . . , r0}

is an ε
c(m+1) -net in Tm with the `∞ metric.

There exists n′ ∈ N, n0
d ≤ n′ ≤ n0

d + r0 such that |e2πin′θj − 1| < ε
c(m+1)

for j = 1, . . . ,m. Let r = dr0 and n = dn′. Then n0 ≤ n ≤ n0 + r and

|λn
j − 1| =

∣∣∣e2πi
Pm

s=0 αjsdn′θs − 1
∣∣∣

≤
∣∣∣ m∑
s=0

dαjs

∣∣∣ · |e2πin′θs − 1|

≤ (m + 1)c · ε

c(m + 1)
= ε

for j = 1, . . . , k. �

Denote by A′ the set of all accumulation points of a set A ⊂ C.
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Lemma 3.2. Let A ⊂ T, 1 ∈ A′, λ1, . . . , λk ∈ A, n ∈ N, ε > 0 and µ ∈ T.
Let M ⊂ N be a set with Dens M = 1. Then there exist m ∈ M , m > n and
λk+1 ∈ A such that

|λm
j − λn

j | < ε, j = 1, . . . , k,

|λn′
k+1 − 1| < ε, n′ ≤ n,(3.1)

|λm
k+1 − µ| < ε.

Proof. By Lemma 3.1, there exists r ∈ N such that for each n1 ∈ N there
exists s, n1 ≤ s ≤ n1 + r with |λs

j − 1| < ε, j = 1, . . . , k.
Find λk+1 ∈ A such that 0 < |λk+1 − 1| < ε

2(n+r) . Let n2 ∈ N satisfy
n2 ≥ 2π

|λk+1−1| .
Let n0 ∈ N. There exists s, n0 ≤ s ≤ n0 + n2, such that |λs

k+1 − µ| <
ε

2(n+r) ≤ ε/2.

There exists s′ ∈ N, s ≤ s′ ≤ s + r such that |λs′
j − 1| < ε, j = 1, . . . , k.

Then
|λs′+n

j − λn
j | = |λs′

j − 1| < ε, j = 1, . . . , k,

|λn′
k+1 − 1| < εn′

2(r+n) < ε (n′ ≤ n) and

|λs′+n
k+1 − µ| ≤ |λs′+n

k+1 − λs
k+1|+ |λs

k+1 − µ|

< |λs′−s+n
k+1 − 1|+ ε/2

≤ ε/2 + ε/2 = ε.

We have n0 ≤ s′ + n ≤ n0 + n2 + r + n. Hence the set of all m ∈ N
satisfying (3.1) has a positive lower density. Consequently, it is possible to
find m ∈ M , m > n, satisfying (3.1). �

Lemma 3.3. Let A ⊂ T, 1 ∈ A′, let m ∈ N, ε1 > ε2 > · · · > εm+1 > 0,
λkj ∈ A, k = 1, . . . ,m, j = 1, . . . , 4, n1 < n2 < · · · < nm be such that

|λns
kj − 1| < εk, 1 ≤ k, s ≤ m, k 6= s, j = 1, . . . , 4,

|λnk
kj − ij | < εk, 1 ≤ k ≤ m, j = 1, . . . , 4,

where i denotes the imaginary unit. Let M ⊂ N, Dens M = 1. Then there
exist nm+1 ∈ M , nm+1 > nm and λm+1,j ∈ A, j = 1, . . . 4, such that

|λns
kj − 1| < εk, 1 ≤ k, s ≤ m + 1, k 6= s, j = 1, . . . , 4,

|λnk
kj − ij | < εk, 1 ≤ k ≤ m + 1, j = 1, . . . , 4.

Proof. By Lemma 3.1, there exists n′0 > nm such that |λn′0
kj−1| < εm+1/5, k ≤

m, j = 1, . . . , 4. By Lemma 3.2, there exist n′1 > n′0 and λm+1,1 ∈ A such
that |λn′1

kj−λ
n′0
kj | < εm+1/5, k ≤ m, j = 1, . . . , 4, |λt

m+1,1−1| < εm+1/5, t ≤ n′0,

and |λn′1
m+1,1 − i| < εm+1/5.
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In the same way find λm+1,2, λm+1,3, λm+1,4 ∈ A and n′2 > n′1, n′3 > n′2,
n′4 > n′3, n′4 ∈ M such that

|λn′s+1

kj − λ
n′s
kj | < εm+1/5, k ≤ m, j = 1, . . . , 4, s = 0, . . . , 3,

|λn′s+1

m+1,j − λ
n′s
m+1,j | < εm+1/5, 1 ≤ j ≤ s ≤ 3,

|λl
m+1,j − 1| < εm+1/5, l ≤ n′j−1,

|λ
n′j
m+1,j − ij | < εm+1/5, j = 1, . . . , 4.

Set nm+1 = n′4. Then nm+1 ∈ M , nm+1 > nm. It is easy to see that
λm+1,1, . . . , λm+1,4 satisfy all the required properties. Indeed, for k ≤ m, j =
1, . . . , 4 we have

|λnm+1

kj − 1| ≤ |λn′4
kj − λ

n′3
kj |+ |λn′3

kj − λ
n′2
kj |

+ |λn′2
kj − λ

n′1
kj |+ |λn′1

kj − λ
n′0
kj |+ |λn′0

kj − 1|
< εm+1 ≤ εk

and
|λnk

m+1,j − 1| < εm+1/5 < εm+1.

Finally,

|λnm+1

m+1,j − ij | ≤ |λn′4
m+1,j − λ

n′3
m+1,j |+ · · ·+ |λ

n′j+1

m+1,j − λ
n′j
m+1,j |+ |λ

n′j
m+1,j − ij |

< εm+1.

�

Let u ∈ Cm. We write u = (u(1), . . . , u(m)) and ‖u‖∞ = max{|u(t)| :
1 ≤ t ≤ m}.

Lemma 3.4. Let m ∈ N, w,wkj ∈ Cm, 1 ≤ k ≤ m, j = 1, . . . , 4. Suppose
that

|wkj(t)− 1| < 2−k−2, 1 ≤ k, t ≤ m, t 6= k, j = 1, . . . , 4,

|wkj(k)− (−i)j | < 2−k−2, 1 ≤ k ≤ m, j = 1, . . . , 4,

|w(t) + 1| < 2−m−2m−1, 1 ≤ t ≤ m.

Let c ∈ Cm. Then there are α, αkj ≥ 0 such that

αw +
∑
k,j

αkjwkj = c

and
α +

∑
k,j

αkj ≤ 8m‖c‖∞.

Proof. Let w̃ = (−1, . . . ,−1) and w̃kj = (1, . . . , 1︸ ︷︷ ︸
k−1

, (−i)j , 1, . . . , 1).
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Let

γ = 2(m− 1)‖c‖∞,

γk,1 =
‖c‖∞ − Im c(k)

2
,

γk,2 =
‖c‖∞ − Re c(k)

2
,

γk,3 =
‖c‖∞ + Im c(k)

2
,

γk,4 =
‖c‖∞ + Re c(k)

2
.

Then γw̃ +
∑

k,j γkjw̃kj = c. Indeed, for 1 ≤ t ≤ m we have

γw̃(t) +
∑
k,j

γkjw̃kj(t) = −2(m− 1)‖c‖∞ +
∑
k 6=t,j

γkjw̃kj(t) +
∑

j

γtjw̃tj(t)

= −2(m− 1)‖c‖∞ + 2(m− 1)‖c‖∞
− iγt,1 − γt,2 + iγt,3 + γt,4

= c(t).

For 1 ≤ t ≤ m we have

|γw(t) +
∑
k,j

γkjwkj(t)− c| =
∣∣∣γ(w(t)− w̃(t)) +

∑
k,j

γkj(wkj(t)− w̃kj(t))
∣∣∣

≤ 2(m− 1)2−m−2m−1‖c‖∞ +
∑

k

2−k−2 · 2‖c‖∞

≤ ‖c‖∞/2.

So ‖γw −
∑

k,j γkjwkj − c‖∞ ≤ ‖c‖∞/2. Furthermore, γ +
∑

k,j γk,j ≤
4m‖c‖∞.

Repeat this approximation for c − w −
∑

k,j γkjwkj instead of c and so

on. On the n-th step, we obtain an approximation γ(n), γ
(n)
k,j ≥ 0, γ(1) :=

γ, γ
(1)
k,j := γk,j , to the solution α, αkj of the equation αw +

∑
k,j αk,jwkj = c

such that

‖γ(n)w −
∑
k,j

γ
(n)
kj wkj − c‖∞ ≤ 2−n‖c‖∞

and

γ(n) +
∑
k,j

γ
(n)
kj ≤ 4m

( n∑
k=1

1
2k−1

)
‖c‖∞.

Then in the limit we get numbers α, αkj ≥ 0 satisfying αw+
∑

k,j αk,jwkj =
c and α +

∑
k,j αkj ≤ 8m‖c‖∞. �
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4. Interpolation theorem and weak wandering

Theorem 4.1. Let T ∈ B(H) be power bounded, σp(T ) ∩ T = ∅ and let
σ(T ) ∩ T be infinite. Let cp,q, p, q ∈ N, p > q, be complex numbers satisfying
D − limp→∞ cp,q = 0 for each q ∈ N. Let x ∈ H and ε > 0 be fixed. Then
there exist a vector y ∈ H and positive integers n1 < n2 < · · · such that
‖y − x‖ ≤ ε and 〈Tnsy, Tns′y〉 = cns,ns′ for all s, s′ ∈ N, s > s′.

Proof. Since σ(T )∩T is infinite, it has an accumulation point. Without loss
of generality we can assume that 1 ∈ (σ(T )∩ T)′. Indeed, if α ∈ (σ(T )∩ T)′

then consider the operator α−1T and the numbers αq−pcp,q.
Since T is power bounded and σp(T ) ∩ T = ∅, Theorem 2.1 implies that

D− limn→∞〈Tnu, v〉 = 0 for all u, v ∈ H.
Without loss of generality we may assume that ‖x‖ = 1. Indeed, we may

assume that x 6= 0. Consider then the vector x
‖x‖ and the numbers cp,q

‖x‖2 .
Let ε1 > ε2 > · · · be a sufficiently rapidly decreasing sequence of positive

numbers. More precisely, let ε1 < min{ε/4, 10−5} and εm
εm−1

< 2−8m−2 for
all m ≥ 2.

Let n0 = 0. We construct inductively positive integers n1 < n2 < · · · ,
elements λkj ∈ σ(T )∩T, k ∈ N, j = 1, . . . , 4, and unit vectors x

(m)
kj ∈ H,m ∈

N, 1 ≤ k ≤ m, j = 1, . . . , 4, such that

|λns
kj − 1| < εk, k, s ∈ N, s 6= k, j = 1, . . . , 4,(4.1)

|λnk
kj − ij | < εk, k ∈ N, j = 1, . . . , 4,(4.2)

|〈Tnmy, Tnsy′〉| <
ε3
m

2m2
(4.3)

for m, s ∈ N, s < m, y, y′ ∈ {x, x
(t)
kj , k ≤ t < m, j = 1, . . . , 4},

‖Tnsx
(m)
kj − λns

kj x
(m)
kj ‖ < εm(4.4)

for s, k ≤ m, j = 1, . . . , 4,

the vectors x, x
(s)
kj are mutually orthogonal,(4.5)

Tnsx
(m)
kj ⊥ Tns′x(4.6)

for s, s′ ≤ m, k ≤ m, j = 1, . . . , 4,

Tnsx
(m)
kj ⊥ Tns′x

(m′)
k′j′(4.7)

for m′ < m, s, s′ ≤ m, k ≤ m, k′ ≤ m′, j, j′ = 1, . . . , 4,

Tnsx
(m)
kj ⊥ Tns′x

(m)
k′j′(4.8)

for s, s′ ≤ m, (k, j) 6= (k′, j′).
We construct the numbers nm, elements λmj ∈ σ(T )∩T and vectors x

(m)
kj

by induction on m.



12 VLADIMIR MÜLLER AND YURI TOMILOV

Let m ∈ N and suppose that the numbers n1 < n2 < · · · < nm, elements
λkj ∈ σ(T )∩T, k ≤ m, j = 1, . . . , 4, and vectors x

(s)
kj , k ≤ s ≤ m, j = 1, . . . , 4,

satisfying (4.1)–(4.8) have already been constructed.
Let M be the set of all r ∈ N satisfying

|〈T ry, Tnsy′〉| <
ε3
m+1

2(m + 1)2

for all s ≤ m, y, y′ ∈
{
x, x

(t)
kj , k ≤ t ≤ m, j = 1, . . . , 4} and

|cr,ns | < ε2
m+1, s = 1, . . . ,m.

Then Dens M = 1.
By Lemma 3.3, there are nm+1 ∈ M and λm+1,j ∈ σ(T ) ∩ T, j = 1, . . . , 4

satisfying (4.1), (4.2). Since nm+1 ∈ M , we also have (4.3).
Since λkj ∈ ∂σ(T ), k ≤ m + 1, j = 1, . . . , 4, there are unit vectors x

(m+1)
kj

satisfying (4.4). Moreover, since λkj ∈ ∂σe(T ), the vectors x
(m+1)
kj satisfying

(4.4) can be found in any subspace of H of finite codimension. Thus we
can find the vectors x

(m+1)
kj (for one pair (k, j) after the other) such that

(4.5)–(4.8) are also satisfied.
Indeed, consider the lexicographic order ≺ on the set A := {(k, j) : 1 ≤

m, j = 1, . . . , 4}. Let (k, j) ∈ A and suppose that the vectors x
(m)
k′j′ satisfying

(5)-(8) have already been constructed for all (k′, j′) ∈ A, (k′, j′) ≺ (k, j).
Note that the set of all vectors x

(m)
kj satisfying the conditions (4.5)–(4.8) is a

subspace of finite codimension (since codim L < ∞ implies codim T−n(L) <
∞ for every n ∈ N and since for subspaces L1, L2 ⊂ H with codim Li <
∞, i = 1, 2, one has codim (L1 ∩ L2) < ∞). So using λkj ∈ ∂σe(T ) we may
find a unit vector x

(m+1)
k,j satisfying (4.4)–(4.8).

If we continue in the way described above, we can construct numbers nm,
elements λmj ∈ A and vectors x

(m)
kj ∈ H satisfying (4.1)–(4.8).

Note that for m ∈ N, s′ < s ≤ m, k ≤ m, j = 1, . . . , 4 we have

∣∣∣〈Tnsx
(m)
kj , Tns′x

(m)
kj

〉
− λ

ns−ns′
kj

∣∣∣
≤

∣∣∣〈(Tns − λns
kj )x

(m)
kj , Tns′x

(m)
kj

〉∣∣∣ +
∣∣∣〈λns

kj x
(m)
kj , (Tns′ − λ

ns′
kj )x(m)

kj

〉∣∣∣
≤ εm(‖Tns′x

(m)
kj ‖+ 1)

≤ εm(‖Tns′x
(m)
kj − λ

ns′
kj x

(m)
kj ‖+ 2)

≤ 3εm.
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Consequently, for s, k < m, s 6= k we have∣∣∣〈Tnmx
(m)
kj , Tnsx

(m)
kj

〉
− 1

∣∣∣
≤

∣∣∣〈Tnmx
(m)
kj , Tnsx

(m)
kj

〉
− λnm−ns

kj

∣∣∣ + |λnm−ns
kj − 1|

≤ 3εm + |(λnm
kj − 1)λ̄ns

kj |+ |λ̄ns
kj − 1|(4.9)

≤ 3εm + 2εk

≤ 5εk.

Similarly, for k < m, j = 1, . . . , 4 we have∣∣∣〈Tnmx
(m)
kj , Tnkx

(m)
kj

〉
− (−i)j

∣∣∣ ≤ 5εk.(4.10)

Note also that (4.3) implies that∣∣∣〈Tnmu, Tnsu′
〉∣∣∣ ≤ ε3

m‖u‖ · ‖u′‖

for all u, u′ ∈
∨
{x, x

(t)
kj , k ≤ t < m, s < m, j = 1, . . . , 4}.

The required vector y close to x will be constructed as x perturbed by
an infinite linear combination of vectors x

(m)
kj . First we construct a vector y

close to x such that 〈Tnsy, Tns′y〉 = cns,ns′ for all s′ < s ≤ m.
For s′ < s and u ∈ H we write for short ds,s′(u) = 〈Tnsu, Tns′u〉. For

s ≥ 2 let Ds(u) = maxs′<s |ds,s′(u)− cns,ns′ |.

Claim. Let m ∈ N, m ≥ 2, let

u = x +
m−1∑
s=1

∑
k,j

β
(s)
kj x

(s)
kj ,

where

β
(s)
kj ≥ εs for all k, j, s, 1 ≤ k ≤ s ≤ m− 1, j = 1, . . . , 4,

‖u‖2 ≤ 2 and Ds(u) = 0, 2 ≤ s ≤ m− 1.

Then there exists a vector

v = x +
m∑

s=1

∑
k,j

γ
(s)
kj x

(s)
kj

such that

γ
(s)
kj ≥ β

(s)
kj , for all k, j, s, 1 ≤ k ≤ s ≤ m− 1, γ

(m)
kj ≥ εm,

Ds(v) = 0, 2 ≤ s ≤ m, and ‖v − u‖ ≤ 2ε1/8
m .

Proof. Set β
(m)
kj = εm for all k ≤ m, j = 1, . . . , 4. Let

a = x +
m∑

s=1

∑
k,j

β
(s)
kj x

(s)
kj = u +

∑
k,j

εmx
(m)
kj .
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Then ‖a− u‖ =
√

4mε2
m = 2m1/2εm.

Let M be the set of all vectors b of the form

(4.11) b = x +
m∑

s=1

∑
k,j

η
(s)
kj x

(s)
kj ,

where η
(s)
kj ≥ β

(s)
kj and

∑
k,j((η

(s)
kj )2 − (β(s)

kj )2) ≤ 2εs for all s ≤ m.
Clearly M is a compact set.
Let Q : M → 〈0,∞) be the function defined for b of the form (4.11) by

Q(v) =
m∑

s=2

ε−3/2
s Ds(v) +

m∑
s=1

ε−1
s

∑
k,j

(
(η(s)

kj )2 − (β(s)
kj )2

)
.

Clearly Q is a continuous function. Let

v = x +
m∑

s=1

∑
k,j

γ
(s)
kj x

(s)
kj

be a point in M where Q attains its minimum.
First of all we calculate the value of Q(a). For s′ < s < m we have

ds,s′(a) = 〈Tnsu, Tns′u〉+ 〈Tns(a− u), Tns′u〉
+ 〈Tnsu, Tns′ (a− u)〉+ 〈Tns(a− u), Tns′ (a− u)〉,

where 〈Tnsu, Tns′u〉 = cns,ns′ by assumption and

〈Tns(a− u), Tns′u〉 = 〈Tnsu, Tns′ (a− u)〉 = 0

by (4.7). Thus

|ds,s′(a)− cns,ns′ | = |ds,s′(a− u)|

≤
∑
k,j

ε2
m|ds,s′(x

(m)
kj )|

≤ 4mε2
m max

k,j
|ds,s′(x

(m)
kj )|

≤ 8mε2
m,

since

|ds,s′(x
(m)
kj )| = |〈Tnsx

(m)
kj , Tns′x

(m)
kj 〉|

≤ ‖Tnsx
(m)
kj ‖ · ‖Tns′x

(m)
kj ‖

≤ (1 + εm)2

≤ 2.

Hence Ds(a) ≤ 8mε2
m for each s < m.
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For s < m we have

|dm,s(a)| ≤
∣∣〈Tnmu, Tnsu〉

∣∣ +
∣∣〈Tnm(a− u), Tnsu〉

∣∣
+

∣∣〈Tnmu, Tns(a− u)〉
∣∣ +

∣∣〈Tnm(a− u), Tns(a− u)〉
∣∣

≤ ε3
m‖u‖2 + 0 + 0 +

∑
k,j

ε2
m|dm,s(x

(m)
k,j )|

≤ 2ε2
m + 8mε2

m

≤ 10mε2
m.

Thus

Dm(a) ≤ max
s<m

(|dm,s(a)|+ |cnm,ns |) ≤ 10mε2
m + ε2

m ≤ 11mε2
m.

Hence

Q(a) =
∑
s≤m

ε−3/2
s Ds(a)

≤
∑
s≤m

ε−3/2
s 11mε2

m

≤ 11m2ε1/2
m

≤ ε1/4
m .

Since Q(v) ≤ Q(a) ≤ ε
1/4
m , we have in particular∑
k,j

((γ(s)
kj )2 − (β(s)

kj )2) ≤ εsε
1/4
m

for each s ≤ m.
We show that v is the required vector. Clearly γ

(s)
kj ≥ εs. For all k, j we

have

γ
(s)
kj − β

(s)
kj =

(γ(s)
kj )2 − (β(s)

kj )2

γ
(s)
kj + β

(s)
kj

≤ εsε
1/4
m

2εs
=

ε
1/4
m

2
.

Hence

‖v − a‖ =
(∑

s

∑
k,j

(γ(s)
kj − β

(s)
kj )2

)1/2
≤

√
4m2

ε
1/2
m

4
= mε1/4

m ≤ ε1/8
m

and
‖v − u‖ ≤ ‖v − a‖+ ‖a− u‖ ≤ ε1/8

m + 2m1/2εm ≤ 2ε1/8
m .

Furthermore
‖v‖ ≤ ‖v − u‖+ ‖u‖ ≤ 2ε1/8

m +
√

2 ≤ 2.

Suppose on the contrary that Ds(v) 6= 0 for some s ≤ m. We show that
in this case we can perturb v a little so that we obtain a vector w ∈ M with
Q(w) < Q(v); this would be a contradiction.

In the following we fix s ≤ m such that Ds(v) 6= 0. Note that Ds(v) ≤ ε
3/2
s

since Q(v) ≤ Q(a) ≤ 1.
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Lemma 4.2. Suppose that Ds(v) 6= 0. Then there are δkj ≥ γ
(s)
kj such that

the vector
w = v +

∑
k,j

(δkj − γ
(s)
kj )x(s)

kj

satisfies w ∈ M and Q(w) < Q(v).

Proof. Consider Lemma 3.4 for m = s− 1. For t ≤ s− 1 write

c(t) = cns,nt − ds,t(v),
wkj(t) = 〈Tnsx

(s)
kj , Tntx

(s)
kj 〉,

w(t) = 〈Tnsx
(s)
s,2, T

ntx
(s)
s,2〉.

By (4.9) and (4.10), the conditions of Lemma 3.4 are satisfied. So there are
numbers α, αkj ≥ 0, k ≤ s− 1, j = 1, . . . , 4 such that

αw +
∑
kj

αkjwkj = c

and
α +

∑
αkj ≤ 8(s− 1)‖c‖∞ = 8(s− 1)Ds(v).

Set

δkj =
√

αkj + (γ(s)
kj )2, k ≤ s− 1,

δs,2 =
√

α + (γ(s)
s,2)2,

δs,j = γ
(s)
s,j , j 6= 2.

Let
w = v +

∑
k,j

(δkj − γ
(s)
kj )x(s)

kj .

Then for t < s we have∑
k,j

(δ2
kj − (γ(s)

kj )2)ds,t(x
(s)
kj ) =

∑
k,j

αkjwkj(t) + αw(t)

= cns,nt − ds,t(v),

and ∑
k,j

(δ2
kj − (γ(s)

kj )2) ≤ 8(s− 1)Ds(v) ≤ εs.(4.12)

Thus ∑
k,j

(
δ2
kj − (γ(s)

kj )2
)

+
∑
k,j,s

(
(γ(s)

kj )2 − (β(s)
kj )2

)
≤ 2εs

and so w ∈ M .
It remains to show that Q(w) < Q(v).
For t ∈ N let Pt be the orthogonal projection onto

∨
{x(t)

kj : k ≤ t, j =
1, . . . , 4}. Denote by P0 the orthogonal projection onto the one-dimensional
subspace generated by x.
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For s′ < s we have by (4.7)

ds,s′(w) = 〈Tnsv, Tns′v〉+ 〈Tns(w − v), Tns′v〉
+ 〈Tnsv, Tns′ (w − v)〉+ 〈Tns(w − v), Tns′ (w − v)〉
= ds,s′(v) + 〈TnsPs(w − v), Tns′Psv〉
+ 〈TnsPsv, Tns′Ps(w − v)〉+ 〈TnsPs(w − v), Tns′Ps(w − v)〉
= ds,s′(v) + 〈TnsPsw, Tns′Psw〉 − 〈TnsPsv, Tns′Psv〉
= ds,s′(v) + ds,s′(Psw)− ds,s′(Psv)

= ds,s′(v) +
∑
k,j

(δ2
kj − (γ(s)

kj )2)ds,s′(x
(s)
kj )

= cns,ns′ .

Hence Ds(w) = 0.
For t′ < t < s we have

|dt,t′(w)− dt,t′(v)|

=
∣∣∣〈Tnt(w − v), Tnt′v〉+ 〈Tntv, Tnt′ (w − v)〉+ 〈Tnt(w − v), Tnt′ (w − v)

∣∣∣
=

∣∣∣〈TntPs(w − v), Tnt′Psv〉+ 〈TntPsv, Tnt′Ps(w − v)〉+ 〈TntPs(w − v), Tnt′Ps(w − v)
∣∣∣

=
∣∣〈TntPsw, Tnt′Psw〉 − 〈TntPsv, Tnt′Psv〉

∣∣
≤

∑
k,j

(δ2
kj − (γ(s)

kj )2)|dt,t′(x
(s)
kj )|

≤ 16sDs(v),

where we again used the estimate |dt,t′(x
(s)
kj )| ≤ 2 and (4.12). Hence

Dt(w) ≤ Dt(v) + 16sDs(v)

for each t < s.
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Finally, for t > s, t′ < t we have

|dt,t′(w)− dt,t′(v)|

=
∣∣∣〈Tnt(w − v), Tnt′v〉+ 〈Tntv, Tnt′ (w − v)〉+ 〈Tnt(w − v), Tnt′ (w − v)

∣∣∣
≤

∣∣〈TntPs(w − v), Tnt′
t−1∑
l=0

Plv〉
∣∣ +

∣∣〈Tnt

t−1∑
l=0

Plv, Tnt′Ps(w − v)〉
∣∣

+
∣∣〈Tnt(w − v), Tnt′ (w − v)

∣∣
≤

∑
k,j

(
δkj − γ

(s)
kj

) ∣∣∣〈Tntx
(s)
kj , Tnt′

t−1∑
l=0

Plv
〉∣∣∣+∑

k,j

(
δkj − γ

(s)
kj

) ∣∣∣〈Tnt

t−1∑
l=0

Plv, Tnt′x
(s)
kj

〉∣∣∣
+ ε3

t ‖w − v‖2

≤ 2
∑
k,j

(
δkj − γ

(s)
kj

)
ε3
t

∥∥∥ t−1∑
l=0

Plv
∥∥∥ + ε3

t

∑
k,j

(
δkj − γ

(s)
kj

)2

≤ 4ε3
t

∑
k,j

δ2
kj − (γ(s)

kj )2

δkj + γ
(s)
kj

+ ε3
t

∑
k,j

δ2
kj − (γ(s)

kj )2

δkj + γ
(s)
kj

2

≤ 4ε3
t

2εs

∑
k,j

(
δ2
kj − (γ(s)

kj )2
)

+
ε3
t

4ε2
s

∑
k,j

(
δ2
kj − (γ(s)

kj )2
)
·max

k,j
{δ2

kj − (γ(s)
kj )2}

≤ 8sDs(v)
(4ε3

t

2εs
+

ε3
t

4εs

)
=

18sε3
t

εs
Ds(v)

≤ ε2
t Ds(v).

Thus

Dt(w) ≤ Dt(v) + ε2
t Ds(v)

for s < t ≤ m. Hence

Q(w)−Q(v) ≤
∑
t<s

16sDs(v)ε−3/2
t − ε−3/2

s Ds(v)

+
∑
t>s

ε
1/2
t Ds(v) + ε−1

s

∑
k,j

(
δ2
kj − (γ(s)

kj )2
)

≤ Ds(v)
(
16s2ε

−3/2
s−1 − ε−3/2

s + 2ε
1/2
s+1 + 8sε−1

s

)
< 0.

This proves lemma. �

Now the Claim follows.
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Let y1 = x +
∑4

j=1 ε1x
(1)
1,j . Then ‖y1 − x‖ =

√
4ε2

1 = 2ε1. By Claim for

m = 2, u = y1 there exists y2 ∈
∨
{x, x

(s)
kj , s ≤ 2} such that D2(y2) = 0 and

‖y2 − y1‖ ≤ 2ε
1/8
2 .

Since y2 was constructed in such a way that it also satisfies the conditions
of Claim, there exists y3 ∈

∨
{x, x

(s)
kj , s ≤ 3} such that D2(y3) = D3(y3) = 0

and ‖y3 − y2‖ ≤ 2ε
1/8
3 .

If we continue to construct vectors ym in this way, we obtain a sequence
{ym} ⊂ H such that Ds(ym) = 0 for all s ≤ m and ‖ym − ym−1‖ ≤ 2ε

1/8
m .

So the sequence {ym} is convergent. Denote its limit by y. Then Ds(y) = 0
for all s, i.e., 〈Tnsy, Tns′y〉 = cns,ns′ for all s, s′ ∈ N, s′ < s. Moreover,

‖y − x‖ ≤ ‖y1 − x‖+
∞∑

m=2

‖ym − ym−1‖ ≤ 2ε1 + 2
∞∑

m=2

ε1/8
m < ε.

This proves Theorem 4.1. �

The following corollary of Theorem 4.1 is immediate.

Corollary 4.3. Let T ∈ B(H) be a power bounded operator such that σ(T )∩
T is infinite. The following two conditions are equivalent:

(i) σp(T ) ∩ T = ∅;
(ii) there exists a dense subset of H consisting of weakly wandering vec-

tors.

Proof. (i)⇒(ii): Set cp,q = 0 in the previous theorem.
(ii)⇒(i): We give a simple proof of this implication not depending of the

de Leuuw-Glicksberg theorem. Suppose that σp(T )∩ T 6= ∅. Let λ ∈ σp(T ),
|λ| = 1. Let x be a corresponding eigenvector of norm 1. Let K = supn ‖Tn‖
and let y ∈ H satisfy ‖y− x‖ < 1

2K2 . We show that the orbit of T at y does
not contain two orthogonal vectors, and so y is not weakly wandering for T .

Let m,n ∈ N, m 6= n. Then∣∣〈Tmy, Tny〉 − λm−n
∣∣ =

∣∣〈Tmy, Tny〉 − 〈Tmx, Tnx〉
∣∣

≤
∣∣〈Tmy, Tn(y − x)〉

∣∣ +
∣∣〈Tm(y − x), Tnx〉

∣∣ ≤ 2K2‖y − x‖ < 1.

Thus 〈Tmy, Tny〉 6= 0 and y is not weakly wandering for T . Hence the set
of weakly wandering vectors is not dense. �

In fact neither the power boundedness of T nor the condition that σp(T )∩
T = ∅ was used in the proof of Theorem 4.1. The crucial property was that
D − limn→∞〈Tnx, y〉 = 0 for all x, y ∈ H, or at least for all x, y in a dense
subset of H invariant for T . Thus the theorem can be formulated as follows.

Theorem 4.4. Let T ∈ B(H) satisfy the following two conditions:
(i) σπe(T ) ∩ T is infinite;
(ii) there exists a dense subset M ⊂ H such that T (M) ⊂ M and D −

limn→∞〈Tnu, v〉 = 0 for all u, v ∈ M .
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Then there is a dense subset of H consisting of weakly wandering vectors
for T .

In particular, the first condition is satisfied if r(T ) = 1 and σ(T ) ∩ T is
infinite.

Corollary 4.5. Let T ∈ B(H), S ∈ B(H) be power bounded operators,
σp(T ) ∩ T = ∅ = σp(S) ∩ T. Let σ(S) ∩ T be infinite. Then for every x ∈ H
there exists y ∈ H such that x⊕ y is weakly wandering for T ⊕ S.

Proof. For p, q ∈ N, p > q, set cp,q = −〈T px, T qx〉. Then the numbers
cp,q satisfy the conditions of Theorem 4.1. Thus there exists y ∈ K and
an increasing sequence {nk} such that 〈Snky, Snsy〉 = cnk,ns for all k, s ∈
N, k > s. Hence x⊕ y is a weakly wandering vector for T ⊕ S. �

Corollary 4.6 (Krengel). Let T ∈ B(H) be an isometry such that σp(T ) =
∅. Then there exists a dense set of weakly wandering vectors for T .

Proof. Let T = U ⊕ S be the Wold decomposition of T , i.e., U is a unitary
operator and S a unilateral shift (of some multiplicity).

If the shift part is non-trivial, then σ(T ) ∩ T = T and the condition of
Theorem 4.4 is satisfied.

If the shift part of T is trivial then T is a unitary operator without
eigenvalues, and so σ(T )∩T = σ(T ) has no isolated points. So we can again
apply Theorem 4.4. �
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