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Bochner-Kaehler metrics and connections of Ricci type
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Abstract

We apply the results from [CS] about special symplectic geometries to the case of Bochner-
Kaehler metrics. We obtain a (local) classification of these based on the orbit types of the
adjoint action in su(n,1). The relation between Sasaki and Bochner-Kaehler metrics in cone
and transveral metrics constructions is discussed. The connection of the special symplectic and
Weyl connections is outlined. The duality between the Ricci-type and Bochner-Kaehler metrics
is shown.
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1 Bochner-Kaehler metrics

The curvature tensor of the Levi-Civita connection of a Kaehler metric g decomposes (under the
action of u(n)) into its Ricci and Bochner part ([Bo]). The metric is said to be Bochner-Kaehler,
iff the Bochner part of its curvature tensor vanishes.

A remarkable relationship was revealed among following types of geometric structures in the
article [CS]: manifolds with a connection of Ricci type, manifolds with a connection with the special
symplectic holonomy, pseudo-Riemannian Bochner-Kéahler structures, manifolds with a Bochner-
bi-Lagrangian connection. All these geometric objects are instantons of the same construction, and
they are called special symplectic geometries. The word ”symplectic” comes from the fact that they
all carry a symplectic connection; special stands for the common special type of the curvature of
the connection: let (M,w) be a symplectic manifold. Then the curvature of the special symplectic
geometries is of the form

Ry(X.Y) = 20(X,Y)h + X o (hY) — Y o (hX), (1)

where b C sp(n,R) (or sp(n,C)) is a Lie algebra, h € b, o : S2(TM) — b, is an h-equivariant
product with special properties (see [CS]). For Bochner-Kaehler structures the special form of
curvature translates as follows: let (M, g, J,w) be a Kaehler structure on a manifold M. That is J
is the orthogonal complex structure which is parallel with respect to the Levi-Civita connection of g,
and the Kaehler form w is defined by w(z,y) = g(x, Jy). The Kaehler structure is Bochner-Kaehler
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iff the curvature of the Levi-civita connection of the metric has the above form, where h = u(n),
and o is given as:

(XoY)Z=w(X,2)Y +wV,2) X +w(JX,Z2)]Y +w(JY,Z)JX +w(JX,Y)JZ. (2)
That is iff the curvature is of the form

Ry(X,Y) = 29(X,JY)p+29(X,pY)J + (pY A JX)
—(pX AJY) + (X AJpY) — (Y A JpX), (3)

where (X ANY)Z =g(X,2)Y —g(Y,2)X.

2 Kaehler and Sasaki manifolds

The following considerations are motivated by the lecture given by Krzysztof Galicki at Winter
School of Geometry and Physics, Srni, Czech republic, 2004. ([BG]).

Sasaki metric. One of the possible (equivalent) definition of the Sasakian manifold C is that it is
a Riemannian manifold with the metric g, on which there exists a unit length Killing vector field
& such that the curvature tensor R of the Levi-Civita connection V of g satisfies:

R(X, )Y =g(§,Y)X — g(X, V)¢

The one form A dual to £ defines a contact distribution ® = {X € TC|\(X) = g(X, &) = 0}. The
vector field € is called the characteristic vector field of the contact distribution 2.

Transversal Kaehler metric. Further consider J defined by J(X) = —Vx§. It is an automor-
phism of the tangent bundle T'C' and its restriction to ® gives rise to a complex structure J on .
Then (VxJ)(Y) =0 for X, Y € ® and thus there is a so called transversal Kaehler structure on
®. The Kaehler structure then factorizes to the set of leaves of the foliation generated by £ (the
characteristic foliation) if this is locally an orbifold. See [BG] for details.

Conversely, the tranversal Kaehler structure on a compact distribution © (given as © =
{X|IA(X) = 0,A € QY(C)}) on a manifold C translates to a Sasakian structure on C: given a
metric gp on ® with a parallel complex structure J on ®, and a transversal symmetry & of ®, one
extends gp to the whole of TC with g(X,Y) = go(X,Y) for X, Y € ©, g(£,€) =1 and g(£, X) = 0.

Unlike a general Kaehler metric, any Bochner-Kaehler metric can be realized (locally) as the
transverse metric of an appropriate Sasaki metric. The Theorem B from [CS] (see also 3.4) says,
that given a simply connected manifold M with a Bochner-Kaehler metric g there is always a
principal T-bundle 7 : C' — M, where T is a one-dimensional Lie group, and this bundle carries
a connection whose curvature equals —2w, where w is the Kaehler form corresponding to g. The
horizontal distribution of the connection yields a contact distribution on C'. Thus we have following;:

Proposition 2.1 Let M be a 2n-dimensional (real) manifold with Bochner-Kaehler metric g, J be
the corresponding complex structure. Then there exists a Sasaki manifold such that the set of leaves
of the characteristic foliation is isomorphic (together with from the Sasaki one induced structure)
to some cover of M (with the Bochner-Kaehler structure induced from M ). O



Cone metric. On the other hand, a manifold C' is Sasakian if and only if the ”cone metric”
(t? - g + (dt)?) on C x R, is Kaehler, where the complex structure .J’ on the cone is the extension
of J such that

1
J(&) =to, J(0)= —Eﬁ, (4)
¢ € %(@) being the lift of the characteristic vector field £ on C.
Following the ideas from [BG], there arise questions what happens if we require the transversal
metric to be Bochner-Kaehler. What special has to be the Sasaki metric on C? Will then the ”cone

metric” be Bochner-Kaehler?
Let us state a technical lemma about Bochner-Kaehler manifolds.

Lemma 2.2 Let M be a manifold with a Bochner-Kaehler metric g and let Xy be a non-vanishing
vector field on M such that the curvature R of the Levi-Civita connection satisfies R(Xo, JXo) = 0.
Then M 1is flat.

Proof. The curvature of the Levi-Civita connection of the Bochner-Kaehler metric is of the form
R,, p € u(n) (see (3)), the vector field Xy can be normed to the unit length and we can write

0 = R(Xo, JXo) = —2p + 29(Xo, pJ Xo)J — 2Xo A pXo — 2J Xy A pJ X,
that is
p = 9(Xo, pJ Xo)J — Xo A pXo — JXo A pJ Xo. (5)
Applying p to Xy we get

pXo = g(Xo,pJXo)J Xo — g(Xo, Xo)pXo + g(pXo, Xo)Xo — 9(J X0, Xo)pJ Xo + g(pJ Xo, Xo)J Xo
= 29(Xo, pJXo)J X0 — pXo,

and we have
pXo = 9(Xo, pJ Xo)J Xo. (6)

that means pXy = ¢J X for a real valued function ¢ on M. Substituing back to (6) we get
cJXo = g(Xo, J(cJXp))J = —cJ X,

and ¢ = 0. That is pXo =0, and 0 = pJ Xy = JpXy, and the formula (5) implies p = 0, that is the
curvature vanishes. O

Proposition 2.3 Let M be a 2n-dimensional (real) manifold with Bochner-Kaehler metric g, J
be the corresponding complex structure, further let C be the Sasakian manifold from the theorem
(2.1) with the dimension 2n+1. Then the manifold C=Cx R with the complex structure defined
by (4) is Bochner Kaehler if and only if M is locally isomorphic (as the Kaehler structure) to the
complex projective space CP™. The cone C is then a flat manifold.



Proof. The existence of the given manifold is just consequence of the proposition [?] and the cone
construction. We will write g and ¢ for the metrics on C' and C respectively, and V, V for the
corresponding Levi-Civita connection. The curvature of k gives us

[X,Y] = [X,Y] - 2w(X,Y)E,

for X, Y € X(M) and since [£, X] = 0 there is V¢ X = V& That gives for the torsion of the
connection V
VY = VX = VxY + Vy X 4+ 2w(X,Y)E

On the other hand
0=¢9(X,Y) = g(VeX,Y) +4(
= X(@(&Y)) -9 VxY) +Y(G(X,8) —g(VyX,§)
= —9(& VxY + VgX).

We conclude that Vy? + WVY =0 and

VY = VxY —w(X,Y)E. (7)
Further
0=Xg(£,&) = 29(VxE,6),
and
0=Xg(&Y) = g(Vx£,Y)+3(E VxY)
= g(Vx(Y) —w(X,Y)
= g(n(Vx£),Y) +g(JX,Y)
That is
VeX = Vgt = —JX. (8)

With the like-wise computation one gets ﬁgf =0.
Similarly one gets for X, Y € X(C)

—

A~ A~ A~ A

ViY = VxY —tg(X,Y)0;, especially Véﬁ = —td,
and
. 1. P .
V0 =Vy X = EX’ especiallyV, & = Eg and Vy,0; = 0.
There is the canonical projection 7 : C = C X Ry - C — M = C/T. From the above two

equations we see, that the fibres of this projection sit totally geodesicly in C and the metric on the
fiber gives the ”true” 2-dimensional cone. That is the restriction of the metric to the fibers is flat



and we have R(8y, J(8;))€ = 0 and E(@t, J(0;))d;. Tt remains to compute R(8y, J(8;) on the lifts of
the vectors in T'M. We will write X for a lift of a vector X € TM with respect to the projection
.

RO I0)X = — (Va9eX - 995X - 95, 4 %)

Consequently R(;,J(9;)) = 0 and according to the previous lemma 2.2 the metric on C is flat.
There is the following known relation between the curvature R of the metric g on C and R, the
curvature of the Levi-Civita connection V of the cone metric on C:

R(X,Y)Z = R(X,Y)Z+g(X,Z)Y —g(Y, 2)X,

for XY, Z € T(C), which can be checked with an easy computation excercise.

This shows, that C' is a manifold with constant sectional curvature K = 1 (see [KN]), that is
locally a unit sphere.

Now the vector field £ on C is from the construction a Killing one, and has the constant unit
length that is the leaves of the foliation are the circles coming from the natural C action on the
sphere (at least locally; the unit length of the Killing field excludes other circle actions). Then the
resulting factor space, that is M, is locally isomorphic to the complex projective space. O

3 General construction

Let us quickly review the construction from [CS], which gives rise to all special symplectic geome-
tries. All manifolds with special symplectic connection are locally isomophic to the factor manifold
of the oriented projectivization of the cone C = Adgx C g, where z is an apropriate element in the
parabolic 2-gradable Lie algebra g, where we factor along the flow of the convenient vector field.
The special symplectic connection is then induced on the factor from one of the components of the
Maurer-Cartan form on g, which decomposes due to the 2-grading.

Some of the standard notions from the theory of contact structures are used without definitions.
The reader can find them and all the proofs of the theorems stated in this section, in [CS].

Symplectic algebra as subalgebra of a 2-graded algebra. Let V be a vector space (either
real or complex) with a symplectic form w. Let h C sp(V,w) = {h € End(V)|w(z,y) + w(z, hy) =
0 for all #,5 € V'} such, that there exists an h-equivariant map o : S2(V) — b and an adp-invariant
inner product (,) which satisfy the following identities:

(h,xoy) = w(hz,y)=why,z)
(zoy)z—(zoz)y = 2wy, 2)r—wy)z+w(z,2)y,

for all ,y,z€ V and h € b.
Then there exists a unique simple Lie algebra g with a 2-grading of the parabolic type, that is

g=gag 'ag’ag @’
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where g~2 and g2 are one-dimensional. The grading corresponds to h in the following sense:

g =g 0g’ ¢’ Zsl,, ®h  and g =gl g 2F2 @V asa g®-module,
where g2, resp. g2, are root spaces of a long root ap, resp —ap, and sl,, is the Lie algebra
isomorphic to s((2,F) generated by the root spaces and the corresponding coroot H,, which lies in
g%. We will also write p = g @ g' @ g? for the parabolic subalgebra of g and pg := h @ g' @ g?. Let
further P and Py be corresponding connected subgroups of G.

Further we fix a non-zero F-bilinear area form a € A2(F?)*. There is a canonical sl(2,F)-
equivariant isomorphism

S2(F?) — sl(2,F),  (ef) - g:=ale,g)f +a(f,g)e foralle, f,geF (9)
and under this isomorphism, the Lie bracket on sl(2,F) is given by
lef, gh] = ale, g)fh+ale, h)fg + a(f,g)eh + a(f, h)eg. (10)
Thus, if we fix a basis e;,e_ € F? with a(eq,e_) = 1, then we have the identifications

Hoy = —eye, g =Fei, g-l=eraV

The cone in 2-gradable algebra and its projectivization. Using the Cartan-Killing form (up
to the multiple) we identify g and g*, and we define the root cone C and its (oriented) projectivization
C as follows:

C:=G-efl cg=g", C:=p(C)CP(g) =P°(g"),

where P°(g) is the set of oriented lines in g, i.e. P° = S?if F = R, and P° = CP¢ if F = C, where
d = dimg — 1, and where p : g\0 — P°(g) is the principal RT-bundle (C*-bundle, respectively)
defined by the canonical projection. Thus, the restriction p : C — C is a principal bundle as well.

Contact structure on the projectivized cone. Being a coadjoint orbit, C carries a canonical
G-invariant symplectic structure 2. Moreover, the Euler vector field defined by

Eoe X(C), (Eo)y:=v
generates the principal action of p and satisfies £, (£2) = 2, so that the distribution
D = dp(Ey®) C TC (11)

yields a G-invariant contact distribution on C, see [CS], Proposition 3.2.

The cone as homogeneous space. Let A = tg,(€2). Then we define the bundle R:
R:={(\,E) eCxTCcTCxTC|Ndp(€)) =1}
Let P and Py be subgroups of G corresponding to the subalgebras p and pg of g.

Lemma 3.1 As homogeneous spaces, we have C = G/P, C = G/Py, and R = G/H.



Proof. See [CS] O

Transversal symmetry defines the geometry
For each a € g we define the vector fields a* € X(C) and a* € X(C) corresponding to the
infinitesimal action of a, i.e.

d

()] = @, (exp(ta) - [v]) and (@), := % . (exp(ta) - v). (12)

Note that a* is a contact symmetry (with respect to the canonical contact distribution on é), and
a* is its Hamiltonian lift. Let

Co:={A e C| Aa*) € RT (e C*, respectively)} and C,:=p(Cy) CC, (13)

so that p: Co — Cy is a principal R*-bundle (C*-bundle, respectively) and the restriction of a* to
C, is a positively transversal contact symmetry. Then there exists a unique section A of the bundle
p: Cq — Cq4 such that A(a*) = 1 and therefore, we obtain the section

040:Co — R=G/H, o4(u):=(Au),a"(u)) € R. (14)

Let 7 : G — G/H = R be the canonical projection, and let I, := 7 1(04(C;)) C G. The
restriction 7 : 'y — 04(Cy) = C, is then a principal H-bundle.

Theorem 3.2 Let a € g be such that C, C C from (13) is non-empty, define a* € X(C) and

a* € X(C) as in (12), and let 7 : T'y — Cq with I'y C G be the principal H-bundle from above. Then
there are functions p: 1Ty = b, u:Ty =V, f: Ty — F such that

1 1
Adg-1(a) = 5e2 +p+er @ut o fel (15)

forall g € Ty.

The restriction of the up + p—1 + p—o part of the Maurer-Cartan form to I', yields a pointwise
linear isomorphism 7T, — h ® g~ @ g~2, and we can further decompose it as

1
py+ o1+ pimg = —2k <2€2_ —|—,0> +e @0+ recQYD,), 0cQYT)0V, neQ(T,) .
Theorem 3.3 Let a € g and C, C C as before. Let U C C, be a reqular open subset , i.e. the local
quotient My := T°\U is a manifold, where

T, := exp(Fa) C G.

Let w € Q?(M) be the unique symplectic form on My, such that 7 (w) = —2d(Ey_IQ). Then My
carries a canonical special symplectic connection associated to g, and the (local) principal Ty-bundle
7:U — M admits a connection k € QY(U) whose curvature is given by dr = 7*(w).



Proof. Sketch: The connections forms of the desired connections are projections of the forms 7
and k on I', over U to the corresponding H-bundle over My . O

Conversely, any manifold with special symplectic connection comes in this way (locally). Namely,
there is the following theorem (Theorem B from [CS]):

Theorem 3.4 Let (M,w) be a symplectic manifold with a special symplectic connection of class
C*, and let g be the Lie algebra associated to the special symplectic condition as described at the
beginning of this section.

i) Then there is a principal T-bundle M — M, where T is a one dimensional Lie group which
s not necesarily connected, and this bundle carries a principal connection with curvature w.

it) Let T C T be the identity component. Then there is an a € g such that T =T, C G, and a
T, -equivariant local diffeomorphism i : M — C, which for each sufficiently small open subset
V C M induces a connection preserving diffeomorphism 1 : TV — TYU = My, where
U:=i(V)cCC, and My carries the connection from 3.3.

4 Construction of Bochner-Kaehler metrics

4.1 A little of linear algebra

Let us first recall some facts from the linear algebra. Let V' be a complex (n+ 1)-dimensional vector
space, h a hermitian form of the signature (n,1) on V. The (real) Lie algebra u(n, 1) is defined as
follows:

u(n,1) :={A € End(V)|h(Av,w) + h(v, Aw) = 0,v,w € V}.
It is the Lie alebra of the Lie group
U(n,1) ={A € Aut(V)|h(Av, Aw) = h(v,w),v,w € V}.

Take matrices with the determinant 1 in U(n, 1) or traceless matrices in u(n, 1) to get something
special.

Example 4.1 We consider the standard hermitian form on the complex space C*T' of signature
(n,1) (h(x,y) = Y01 %i¥; — Tnt1Ypy1, Jor x, y € C"1. Then as a matriz algebra su(n,1) can be

written as
U1
v
su(n,1) = 4 ‘ ,Aeu(n),v= : eC"”
v ‘ —trA

Un

The elements of the bundle Iy, from the general construction in the previous section, can be described
with the structure functions from (3.2) as follows:

p— n%ﬂ(trp)ﬂn u Cu
—u’ —g(trp—i(f +1)) 3(f=1) : (16)
u* s(1=1) —5(trp+i(f+1))

8



The grading of su(n,1) =g @dg ' ag’@g' g’ =Re2 Ge_ VB (hdReje ) Per @V BRe?
is given as follows (all the matrices are (n+ 1) x (n+ 1) ones):

0 0 0 0

ey = 0 0 |- Hoy = ere = 00 |-
0...0| ¢ =i 0...0/0 1
0...0| Fi —i 0...011 0
( 0 0
h = A 0 o yJAeun—1) 3,
0...0 | Ztxa 0
0...0 0 -lera
O v tv (1
g:i:l — V= G(Cn_l
v |0 1 Vp1
+v* |1

The action of the algebra b = u(n — 1) on V is then given as the adjoint matrixz action and one
easily computes that for p € u(n — 1) there is

1
p-u=pu-+ 3 tr(p)u (17)

The hermitian form A is uniquely determined either by its real part g (real valued symmetric
bilinear form on V') or by its imaginary part w, the antisymmetric real valued form on V. (w(z,y) =
g(x, Jy), where J is the complex structure on V).

Lemma 4.2 There is a U(n,1)-equivariant map m : V — u(n,1) : x+— x A Jx, where
(xANJzx)z = g(x,2)Jx — g(Jx, 2)x,

and the U(n,1) action on u(n,1) is given by ad representation.

Proof. The morphism (z A Jx) is in u(n, 1):

g((x AN Jx)y,2) + gy, (x N Jx)z) = g(g9(z,y)Jx — g(Jz,y)z, 2) + g(y, 9(x, 2)Jx — g(Jz, 2)x)
= g(z,y)9(Jz,2) — g(Jz,y)g(x, 2) + 9(y, Jx)g(z, 2) —
—9(y,z)g(Jz, 2)
= (),
for any z, y, z € V. For the A € U(n,1) C GL(n+ 1,C) there is:

(Adgom(z))y = Aom(z)o A (y)= Ao (9(z, A ) Jz — g(Jz, A y)x)
= g(z, A7) AJx — g(Ja, A7 y) Az = g(Ax,y)AJx — g(AJz,y)Ax
= g(Az,y)JAx — g(JAz,y) Az
= (moAda(2))(y),



where we have used the invariance of g with respect to the morphisms from U(n, 1). O

Remark 4.3 i) The image of the morphism m are from the definition rank one morphisms.

it) The value of the morphism x A Jx on a vector z is actually ih(x, z)z, but we stick to write
it in the form g(z,z)Jx — g(Jx,z)x, which comes from the morphism x© A y: (x N y)z =
9(x,2)y — gy, 2)z.

Lemma 4.4 The morphism m is not injective: x A Jx and y A\ Jy determine the same element in

u(n, 1) if and only if t = ey, k€ R, z, y € V.

Proof. If z A Jz and y A Jy determine the same morphism of V' then x and y lie on the same
complex line, that is y = ax + bJz, a, b € R. Then there is

y A Jy = (ax +bJz) A (=bz + aJz) = (a® + b*)z A Jz, (18)

that is « and y differ by a multiple of a complex unit. O

Lemma 4.5 A morphism x A Jz lies in su(n, 1) iff g(x,z) = 0.

Proof. The trace of the rank one morphism is equal to the eigenvalue of a non-zero eigenvector
which lies in the image line. For the morphism z A Jx we take the eigenvector x. Then

(x ANJz)r = g(z,x)Jr — g(Jx,x)x = g(z,z)Jx = ig(z, x)z, (19)

the eigenvalue of the eigenvector x is ig(z, ), which gives the result. O

Lemma 4.6 There are two orbits of the adjoint action of SU(n,1) on rank 1 matrices in su(n,1).
For a given vector x € V', the morphism x A\ Jx lies in one of the orbits, the morphism —x A Jx in
the other one.

Proof. Any rank 1 morphism in su(n,1) has all eigenvalues equal zero (if it would have an
eigenvector with non-zero eigenvalue, it would have to have at least one other, to be traceless; then
it would not be of rank 1). Then its canonical Jordan normal form has exactly one block of size 2.
According to the SU(n, 1)-orbits classification of su(n, 1), see Lemma 4.10, the morphism belongs
to some of the type 2 orbit.

Denote D = x A Jx. Then Jx A J(Jx) = D and ax A aJx = a®J, a € R, that is the morphism
—x A Jx cannot be written in the form y A Jy for any y € V.

10



4.2 Geometric interpretation of C and C, the Lie algebra cone and its projec-
tivization

Let us follow the construction for G = SU(n,1). There is C = Adgsyn,)(z) C su(n, 1), where z is
some maximal root element. The roots in su(n, 1) have the same length and any rank 1 matrix in
su(n, 1) is a maximal root element.

Lemma 4.7 The cone C C su(n,1) is isomorphic to C"\ {0,...,0}

Proof. Since any maximal root element in su(n, 1) is a rank 1 matrix, then the cone C is equal
to one of the two orbits of the adjoint action on the rank 1 matrices (according to the orbit of the
generating element). According to the lemmas 4.4 and 4.5 we have

C = {zeC"tg(z,z) =0}/S".

We describe the isomorphism explicitly. Let us choose the basis eq,...,e,41 of C*T! in which the
metric g has the standard form (e!)2+- - -+ (e™)2—(e"*1)2. We can choose a unique representative y
in each orbit of S! of the zero length vectors such that y = (z1,...,2,11) = (X, Zn41) € C*T! with
Tpy1 € RT with respect to the basis (e;). If we denote || || the standard metric (e!)? + --- + (e")?
in C" we can write the representative in the form (x, [[x[[), where x is an arbitrary vector in C".
Hence C is isomorphic to C" \ {0,...,0}. O

Lemma 4.8 The projectivized cone C C P,(su(n,1)) is isomorphic to S*"~1.

Proof. Consider the surjective map 7 : C — C™\(0,...,0), (x, ||x]|) — (HITIH’ ce ”””7””), which maps
the elements in C which differ by a real multiple to the same point on the sphere $2"~ 1. O

4.2.1 The module structure of the cone

Being a homogeneous space (see (3.1)), the cone C is a SU(n, 1), resp. su(n, 1)-module.

Let us notice, that the identification of the cone C with the sphere S™*! is subject to the choice
of the standard hermitian form on C"*!, respectively to the choice of the normal base with respect
to it. We have to have this in mind when considering different block forms of the matrices in
su(n, 1).

. . A 0 .

The proof of the lemma (4.10) shows that if a matrix of the form <0 B tr(A)) is in su(n, 1),
then A € u(n) (with respect to some orthonormal basis of the given hermitian form).

The one-parametric subgroup generated by A are then matrices of the form

G 0

< 0 1 > , where G € U(n). As we have seen above, a point in our sphere S?"~! corresponds
det(G)

to a class of null vectors in C"*! which differ by a complex multiple. According to the lemma 4.2

the group SU(n, 1) acts on these classes in a standard way and we get

Gox ~ (fj dt?(@) (x,l):<Gx,de:(G))~det(G)Gx (20)

11



For the action of the matrices in u(n) of the above form on the tangent bundle of the sphere we
get then:
A-x=(tr(A)E + A)x, (21)

which is in accordance with the action of u(n — 1) on C*~! from (17), if we represent A in the
matrix form from (16).
Thus we get in fact the structure of U(n) and u(n)-module on C regarded as a sphere S2"~1.
The action of the whole group SU(n, 1) or the whole algebra su(n, 1) respectively is then non-
linear (as a C™ — C™ mapping).

Lemma 4.9 The canonical symplectic form on Cc g* corresponds under our identification to the
standard symplectic form on C", the one form A = vg, () is then A\ = z; dz; + Z; dz; in the complex
coordinates z; on C".

Proof. The Euler vector field on C" is Ey = z; a . The form A\ = z; dz; 4+ Z; dz; is then the only
U(n)-invariant one-form « on C" satisfying Lg,a = o and a(Ep) = 1. 0

Up to now, the construction was common for all the Bochner-Kaehler geometries. The choice
of a transversal symmetry of the canonical contact dlstlbutlon actually determines the geometry.
Let A € su(n, 1) and let us consider the vector field {v = ot 910 Ad(exp(tA))v on C. This vector field
is a_contact symmetry with respect to the distribution D on C and thus it determines a section
of C — C that is a contact form on C (the identification of g and g* gives an identification of
C C su(n,1) and C* C su(n,1)*).

The section X : C — C is given by the equation A(§) = 1. The image of C in C=Cr— {0}
is then a hyperplane, which we will call 34. The tangent space of ¥4 is then characterized by
T,(C) ={X € C"|w(X,iA -v) = 0} and consequently there is

Dy = {Xu|g(X,v) =0 = g(X,iA-v)}. (22)

The projectivized cone C' and the CR-sphere. According to the lemma (3.1), the projec-
tivized cone C is a homogeneous space SU(n,1)/P, where P is a parabolic subgroup of SU(n, 1),
corresponding to the subalgebra u(n) ® C" ! @e? of su(n, 1), see (4.1). As we have seen in the pre-
vious lemma, it is isomorphic to the sphere S?"~1. The adjoint action of SU(n, 1) on C corresponds
to the standard action of SU(n, 1) on the null-vectors (with respect to the standard hermitian form
of the signature (n,1)) in C**!, and thus as a homogeneous space it is exactly the C'R-sphere (see
for example [CS]).

The underlying structure connected with this space is the canonic CR-distribution D on the
sphere:

ZA)U ={z € C"|(z,iv) =0, (z,v) = 0},

where (, ) denotes the standard metric in C".
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4.3 Classification of Bochner-Kaehler metrics

All Bochner-Kaehler manifolds come from the mentioned construction for the Lie algebra su(n, 1)
and the resulting manifolds are isomorphic if we take in the course of construction matrices Ag
lying on the same adjoint orbit of SU(n,1) in su(n,1). Thus we can classify the Bochner-Kaehler
manifolds according to which orbit of the action induces the given manifold.

There are four types of orbits of the adjoint action of GL(n + 1,C) on su(n, 1). Three types of
these orbits are SU(n, 1) orbits as well, the fourth one splits into two SU(n, 1) orbits. We describe
the orbit types according to the Jordan blocks of the matrices in the orbits.

Lemma 4.10 There are five types of orbits of the adjoint action of the SU(n,1) on su(n,1). If we
represent a morphism in the su(n, 1) with a matriz A, than the orbit types look as follows:

1. The matriz is diagonizable and its eigenvalues are purely imaginary.

2. The eigenvalues of matrices in the orbit are pure imaginary and there is just one Jordan block

of the dimension 2 (there are n eigenvectors). There exists an eigenvector e and a root vector
f, both in the block, such that

N
o
:c?
~
S~—r
I
~

3. The eigenvalues of matrices in the orbit are pure imaginary and there is just one Jordan block
of the dimension 3 (there are n — 1 eigenvectors).

4. There are n — 1 pure tmaginary eigenvalues corresponding to n — 1 eigenvectors and two eigen-
values A = A1 +iXo and p = py + ipe

Proof. It is easy to see that if \ is an eigenvalue of a su(p, ¢)-morphism then —\ is the eigenvalue
of the morphism as well. There exists no nullplane in V, that is there are no two null-vectors z, y
in V such that also h(z,y) := (z,y) = 0.

Let us suppose that the su(n, 1)-morphism A has a Jordan block corresponding to an eigenvalue
A with non-zero real part, that is of size at least 2. Then there are x, y € V such that Az = Az,
Ay =My +z, (z,z) = 0. Then

0= (Az,y) + (z, Ay) = (Az,y) + (2, \y + x) = Az, y) + M2, y) + (z,2) = 2Re A(=,y),
that is (z,y)=0. Further

0= (Ay,y) + (v, Ay) = My +2,9) + (1, \y + ) = My, ) + (2,9) + Ay, y) + (y,2) = 2Re A(y, ),

which implies (y,y) = 0 and we get a null-plane, which is a contradiction. All Jordan blocks
corresponding to the eigenvalues with non-zero real part have the size one.

Further if a su(n, 1) morphism has an eigenvalue with non-zero real part, then it has to have at
least two eigenvalues which are not in iR, otherwise the trace could not be zero. Let [ = A1 + i)\
and p = p1 + ip, A1, p1, A2, p2 € R, Ap # 0 # py be eigenvalues of a su(n, 1) morphism A, with
non-zero real parts. Let x resp. y € V' be the corresponding eigenvectors. Then

0= (Az,z) + (z, Az) = 2(Az, x) = 2)\ (2, )

13



The eigenvector x is then a null-vector. With the same argument is y a null-vector too.

0 = (Az,y) + (z, Ay) = (\z,y) + (z, py) = Mz, y) + f(z,y)
(A + 1) (z,y),

and A = —p otherwise z and y would generate a nullplane.

A su(n,1) morphism has consequently either exactly two eigenvalues A, u with non-zero real
parts and in this case A = —Jz, or all its eigenvalues are pure imaginary (or zero). Let V) and V_
be the eigenspaces corresponding to the eigenvalues with non-zero real parts. The space V) ® V_x
is A-invariant and so is the space W := (V) ® V_X)J-: let € Vy @V y and y € W and then

(Ay,z) = —(y, Az) = 0. (23)

The restriction of the form h to V) & V_y has the signature (1,1), therefore is h on W positive
definite, that means A|y € u(W, h) and A|y is diagonalizable (with eigenvalues in iR). The matrix
form of the morphism A is then A = diag(A; +iA2, —A1 +1iA2,i\3, ..., i\,41) In an apropriate basis
€1,. - . epy1 such that

(61,61) = (62,62) = 0, (61,62) = 1, (61,61') = (eg,ei) =0 VZ Z 3, (ei,ej) = 55 VZ,] 2 3.

Any such two morphisms lie evidently on the same U (n, 1) orbit, that is also on the same SU(n, 1)
orbit.

Let us check how big can be the Jordan blocks of the Jordan normal forms of the morphism A
with only pure imaginary (or zero) eigenvalues.
1. There exists a Jordan block of of the size at least 4. Let i\, A € R be on the diagonal . The
morphism ¢\ is an unitary one, and so is the morphism B := A — ¢A. The morphism B is then

01 00
. . 0010
unitary and in its Jordan normal form has the block of the form 000 1l And let eq, e, €3,
0000
e4 be the root vectors corresponding to the block, that is Bey = e3, Beg = eo, Begs = €1, Bey =

Then we have

0 = (Bey,e2)+ (e1,Be2) =0+ (e1,e1) = (e1,e1) =0,

0 = (Bey,e3)+ (e1,Bes) =0+ (e1,ea) = (e1,e2) =0,

0 = (Beg,e3)+ (e2,Bes) = (e1,e3) + (e2,e2) = (e1,e3) = —(ea, €2),

0 (Bes,e3) + (e3, Bes) = (ea,€3) + (e3,e2) = 2Re(ea,e3) = (eg,e3) € iR
(it will be used in the point 2)

0 = (Bej,eq)+ (e1,Beq) =0+ (e1,e3) = (e1,e3) =0 = (e2,e2),

and we would get a null-plane (e1, e2). Thus there is no morphism in u(n, 1) with the Jordan block
of the size greater then 3 (and so is no such morphism in su(n, 1).

2. Let there be a Jordan block of size 3. As in the first point we get vectors ei, es, ez with
(e1,e1) = (e1,e2) = 0 slen (1) (e2,€2) > 0 and we may choose ey such that (eg,eq) = 1, then

(e1,e3) = —1 and (ez, e3) € iR.
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Now let us consider the transformation f; := aey, fo := aes + bey, f3 := aesz + bes + €1, a, b,
c € C. Then we have still Bf; =0, Bfys = f1, and Bfs = fo. After and easy computation one can
choose a, b and ¢ so that

(flafl):(f3af3)zo7 (f17f3):_1’ (fQ’fj):(;%v for ]:13273

Now the space span(ey, es, e3) is A-invariant and the restriction of h to this space has signature
(2,1). Tt follows that the space W := span(eq, ez, e3)® is A-invariant as well, and h is positive
definite on it, that is A|y is diagonizable with unitary transformation of W and the eigenvalues lie
in R.
Again, all such su(n, 1) morphisms lie on the same SU(n, 1) orbit.

3. There exists a Jordan block of size 2. Let us suppose first, that there are at least two blocks of
size 2. Let ey, ez, f1, f2 be corresponding linearly independent vectors such that Ae; = i\je; and
Afj =1iXjfj +ej, j=1,2. Then

0= (Aej, fj) + (e, Af;) = iNj(ej, f3) + iNj(ej, fi)(ej.¢5) = (ejoeg),  §=1,2.
Thus (e, e2) # 0 according to the nullplane argument, and we can write
0 = (Aey, e2) + (e1, Aea) = id1(e1, e2) +idaer, e2) = (A1 — A2)(e1, ea),
which implies A1 = A2 =: A\. Then
0= (Aex, fo) + (e1, Af2) = iX(e1, f2) +iX(e1, f2) + (e1, e2),

and we get the contradiction. Thus there is just one block of size 2. Let e, fi, e3,...,en+1 be a
basis such that Af; =i\ f1 +e1, Ae; = i)jej, A\j € Rfor all j =1,...n+ 1. Then there is

0 = (Aer,e;) + (e, Aej) = iMi(f1,¢5) + (e1,€) +iA;i(f1,¢5) (24)
= (A1 = A)(f1,€5) + (e1, ), (25)
0 = (Ael, €j) + (61,A6j> = i/\l(el, €j) —1—@(61, ej) = i()\l — )\j)(el, ej). (26)

Then (25) and (26) imply according to the excluded third principle (e, e;) =0 for j =1,3,... ,n+1.
Since h is non-degenerate we have (e1, f1) # 0 and

0= (Af1, f1) + (f1, Af1) = 2Re(Af1, f1) = 2Re(iA1(f1, f1) + (€1, f1)) = 2 Re(e1, f1),

that means (e, f1) € iR\ 0. Without loss of generality we can suppose that (e, f1) = €i, € = £1.
If we consider the transformation e := fi + ceq, then Aes = iAjes + €1 and we can choose ¢ € C so
that (e2,e2) = 1. Then again as in the previous points we can choose a basis e1,..., e 41 (e1 and
e are already given) such that the morphism A is in its canonical Jordan form with exactly one
Jordan block of size 2 in the basis, and for the basis vectors there is:

(e1,e1) = (ez,e2) =0,(e1,e2) = €i,e € {£1},(e1,ej) = (e2,e5) =0, for j >3
(ej,ex) = 5;? for j,k>3.

There are two orbits of the SU(n, 1) of the morphisms of this type according to €, that is according
to the scalar product of e; and ey in the canonical basis. The number € is evidently a SU(n,1)
invariant.
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4. The morphism A is diagonalizable. Again, we can choose a basis ej,...e,41 in which the
morphism has the diagonal form and

(61161):_17 (elaej):()avj227 (ej7€k):5§: Vj,kZQ,

and all such morphism lie on one SU(n, 1) orbit.
In low dimensional cases (dimV < 2) we have then less orbits types. For dimV = 3 the
morphism with the Jordan block of size 3 has all the eigenvalues zero. O

Characteristic polynomial of the metrics. The characteristic polynomial determines all invari-
ants of the adjoint orbit of the matrix A € g! Thus the different types of adjoint orbits correspond
to different types of characteristic polynomials (distinguished according to their roots) and we get
invariants of the equivalent classes of Bochner-Kaehler metric.

The characteristic polynomial p4 of the matices in I'4 is according to (16):

p— n%ﬂ(trp)ﬂn u o u
det —u* —%(tr‘p —i(f+1)) s(f—=1) — th4o (27)
u* 3(1=1) —5(trp+i(f+1))

= det(p — 5 (trp) — tI,) (82 + (trp)t + f + 3 (tr p)?) + u* Cof (p — 5 (tr p) — thp)u,  (28)

where Cof(X) means the cofactor matrix of X.
This is in accordance with the Bryant’s result (see [Br]) 2 on the orbits of the diagonalizable
matrices with pure imaginary eigenvalues.

4.4 One ”nice” type of Bochner-Kaehler metrics

We are now going to describe the first one of the five mentioned types of Bochner-Kaehler metrics in
more detail. Namely let us investigate those metrics which come from the construction if we take in
the course of it the matrix generating transversal symmetry to be diagonalizable with all eigenvalues
pure imaginary (or zero). These are the matrices which acts as linear morphism (U (n)-morhpism
actually) on the sphere S?"~! regarded as a projectivized cone C.

Any diagonalizable matrix Ae su(n, 1) can be written in the form diag(iA1, ..., i\, —i >y Ai),
where A = diag(i\1,...,i\,) is in u(n).

Then according to (21), A acts on the tangent bundle of the spere:

n

A (21, m) = ({0 +0)z1, ., i(An + 0)an) €TC, 0=> A
i=1
The action of a matrix A on C™ thus corresponds to the multiplication with the matrix A’, where
A"= A+ tr(A)I, I being the indentity matrix.

Let Ag € su(n, 1), Ay = <f(1)0 —tr(on)

defines a transversal symmetry on Cp, a non-empty open subset of C, that is {yv ¢ ©,, on Cy. This

> be of the above diagonal form such that {gu = Ag - v

TLet g C End(V) be an irreducible representation of the Lie algebra g. Let ¢ : g — R(t), such that p(Ad, ) = ¢(z)
for all z,g € g and gr(¢(x)) < n Then ¢(z) is a constant multiple of the characteric polynomial of z.
2The functions p, u, f from 3.3 correspond to Bryant’s functions S, T, U as follows: p =4S, u= T, U = —f.
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symmetry then defines a section A of the line bundle C' — C. Then ANC)=%4CC,

Ya = {(@eC"A(()) =1}

(= € C(6o(2), J) = 1}

{(x € C"|(Ap -z, Jz) = 1}

= {z e C"|(x,—(Ap +tr(Ap))Jx) =1}

= {zeC"> (Ni+o)ul =1}

=1

(29)

Since the globalization brings to life some new demanding questions, we keep on working locally
only. Consider U a regular open subset of C' with respect to &y, that is there is a submersion
my : U — My onto some manifold My, the set of leaves of the foliation generated on U by &. The
whole of C' can be covered by regular subsets. We write My = U/T.

Our goal is to determine the Bochner-Kaehler connection on My which is induced there acording
to the general construction of special symplectic geometries. The Bochner-Kaehler connections are
with one-to-one correspondence with the Bochner-Kaehler metrics which are further in one-to-
one corresponce with the pair consisting of the fundametal form of the Kaehler structure and the
complex structure on M.

There is the unique symplectic (which turns to the fundamental Kaehler one with the complex
structure on M) form wy on My such that the pull-back of this form to U x R ¢ C' C C™ is the
canonical symplectic form on C™ (this is the form that comes with the above identifications from
the Cartan-Killing form on su(n,1)).

Lemma 4.11 The complez projective space CP™ comes from our construction for g = su(n+1,1)

and )
2(n+2)

2(n+2)
i(n+1)
2(n+2)

Proof. As we have already mentioned, the canonical C'R-distribution on S is the structure which
determines The matrix A acts on the sphere S?"~! according to (21) as linear map given by the
matrix )
-
_i
2
and thus the contact symmetry £ is given as {(p) = —%ip. The hyperplane ¥4 is a 2n + 1-
dimensional sphere in C™*1, so that it coincides with the projectivization C of the Lie algebra cone
and the Kaehler form is the standard form on C". We get actually the cone construction from the
theorem 2.3.
If we consider the matrix A in the form of 16, we see that the structure functions are p = —1.J,

2
f=1Lu=0. g
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The generating metric on the contact distribution. The Bochner-Kaehler structure on
the sphere $?"~! lifts to the structure on ¥ 4. The canonical complex structure on the contact
distribution on C, that is canonical CR-distribution on the sphere lifts to the complex structure
on the distribution Dy, C TX 4, that is to the complex structure on the contact distribution on the
section X4 of C —C:

Ta(X) = JX — (X, Aop)p — 0‘; ’,f L1, (30)

for vectors X, Y € T,,%, and |p|> = (p,p). This gives us then the metric on Dy,

(X.p)(Y.p)

9(X,)Y)=w(uyX,Y)=(JuX,JY)=(X,Y) — BE

(31)

This metric factors to the metric on My = T3, which is, according to the construction, Bochner-
Kaehler. This can be confirmed also with the direct computation. We can view the metric (31) as
a degenerated metric on the whole ¥. The corresponding Levi-Civita connection is then

(VxY), = V&Y + g(X,Y)n + (X, A JY )p, (32)

where X,Y,Z € X(X4) V0 is a flat connection in C*, n = A,Jp — |Aop|*p, p € Ba. For the
Levi-Civita connection of the metric on My we have then

S = 1
VXY:VYY—*

5@(X,Y)6o + a(X) I + a(Y)Tu X,

where X,Y € X(M), X is a lift of a vector field X on X(M) to a vector field on ¥4 (X € Dy),
and a(X) := g(X, &) = (X, &).
The Bochner-Kaehler form of the curvature of the metric.. Let us define the mapping
p:TMy — TMy as

pX ==V, X = Vo = Ao X + g(X, &)n + 9(X, A3 Tp)p. (33)

Lemma 4.12 The maping p from (33) is in u(n).

Proof. Let us show first, that p is well-defined, that is go(pX, Jp) = 0:

(pX) = g(pX,Jp) =g(Ve X, Jp) = &0 g(X, Jp) g(X, Ve, Jp)
=0
= 0—g(X,VEJIp+ 9(&, Ip) + 9(&0, —Aop)p)
= —g(X,AoJp+ (Aop, Jp)AoJp)
= —g(X,A0Jp — (p, Ao Jp) Ao Jp)
=1
= —g(X,A0Jp— AoJp) =0

18



Next we show pJyr = Jyrp:

pI X

Ao Ty X + (JMX,Aop) (JMX Ang)p

I — (X, Aop)p &()m%m

AgJX — (X, Agp)Aop — —3 (X, p)AoJp — (X, Aop) n — (X, Aop) (p, Aop)
lp ! %/—/0 ——
+(JX, ALTX)p + (X, Aop) (Aop, J Aop) p—s (X, p) (Ao Tp, Ao Jp)p
=0
o 1 _
AgJX — (X, Aop) + W(X,P) (—AgJp + 1+ |Aop?) +(X, A3p)p

=0

|!2

AgJX — (X, Aop)Aop + (X, A2p)p.

For the Jyrp we have

JyupX

ToX = (X Alp = £ (0.9

J(AOYJr (X, &0)n + (X, A2Jp)p) — (AoX + (X, &0)n + (X, A3Tp)p, Aop)p
i |2(A0X+(X ,&o)n + (X, A3.Jp)p, p)Jp

AgJX + (X, &) JIn+ (X, A2Jp)Jp + (X, Ap)p

(X&) | (AoTp. Aop) —|Aopl? (0, Aop) | + 5 (K. Aop)Tp
L L)

2(X Aop) | (AoJp,p) —|Aop*lp* | Jp — 72(X A3 Jp)pl*Jp
L 1 1
Ao JX + (X, Aop) <—A0P | Aop*Jp + —5 e <Jp —~ W(l — !AopIQ\p!2)> Jp)

+(X, A3p)p
AgJX — (X, Aop)Aop + (X, A3p)p

Finally we show g(pX,Y) = (49X,Y), which implies g(pX,Y) = —g(pY, X)

9(pX,Y)

9(pX,Y) = g(AoX + g(X,&)n + g(X, A2JTp)p,Y)
g(AoX + g(X,&)AgJp,Y)

(Aoyv ?) | 1’2(A0X p)(Y p) (Y7 50) ((A()Jp’ ) ’ 1‘2 (AOJp p)(Y p))
=0 =1

memm@ummm
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With the help of the map p, we can express the curvature of the Levi-Civita connection on My
in the Bochner-Kaehler form (3).

Proposition 4.13 Let My be a Bochner-Kaehler manifold which comes from the general con-
struction in [CS] for h = u(n — 1), g = su(n, 1), and Ay € su(n,1). Then the curvature R of the
Bochner-Kaehler metric on My s given by

R=R:

3+ 1lAGpI2T

Proof. Let Z ]i be Levi-Civita connection and curvature of ‘Lhe Bochner Kaehler metric induced
on My, and V, R the ones of the metric g on Dy, a(X) = g(X, &) as before. There is
(Vxa)(Y) = XaY)—a(VxY)=Xg(Y,&%) —9(VxY, &)

= g(V)xY, &)+ 9(Y, V&) — g(VxY — %W(K Y)éo + a(X)JuY +a(Y)JIuX, &)

= 9V, 5%) + 30X,V )g(0.&) — a(X)g(Tar¥ &) — a(V)g(Tar X, o)
= g(pX,Y) — g(X, JuY))[Aop|? — a(X)a(JarY) — (Y ) (I X)
Further
da(X,¥) = (Vx)a)(¥) - (Vya)(X)
9(X.T) - 9o, X) — (X, Tar¥ | Aapl? + 9(¥, TarX) | Aup?
—a(X)a(JuY) +aY)a(JuX) — a(Y)a(JuX) + a(X)a(JpY)
= —29(X,pY) —29(X, JuY)|Aop|*.

For the curvature tensor of the metric g we get then

R(X,Y)Z = R(X,Y)Z+ (-29(X,pY) —29(X, JnY)|Aop|*) T Z
+ (a(V)g(X,2) — a(X)g(Y,2)) b0+ 9(V, TuZpX — 9(X, IuZ)pY
+a(JuZ) ((X)InY — a(Y)IuX) 4+ a(2) (a(X)Y — a(Y)X)

(Z) (I X)TnY — a(JuY) I X)
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= R(X,Y)Z-2(g9(X,pY) +g(X, TnY)|Aop|?) Tm Z
+(a(Y)g(X,Z) —a(X)g(Y,2)) éo+ (pX NIuY) Z — (pY NJuX) Z
+a(Z) ((X)Y — a(YV)X) + |Aop|* (TuX AN TnY) Z —29(X, TuY)pZ

= (YANAJX — X ANAJY + |App|?’ X AY) Z

—9(Y, 2)X, Agp)p — 2 (9(X, pY + g(X, TmY )| Aopl®) T Z

Z) —a(2)g(Y,2)) &+ (pX AN IuY —pY ANJIuX) Z
+a(Z) (a(X)Y —a(Y)X) + [Aop|*(TmuX A TmY)Z —29(X, TnY)pZ

= (YANAJX =X NAJY + |AgppPX NY) Z + (9(Y, 2)X — 9(X, Z2)Y, Ajp)p
—2(g(X,pY) + 9(X, TnY|Aop)?) Tas Z + (V) (X A &0)Z — a(X)(Y AN &) Z
+ (PX ANTMY = pY NIy X) Z + [Aopl*(TuX N InY)Z —29(X, TuY)pZ

= (YANAJX =X NAJY + |Agp’X AY) Z + (9(Y,2)X — g(X,2)Y, Alp) p
=2 (g(X,pY) + 9(X, TmY)|Aopl?) Tm Z + a(Y)(X A &0)Z — a(X)(Y Néo)Z
+(PX ANTMY = pY NIy X) Z + |Aopl*(Tu X N InY)Z —29(X, TuY)pZ

= (Y AAJX =X AAJY + [AgpPX AY) Z + (Y A (X, A2p)p) Z — (X A (Y, A2p)p) Z
-2 (g(X,pY) + g(X, TuY)|Aop)?) TmZ + (a(Y)X A&y — a(X)Y AN&) Z
+ (PX ANTIMY =Y NIuX) Z + | Aop*(TuX A TnY)Z
—29(X, JnY)pZ

= Y A (A JX + (X, Alp)p — a(X)&) Z — X A (AgJY + (Y, Ajp)p — a(Y)&o) Z
+ApP (XAY + TuX ANIuY)Z = 29(X, TnY)ImZ) —29(X, pY) I m Z
+ (X NIMY —pY NIy X) Z —29(X,ImY)pZ

= YATupX)Z — (X ANTupY)Z + |Aop)* (X AY + T X ANTnY)Z —29(X, TnY) I mZ)
=29(X, oY) ImZ + (pX NInY —pY NIuX) Z —29(X, TnY)pZ

= (YATupX =X ANJupY +pX ANInY —pY Ay X —29(X,pY)JIm — 29(X, TnY)p) Z
HAPP (XAY) + TuX ATnY —29(X, TnY) T u) Z,

| =

that is

R(X,)Y) = Y A(JupX)— X A(JupY) +pX A JyY — pY A JuX —29(X, pY)JIn
—29(X, JnY)p+ |Aop)* (X AY + JuX A JnY —29(X, JaY)Jar)

Example 4.14 For the complex projective space we get the following characteristic polynomial p(t)
for the class of the Bochner-Kaehler metrics with the constant holomorphic curvature equal 1:

0= () ()

which corresponds to the Bryant’s one (see section 4.1.1. in [Br]).
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5 Bochner tower

There is a question if one can embedd (locally) the Bochner-Kaehler manifold into a Bochner-
Kaehler manifold of two (real) dimensions greater.

Following the geometric interpretation of the construction of Bochner-Kaehler metrics, we would
like to have some embedding su(n, 1) < su(n + 1,1), which would induce the embedding of corre-
sponding Bochner-Kaehler manifolds.

Consider the embedding

1 0
G+— ( 0 G> (34)
of the Lie group SU(n, 1) into SU(n + 1,1) and the corresponding embedding

A <8 21) := B of the Lie algebras.

This embedding yields the embedding of corresponding cones (and their projectivizations) in
the Lie algebras, we have Cgy,,1) = §2n—l o, g2ntl = Ceu(n+1,1)- This embedding is evidently
su(n, 1)-equivariant (A € su(n,1) acts on Cgyp, 1) according to the action (21), B acts on the
embedded cone according to (21) for su(n + 1,1)).

A matrix A € su(n, 1) acts on C the same way as the matrix

X0 ... 0

0
D)\g - : A—%E <35)
0

on the image of Cgyn,1) C Coy(ng1,1) under the described embedding.
Consequently we get the theorem

Theorem 5.1 For any \g € R and any A € su(n, 1) the Bochner-Kaehler manifold corresponding
to A (that is T /X 4, see 3.3) can be embedded totally geodesicly into to the Bochner-Kaehler manifold
T/%p,,, where Dy, is given above.

Proof. The manifold Xp, is given by the equations (29). Then the vector (0,v) € crtlivecCn
lies in 2 Dy, evidently iff the vector v lies in ¥ 4. The contact distribution Dy Dag on X Dy, is given
by the equation (22) and apparently DEDAO N (0,C") = (0,Dyx,). Moreover the action (21) shows
that for a v € X4 there is (0,£4(v)) = &p,,. Thus the factor manifold ¥4 /T¢, is embedded into
the manifold ED/\O /TDAO'

The lift of the Levi-Civita connection of the Bochner-Kaehler to the contact distribution D
on ZDAO preserves the set of vectors of the form (0,v), v € C™ and thus it preserves also the
distribution (0,% 4). Thus the described embedding is a totally geodesic one. O

Remark 5.2 The previous statement can be reformulated as: Bochner-Kaehler manifold can be
totally geodesic ebedded into the one-parametric class of Bochner-Kaehler manifolds of the (complex)
dimension one higher.
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Example 5.3 Let us compute what the given embedding yields for the complex projective space
CP" ', As we have seen, the complex projective space comes from the construction for g = su(n, 1)
and

i

2(n+1)
A= o . Choosing Ao = _2(++2) we get CP" ! we get
2(n+1) A
2(n+1)
_2(nl+2)
DO - i 5
T 2(n+2
( ) i(n+1)
2(n+2)

and the Bochner-Kaehler manifold corresponding to this matriz is CP™.

6 Bochner-Kahler and Ricci-type connections duality

In this section we describe the duality between the manifolds with the Bochner-Kéhler metrics of
type 1. (see 4.10) and Ricci flat connections.

Recall the general construction from the section 3. So far we were interested in the case with
g1 = su(n,1). If we consider the construction for the parabolic 2-gradable algebragy := sp(n,R), we
get a manifold with the connection of Ricci type. Recall the two standard embeddings of u(n + 1),
first into su(n + 1,1) (that was described in the previous section), second into sp(n + 1, R).

Theorem 6.1 Consider the action of the Lie algebras g1 = su(n +1,1) and g2 = sp(n + 1, R) on
the projectivized cones C1, Co. Then the following are equivalent

i) For a; € g; the actions of T,, C G; on @ are conjugate for i=1,2.

it) a; € u(n+ 1), where u(n + 1) C g; for i = 1,2 via the two standard embeddings.

Proof. We have already computed the action of u(n 4+ 1) on Cy (see (21)). Observe, that the
diagonalizable matrices in su(n + 1,1) are the only matrices, which act on C (which is isomorphic
to the sphere S?"*!1 ¢ C"*!) in the standard way (as on the vectors in C"). As for the action on
Cy we have to go quickly through the general construction (Section 3) for g = sp(n + 1). We have
S2(R?2+2) 2 sp(n+ 1) (zoy)(z) = w(x, 2)y + w(y, 2)x, for z, y, z € R*"*2). You can prove with
an easy computation as in the 4.2, that the map x ~ 22 is the Sp(n + 1)-module homomorphism
of the space R?"*+2/Zy and S?(R?"*2), where the image of the morphism corresponds to rank-one
elements in sp(n + 1). The action of sp(n + 1) on Cy = R?"*2/7Z, is just a standard one, and thus
the action of u(n + 1) — sp(n+ 1) on Cy = Po(Cy) = RP?*+2 is just a standard action on the real
projective space. This is locally the same as the action of u(n + 1) < su(n + 1,1) on the sphere
1. Od

Thus we get the following theorem:
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Theorem 6.2

i) Let (M,w,V) be a symplectic manifold with a connection of Ricci type, and suppose that the
corresponding element A € sp(n + 1,R) from 3.4 is conjugate to an element of u(n + 1) C
sp(n+1,R). Then M carries a canonical Bochner-Kdhler metric whose Kdhler form is given
by w.

it) Converselly, let (M, J,w) be a Bochner-Kdhler metric such that the element a € su(n + 1,1)
from 3.4 is conjugate to an element of u(n+1) C su(n+1,1). Then (M,w) carries a canonical
connection of Ricci-type.
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