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Abstract

In this note we prove that any integral closed k-form φk, k ≥ 3, on a m-dimensional
manifold Mm, m ≥ k, is the restriction of a universal closed k-form hk on a universal
manifold Ud(m,k) as a result of an embedding of Mm to Ud(m,k).
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1 Introduction.

Let a manifold Mm be equipped with a tensor of degree αk and a manifold Nn equipped
with a tensor βk. Suppose that n > m. We want to know if there is an immersion
f : Mm → Nn such that f∗(βk) = αk. This problem has a long history, the Nash
embedding theorem for (Mm, α2) being a Riemannian manifold and (Nn, β2) being the
standard Euclidean space is one of most spectacular results in this field. Gromov in his
seminal book [Gromov1986] developed many methods for solving this problem.

In this note we apply the Gromov theory to obtain the existence of a universal space
Ud(m,k), equipped with an integral closed k-form hk, k ≥ 3, for any m-dimensional man-
ifolds Mm equipped with an integral closed k-form φk (Theorem 3.6). Theorem 3.6 is a
generalization of Tischler’s theorem [Tischler1977] on the existence of a symplectic embed-
ding from an integral symplectic manifold (M2n, ω) to CPn equipped with the standard
Kaehler symplectic form.

This note also contains an Appendix written in communication with Kaoru Ono which
contains a new “soft” proof of a version Theorem 3.6 on the existence of a universal space
for manifolds equipped with an integral closed k-form. Our soft proof does not use the
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Nash-Gromov implicit function theorem, but we do not get a C0-perturbation result as in
Theorem 3.6.

2 H-principle and Nash-Gromov implicit function theorem.

In this section we briefly recall some important notions and results in the Gromov theory
[Gromov1986] which we shall use for our proof of Theorem 3.6.

Let V and W be smooth manifolds. We denote by (V,W )(r), r ≥ 0, the space of r-jets of
smooth mappings from V to W . We shall think of each map f : V → W as a section of
the fibration V ×W = (V,W )(0) over V . Thus (V,W )(r) is a fibration over V , and we shall
denote by pr the canonical projection (V,W )(r) to V , and by psr the canonical projection
(V,W )(s) → (V,W )(r), for any s > r.

A section s : V → (V,W )r is called holonomic, if s is the r-jet of some section f : V →
(V,W ).

We say that a differential relation R ⊂ (V,W )(r) satisfies the H-principle, if every con-
tinuous section φ0 : V → R can be brought to a holonomic section φ1 by a homotopy of
sections φt : V → R, t ∈ [0, 1].

We say that a differential relationR ⊂ (V,W )(r) satisfies the H-principle C0-near a map
f0 : V → W , if every continuous section φ0 : V → R which lies over f0, (i.e. pr0 ◦ φ0 = f0)
can be brought to a holonomic section φ1 by a homotopy of sections φt : V → RU , t ∈ [0, 1],
for an arbitrary small neighborhood U of f0(V ) in V ×W [Gromov1986, 1.2.2]. Here for
an open set U ⊂ V ×W , we write

RU := (pr0)−1(U) ∩R ⊂ (V,W )r.

The H-principle is called C0-dense, if it holds true C0-near every map f : V →W .

We also define the fine C0-topology on the space C0(X) of continuous sections of a
smooth fibration X → V by taking the sets C0(U) ⊂ C0(X), U is open in X, as the basis
for this topology. The fine Cr-topology on Cr(X) is induced by the fine C0-topology on
C0(X(r)) using the embedding Cr(X)→ C0(X(r)).

Suppose we are given a differential relation R ⊂ (V,W )(r). We define the prolongation
Rk ⊂ (V,W )r+k inductively. Let R′ ⊂ (R(r))(1) consist of the 1-jets of germs of C1-
sections V → R. We put R1 := R′ ∩ X(r+1) ⊂ (X(r))(1). Then repeat this and define
Rk := (V,W )r+k ∩ (Rk−1)1 ⊂ ((V,W )r+k−1)1. A Cr+k-solution of R is a holonomic
section of Rk.
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Fix an integer k ≥ r and denote by Φ(U) the space of Ck-solutions of R over U for all open
U ⊂ V . This set equipped with the natural restriction Φ(U)→ Φ(U ′) for all U ′ ⊂ U makes
Φ a sheaf which we call the solution sheaf of R over V . We shall say that Φ satisfies the
H-principle, if R satisfies the H-principle.

A sheaf Φ is called flexible (microflexible), if the restriction map Φ(C) → Φ(C ′) is a
fibration (microfibration) for all pair of compact subsets C and C ′ ⊂ C in M . We recall
that the map α : A→ A′ is called microfibration, if the homotopy lifting property for a
homotopy ψ : P × [0, 1]→ A′ is valid only “micro”, i.e. there exists ε > 0 such that ψ can
lift to a homotopy ψ̄ : P × [0, ε]→ A.

2.1. H-principle and flexibility [Gromov1986, 2.2.1.B]. If V is a locally compact
countable polyhedron (e.g. manifold), then every flexible sheaf over V satisfies the H-
principle.

2.2. A criterion on flexibility. [Gromov1986, 2.2.3.C”] Let Φ be a microflexible sheaf
over V and let a submanifold V0 ⊂ V be sharply movable by acting diffeotopies. Then the
sheaf Φ0 = Φ|V0

is flexible and hence it satisfies the H-principle.

One of Gromov’s method to get the microflexibility of some sheaf (and then to get the
H-principle) is to exploit the Nash-Gromov implicit function theorem.

Let X → V be a smooth fibration and G→ V be a smooth vector bundle over a manifold
V . We denote by Xα and Gα respectively the spaces of Cα-sections of the fibrations X and
G for all α = 0, 1, · · · ,∞. Let D : X r → G0 be a differential operator of order r. In other
words the operator D is given by a bundle map 4 : X(r) → G, namely D(x) = 4 ◦ Jrx,
where Jrx(v) denotes the r-jet of x at v ∈ V . We assume below that D is a C∞-operator
and so we have continuous maps D : Xα+r → Gα for all α = 0, 1, · · · ,∞.

Now we shall define the linearization of a differential operator D. Let x be a Cα-section
of a smooth vector bundle X → V . Denote by Yx the induced vector bundle x∗(Tvert(X)).
For each β ≤ α we denote by Yβx the space of Cβ-section V → Yx. The space Yαx can be
considered as the tangent space Tx(Xα). Now we suppose that the fibration X → V does
not have boundary. For x ∈ X r the linearization Lx : Yrx → G0 of the operators D at x
is defined as follows. Let y = ∂xt/∂t|t=0. Then

Lx(y) = L(x, y) =
∂

∂t |t=0
D(xt).

We say that the operator D is infinitesimal invertible over a subset A in the space
of sections x : V → X if there exists a family of linear differential operators of certain
order s, namely Mx : Gs → Y0

x, for x ∈ A, such that the following three properties are
satisfied.
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1. There is an integer d ≥ r, called the defect of the infinitesimal inversion M , such
that A is contained in X d, and furthermore, A = Ad consists exactly of Cd-solutions
of an open differential relation A ⊂ X(d). In particular, the sets Aα+d = A ∩ Xα+d

are open in Xα+d in the respective fine Cα+d-topology for all α = 0, 1, · · · ,∞.

2. The operator Mx(g) = M(x, g) is a (non-linear) differential operator in x of order s.
Moreover the global operator

M : Ad × Gs → J 0 = T (X 0)

is a differential operator, that is given by a C∞-map A⊕G(s) → Tvert(X).

3. Lx ◦Mx = Id that is

L(x,M(x, g)) = g for all x ∈ Ad+r and g ∈ Gr+s.

Now let D admit over an open set A = Ad ⊂ X d an infinitesimal inversion M of order s
and of defect d. For a subset B ⊂ X 0 × G0 we put Bα,β := B ∩ (Xα × Gβ). Let us fix an
integer σ0 which satisfies the following inequality

(∗) σ0 > s̄ = max(d, 2r + s).

Finally we fix an arbitrary Riemannian metric in the underlying manifold V .

2.3. Nash-Gromov implicit function theorem. [Gromov1986, 2.3.2]. There exists a
family of sets Bx ⊂ Gσ0+s for all x ∈ Aσ0+r+s, and a family of operators D−1

x : Bx → A
with the following five properties.

1. Neighborhood property: Each set Bx contains a neighborhood of zero in the space
Gσ0+s. Furthermore, the union B = {x}×Bx where x runs over Aσ0+r+s, is an open
subset in the space Aσ0+r+s × Gσ0+s.

2. Normalization Property: D−1
x (0) = x for all x ∈ Aσ0+r+s.

3. Inversion Property: D ◦ D−1
x −D(x) = Id, for all x ∈ Aσ0+r+s, that is

D(D−1
x (g)) = D(x) + g,

for all pairs (x, g) ∈ B.

4. Regularity and Continuity: If the section x ∈ A is Cη1+r+s-smooth and if g ∈ Bx
is Cσ1+s-smooth for σ0 ≤ σ1 ≤ η1, then the section D−1

x (g) is Cσ-smooth for all
σ < σ1. Moreover the operator D−1 : Bη1+r+s,σ1+s → Aσ, D−1(x, g) = D−1

x (g), is
jointly continuous in the variables x and g. Furthermore, for η1 > σ1, the section
D−1 : Bη1+r+s,σ1+s → Aσ1 is continuous.
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5. Locality: The value of the section D−1
x (g) : V → X at any given point v ∈ V does

not depend on the behavior of x and g outside the unit ball Bv(1) in V with center v,
and so the equality (x, g)|Bv(1) = (x′, g′)|Bv(1) implies D−1

x (g))(v) = (D−1
x′ (g′))(v).

2.4. Corollary. Implicit Funtion Theorem. For every x0 ∈ A∞ there exists fine
C s̄+s+1-neighborhood B0 of zero in the space of Gs̄+s+1, where s̄ = max(d, 2r + s), such
that for each Cσ+s-section g ∈ B0, σ ≥ s̄ + 1, the equation D(x) = D(x0) + g has a
Cσ-solution.

Finally we shall show a large class of microflexible solution sheafs Φ by using the Nash-
Gromov implicit function theorem.

Let us fix a C∞-section g : V → G and we call a C∞-germ x : Op(v) → X, v ∈ V , an
infinitesimal solution of order α of the equation D(x) = g, if at the point v the germ
g′ = g −D(x) has zero α-jet , i.e. Jαg′(v) = 0. We denote by Rα(D, g) ⊂ X(r+α) the set of
all jets represented by these infinitesimal solutions of order α over all points v ∈ V . Now
we recall the open set A ⊂ X(d) defining the set A ⊂ X(d), and for α ≥ d− r we put

Rα = Rα(A,D, g) = Ar+α−d ∩Rα(D, g) ⊂ X(r+α),

where Ar+α−d = (pr+αd )−1(A) for pr+αd : Xr+α → Xd.

A Cr+α-section x : V → X satisfies Rα, iff D(x) = g and x ∈ A.

Now we set R = Rd−r and denote by Φ = Φ(R) = Φ(A,D, g) the sheaf of C∞-solutions of
R.

2.5. Microflexibility of the sheaf of solutions and the Nash-Gromov implicit
functions.[Gromov1986 2.3.2.D”] The sheaf Φ is microflexible.

3 Universal space for integral closed k-forms on m-dimensional
manifolds.

Suppose that m ≥ k ≥ 3. In this section we shall show that any integral closed k-form φk

on a m-dimensional smooth manifold Mm can be induced from a universal closed k-form
hk on a universal manifold Ud(m,k) by an embedding Mm to a universal space (Ud(m,k), hk),
see Theorem 3.6.

Our definition of the universal space (Ud(m,k), hk) is based on the work of Dold and Thom
[D-T1958] as well as the idea of Gromov [Gromov2006] to reduce this problem to the case
that φ is an exact k-form.
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Let SP q(X) be the q-fold symmetric product of a locally compact, paracompact Hausdorff
pointed space (X, 0) , i.e. SP q(X) is the quotient space of the q-fold Cartesian (Xq, 0) over
the permutation group σq. We shall denote by SP (X, 0) the inductive limit of SP q(X)
with the inclusion

X = SP 1(X) i1→ SP 2(X) i2→ · · · → SP q(X)
iq→ · · · ,

where
SP q(X)

iq→ SP q+1(X) : [x1, x2, · · · , xq] 7→ [0, x1, x2, . . . , xq].

Equivalently we can write

SP (X, 0) =
∑
q

SP q(X)/([x1, x2, · · · , xq] ∼ [0, x1, x2, · · · , xq]).

So we shall also denote by iq the canonical inclusion SP q(X)→ SP (X, 0).

3.1. Theorem. (see [D-T1958, Satz 6.10]) There exist natural isomorphisms j : Hq(X,Z)→
πq(SP (X, 0)) for q > 0.

3.2. Corollary. ([D-T1958]) The space SP (Sn, 0) is the Eilenberg-McLane complex
K(Z, n).

Now let τk be the generator of Hk(SP (Sk, 0),Z) and by abusing notations we also de-
note by τk the restriction of the generator τk to any subspace iq(SP q(Sk)) ⊂ SP (Sk, 0).
The following lemma shows that we can replace a classifying map from (Mm, [φk]) to
(SP (Sk, 0), τk) by a map from (Mm, [φk]) to (SP [m−k

2
]+1(Sk), τk) .

3.3. Lemma. Let [φk] ∈ Hk(Mm,Z). Then there exists a continuous map f from Mm to
(SP [m−k

2
]+1(Sk)) such that f∗(τk) = [φk].

Proof. Let f0 be a classifying map from Mm to SP (Sk, 0) such that f∗0 (τk) = α. Denote
by Ki the i-dimensional skeleton of SP (Sk, 0) and by τ̄k the restriction of τk to Km. Then
we know that f0 is homotopic equivalent to a continuous map f1 : Mm → Km such that
f∗1 (τ̄k) = [φk]. To prove Lemma 3.3 it suffices to find a map g : Km → SP [m−k

2
]+1(Sk) such

that g∗(τk) = τ̄k. Then the map f = g ◦ f1 satisfies the condition of Lemma 3.3.

We observe that Kk+1 = Kk consists of the sphere Sk. If m = k or m = k + 1, then g
can be chosen as the identity map. Now suppose that m ≥ k + 2. The following identity
[D-P1961, (12.12)]

πi(SPn(X)) = Hi(X) for i < k + 2n− 1, n > 1,
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if X is connected and Hi(X) = 0 for 0 < i < k, k > 1, implies that

πi(SP [m−k
2

]+1(Sk)) = 0, for k + 1 ≤ i ≤ m− 1.

Using the obstruction theory we obtain a map g : Km → SP [m−k
2

]+1(Sk) extending the
inclusion map Kk = Sk → SP [m−k

2
]+1(Sk). Clearly the map g satisfies the required

property that g∗(τk) = τ̄k. 2

Since SP [m−k
2

]+1(Sk) has a finite simplicial decomposition we can apply the Thom construc-
tion in [Thom1954, III.2] where Thom showed that any finite m-dimensional polyhedron
K can be embedded in a compact (2m + 1)-dimensional manifold M2m+1 such that K is
a retract of M2m+1. As a result we get the following

3.4. Lemma. The space SP [m−k
2

]+1(Sk) can be embedded into a compact smooth manifold
Ms(m,k), s(m, k) = 2([m−k2 ] + 3)k+ 1, such that (the image of) SP [m−k

2
]+1(Sk) is a retract

of Ms(m,k).

Let us denote also by τk the pull back of the universal class τk from SP [m−k
2

]+1(Sk) to
Ms(m,k) and let αk be any differential form representing τk on Ms(m,k).

Let βkl be the following k-form on Rk·l with coordinates xij , 1 ≤ i ≤ l, 1 ≤ j ≤ k

βkl = dx11 ∧ dx12 · · · ∧ dx1k + · · ·+ dxl1 ∧ dxl2 · · · ∧ dxlk.

Set d(m, k) := s(m, k) + 2m+ 2− k + 1
2(k − 1)[ 2m

k−1 ]([ 2m
k−1 ]− 1) + k(m+ 1)

(
m+1
k

)
.

Now we state the main theorem of this section. Let

(3.5) (Ud(m,k), hk) = (Ms(m,k) × RkN , αk ⊕ βkN ).

3.6. Theorem. Suppose that φk is a closed integral k-form on a smooth manifold Mm.
Then there exists an embedding f : Mm → (Ud(m,k), hk) such that f∗(hk) = φ. Moreover
for any given map f̃ : Mm → (Ud(m,k), hk) such that f̃∗[hk] = [φk] there exists a C0-close
to f̃ embedding f : Mm → Ud(m,k) such that f∗(hk) = φk.

Proof of Theorem 3.6. Using Lemma 3.3 and Lemma 3.4 we see that the first statement
of Theorem 3.6 follows from the second statement of Theorem 3.6. Furthermore we shall
reduce the second statement to an immersion problem for exact 3-forms as follows. Denote
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by f̃1 : Mm → Ms(m,k) the projection of f̃ to the first factor. Then we have f̃∗1 (τk) =
[φk] ∈ Hk(Mm,Z). Let

g = φ− f̃∗1 (α).

Clearly g is an exact k-form on Mm. We can also assume that f̃1 is an embedding by
perturbing this map a little, if necessary. Thus the second statement of Theorem 3.6 is a
corollary of the following Proposition.

3.7. Proposition. For any given map f0 : Mm → RkN there is a C0-close to f0 immersion
f3 : Mm → (RkN , βkN ) such that f∗3 (βkN ) = g for any exact k-form g.

We shall apply the Gromov H-principle for immersion of differential forms to prove Propo-
sition 3.7. Gromov extended the Nash idea to add some regularity for an immersion in
order to apply the implicit function theorem and then using 2.5 to get the H-principle for
the isometric immersion. Finally using the H-principle we shall get immersions required in
Proposition 3.7.

Let h be a smooth differential k-form on a manifold W . Denote by Ih(w) a linear homo-
morphism

Ih(w) : TwW → Λk−1(TwW )∗, X 7→ Xch.

A subspace T ⊂ TwW is called h(w)-regular, if the composition of Ih(w) with the restric-
tion homomorphism r : Λk−1(TwW )∗ → Λk−1(T )∗ sends TwW onto Λk−1(T )∗.

An immersion f : V → W is called h-regular, if for all v ∈ V the subspace Df(TvV ) is
h(f(v))-regular.

Proof of Proposition 3.7. Roughly speaking, we add the condition of βkN -regularity to the
isometry property (i.e. f∗3 (βkN ) = g) and extend this equation for mappings also denoted
by f3 from the manifold Mm+1 = Mm× (−1, 1) provided with a form g⊕ 0, denoted from
now on also by g, to the space (RkN , βkN ). Our Proposition 3.10 states that the solution
sheaf restricted to Mm ⊂ Mm+1 satisfies the H-principle. In fact, this statement is a
consequence of Theorem 3.4.1.B’ in [Gromov1986]. So essentially we re-expose the Gromov
proof of Theorem 3.4.1.B’ in our concrete case, and we try to make Gromov’s argument
more transparent. Now to prove the existence of a βkN -regular isometric immersion f3

which is C0-close to a given map f0, it suffices to find a section of this extended differential
relation which lies over f0 (Proposition 3.12). That is only the essential new ingredient in
our proof of Proposition 3.7.

Now we are going to define our extended differential relation. Let us denote also by f0

a map Mm+1 → (RkN , βkN ) extending a given map f0 : Mm → RkN . We denote by F0

the corresponding section of the bundle Mm+1 × RkN → Mm+1, i.e. F0(v) = (v, f0(v)).
Denote by Γ0 ⊂ Mm+1 × RkN the graph of f0 (i.e. it is the image of F0), and let p∗(g)
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and p∗(βkN ) be the pull-back of the forms g and βkN to Mm+1 × RkN under the obvious
projection. Take a small neighborhood Y ⊃ Γ0 in Mm+1×RkN . Since βkN and g are exact
forms we get

p∗(βkN )− p∗(g) = dβ̂N

for some smooth (k − 1)-form β̂N on Y .

Our next observation is

3.8. Lemma. Suppose that a map F : Mm+1 → Y corresponds to a βkN -regular immersion
f : Mm+1 → RkN . Then F is a dβ̂kN -regular immersion.

Proof. We need to show that for all y = F (z) ∈ Y , z ∈ Mm+1, the composition ρ of the
maps

TyY
I
p∗(βk

N
)−p∗(g)
→ Λ(k−1)TyY → Λ(k−1)(dF (T(z)(M

m+1))

is onto. This follows from the consideration of the restriction of ρ to the subspace S ⊂ TyY
which is tangent to the fiber RkN in Mm+1 × RkN ⊃ Y . 2

Now for a map dβ̂N -regular map F : Mm+1 → Y and a (k − 2)-form φ on Mm+1 we
set

(3.9) D(F, φ) := F ∗(β̂N ) + dφ.

With this notation the map f : Mm+1 → RkN corresponding to F : Mm+1 → Y satis-
fies

f∗(βkN ) = F ∗(p∗(βkN )) = g + F ∗(dβ̂N ) = g + dD(F, φ),

for any φ. Since the space of (k − 2)-forms φ is contractible, it follows that the space of
dβ̂N -regular sections F : Mm+1 → Y for which

(3.9.1) f∗(βkN ) = g + dg1

for a given (k − 1)-form g1 has the same homotopy type as the space of solutions to the
equation

D(F, φ) = g1.

In particular the equation f∗3 (βkN ) = g reduces to the equation D(F, φ) = 0 in so far as the
unknown map f3 is C0-close to f0 (so that its graph lies inside Y ).
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We define by Φ̃reg the solution sheaf of the equation (3.9) whose component F is dβ̂N -
regular.

3.10. Proposition. The restriction of the solution sheaf Φ̃reg to Mm satisfies the H-
principle. Hence the solution sheaf of βkN -regular isometric immersions f : (Mm+1, g) →
(RkN , βkN ) such that F (Mm+1) ⊂ Y restricted to Mm also satisfies the H-principle.

Before proving this Proposition we shall prove the following

3.11. Lemma. The differential operator D is infinitesimal invertible at those pairs (F, φ)
for which the underlying map f is a βkN -regular immersion.

Proof. The linearization L(F,φ)D acts on the space of couples (V, φ̃) where V is a section of
f∗(T∗RkN ) (a vector field on RkN along the corresponding map f) and φ̃ is a (k− 2)-form
on Mm+1 as follows

(3.11.1) L(F,φ)D(V, φ̃) = LV β̂N + dφ̃ = V cdβ̂N + d(V cβ̂N ) + dφ̃.

By Lemma 3.8 the map F is a dβ̂N -regular immersion. Hence the equation for V

(3.11.2) F ∗(V cdβ̂N ) = g̃,

is solvable for all (k − 1)-form g̃ on Mm+1. Now we set:

(3.11.3) φ̃ := F ∗(V cβ̂N )

Clearly every couple (V, φ̃) satisfying (3.11.2) and (3.11.3) is a solution of the equation
L(F,φ)D(V, φ̃) = g̃ for any given (k − 1)-form g̃. 2

Proof of Proposition 3.10. Taking into account Lemma 3.11 and 2.3 (Nash implicit function
theorem), 2.5 (Nash implicit function theorem implies the microflexibility) we get the
microflexibility of Φ̃reg. Next we use the Gromov observation [Gromov1986, 3.4.1.B’] that
Mm is a sharply movable submanifold by acting diffeotopies in Mm+1 which implies that
the restriction of Φ̃reg to Mm is flexible. Hence we get the first statement of Proposition
3.10 immediately. The second statement follows by a remark above relating (3.9) and
(3.9.1). 2

Completion of the proof of Proposition 3.7.

Suppose we are given a map f0 : Mm → RkN . Since Mm is a deformation retract of Mm+1

the map f0 extends to a map f : Mm+1 → RkN .
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For each z ∈Mm we denote byMono((TzMm+1, g), (Tf(z)RkN , βkN )) the set of all monomor-
phisms ρ : TzMm+1 → Tf(z)RkN such that the restriction of βkN (f(z)) to Df(TzMm+1) is
equal to (Df−1)∗g.

3.12. Proposition. There exists a section s of the fibration Mono((TMm+1, g), f∗(TRkN , βkN ))
such that s(z)(TzMm+1) is βkN -regular subspace for all z ∈Mm.

Proof of Proposition 3.12. The proof of Proposition 3.12 consists of 3 steps.

Step 1. We consider TMm+1 and Mm × RkN as vectors bundles over the same base Mm.
We shall show the existence of a section s1 ∈ Mono(TMm+1,Mm × RkN ) such that the
image s1(TMm+1) is a βkN -regular sub-bundle of dimension (m+1) in Mm×RkN . To save
notations we also denote by βk the following k-form on RkN = ⊕Nj=1Rk

j

βk =
N∑
j=1

dx1
j ∧ · · · ∧ dxkj .

Here (xij), 1 ≤ i ≤ k, are coordinates in Rk
j for each j = 1, N .

We put for l ≥ k ≥ 3

δ(l, k) := (l − 1) +
k − 1

2
(2 + [

l − 2
k − 1

])([
l − 2
k − 1

− 1]) + [
l − 1
k − 1

](1 + ((l − 1) mod (k − 1))).

Here we set i mod (k − 1) := i− (k − 1) · [i/(k − 1)].

3.13. Lemma. For each given l ≥ k ≥ 3 there there exists a l-dimensional subspace V l in
RkN such that V l is βk-regular subspace, provided that N ≥ δ(l, k).

Proof. We shall construct a linear embedding f l : V l → RkN whose image satisfies the
condition of Lemma 3.13. We work in opposite way, i.e. for each l we shall find a number
δ(l, k) and an embedding f : V l → Rkδ(l,k) = ⊕δ(l,k)

j=1 Rk
j and f can be written as

f := f l = (f l1, f
l
2, · · · , f lδ(l,k)), f

l
j : V l → Rk

j , j = 1, δ(l, k),

such that f satisfies Lemma 3.13 with δ(l, k) = N . Clearly the embedding V l → V kδ(l,k) →
RkN also satisfies the condition of Lemma 3.13 for all N ≥ δ(l, k).

We can assume that V k ⊂ V k+1 ⊂ · · · ⊂ V l is a chain of subspaces in V l which is generated
by some vector basis (e1, · · · , el) in V l. We denote by (e∗1, · · · , e∗l ) the dual basis of (V l)∗.
By construction, the restriction of (e∗1, · · · , e∗i ) to V i is the dual basis of (e1, · · · , ei) ∈ V i.
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For the sake of simplicity we shall denote the restriction of any v∗j to these subspaces also
by v∗j (if the restriction is not zero). We shall construct f li inductively on the dimension l

of V l such that the following condition holds for all k ≤ i ≤ l
(3.14)

< (f l1)∗(Λk−1(Rk
1)), (f l2)∗(Λk−1(Rk

2)), · · · , (f lδ(i,k))
∗(Λk−1(Rk−1

δ(i,k))) >⊗R= Λk−1(V i)∗.

The condition (3.14) implies that

Iβk(Rkδ(l,k)) = Λk−1(V i)∗,

so f i(V i) is βk-regular. For l = k we can take fk1 = Id, and δ(k, k) = 1. Suppose that
(f i1, · · · , f iδ(i,k)) are already constructed for our map

f i = (f i1, · · · , f iδ(i,k)) : V i → Rk
1 × · · · × Rk

δ(i,k).

We shall construct map f i+1 as follows. We set for j ≤ δ(i, k)

f i+1
j (ep) = f ij(ep) if 1 ≤ p ≤ i,

f i+1
j (ei+1) = 0.

To find f i+1
j , δ(i, k) + 1 ≤ j ≤ δ(i+ 1, k), so that (3.14) holds for the next induction step

(i+1), it suffices to find linear maps f i+1
δ(i,k)+1, · · · , f

i+1
δ(i+1,k) with the following property

(3.15)
< (f i+1

δ(i)+1)∗Λk−1(Rk
δ(i,k)+1)∗, · · · , (f i+1

δ(i+1,k))
∗Λk−1(Rk

δ(i+1,k))
∗ >⊗R⊃ ∧k−1(V i)∗ ∧ e∗i+1.

We shall proceed as follows. Set δ(i + 1, k) := δ(i, k) + [ i
(k−1) ] + 1. Choose for any

1 ≤ j ≤ δ(i+ 1, k) a basic (wij), 1 ≤ i ≤ k, of the space Rk
j . We let

f i+1
j (ei+1) = w1

j ∈ Rk
j , if j ≥ δ(i, k) + 1,

f i+1
δ(i,k)+1(e1) = w2

δ(i,k)+1, f
i+1
δ(i,k)+1(e2) = w3

δ(i,k)+1, · · · , f
i+1(ek−1) = wkδ(i,k)+1,

f i+1
δ(i,k)+2(ek) = w2

δ(i,k)+2, f
i+1
δ(i)+2(ek+1) = w3

δ(i,k)+2, · · · , f
i+1(e2(k−1)) = wkδ(i,k)+2,

· · ·

· · · , f i+1
δ(i+1,k)(ei) = w

i mod (k−1)
δ(i+1,k) .

It is easy to see that the constructed map f i+1 satisfies (3.15) and hence also (3.14). Now
using the identity the δ(i+ 1)− δ(i) = [ i

(k−1) ] + 1 we get

δ(l, k) = 1 + (l − k) +
l−1∑
i=k

[
i

k − 1
]
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= (l− 1) + 2(k− 1) + 3(k− 1) + · · ·+ [
l − 2
k − 1

](k− 1) + [
l − 1
k − 1

](((l− 1) mod (k− 1)) + 1)

= (l − 1) +
k − 1

2
(2 + [

l − 2
k − 1

])([
l − 2
k − 1

− 1]) + [
l − 1
k − 1

](1 + ((l − 1) mod (k − 1))).

2

We shall consider Mm × V 2m+1 as a sub-bundle of Mm × Rδ(2m+1,k) over Mm. Next
we shall find a section s1 for the step 1 by requiring that s1 is a section of the bundle
Mono(TMm+1,M8 × V v) of all fiber mono-morphisms from TMm+1 to Mm × V v. This
section exists, since the fiber Mono(TxMm+1,Rv) is homotopic equivalent to SO(2m +
1)/SO(m) which has all homotopy groups πj vanishing, if j ≤ (m−1). This completes the
step 1.

Step 2. Once a section s1 in Step 1 is specified we put the following form g1 on TMm+1
|Mm :

g1 = g − s∗1(β).

In this step we show the existence of a section s2 of the fibration Hom((TMm+1, g1), (Mm×
Rk·(m+1)·(m+1

k ), βk)) over Mm. Here we consider (Mm × Rk·(m+1)·(m+1
k ), βk) as a fibration

over Mm and equipped with the k-form βk on the fiber Rk·(m+1)·(m+1
k ). We do not require

that s2 is a monomorphism.

Using the Nash trick [Nash1956] (see also the proof of Proof of Theorem B.1 below) we
can find a finite number of open coverings U ji , j = 1, (m+ 1), of Mm which satisfy the
following properties:

(3.16) U ji ∩ U
j
k = ∅, ∀j = 1, (m+ 1) and i 6= k,

and moreover U ji is diffeomorphic to an open ball for all i, j. Since U ji satisfy the condition
(3.16), for a fixed j we can embed the union Û j = ∪iU ji into Rm. Thus for each j on the
union Û j we have local coordinates xrj , r = 1, (m+ 1), j = 1, (m+ 1). Using partition of
unity functions fj(z) corresponding to Û j we can write

g1(z) =
m+1∑
j=1

fj(z) ·
∑

1≤r1<r2<···<rk≤m+1

µr1r2···rkj (z) · dxr1j ∧ dx
r2
j ∧ · · · ∧ dx

rk
j ,

where the last coordinate xm+1
j corresponds to the direction which is transveral to TzÛj

in Ûj × (−1, 1) ⊂ Mm+1. We numerate (i.e. find a function θ with values in N+) on the
set {(j, r1r2 · · · rk)} of N1 = (m + 1) ·

(
m+1
k

)
elements. Next we find a section s2 of the

form
s2(z) = (s̃1(z), · · · , s̃N1(z)), s̃q(z) ∈ Hom(TzMm+1,Rk

q )
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such that
s̃θ(j,r1r2···rk)(z) = fj(z) · µr1r2···rkj (z) ·Ar1,r2,··· ,rk ,

where Ar1,r2,··· ,rk(∂xrl ∈ TzM
m+1) := δilei ∈ Rk

q .

Here (e1, e2, · · · , ek) is a vector basis in Rk
q for q = θ(j, r1r2 · · · rk) and (∂xrl) a basic in

TzM
m+1 defined via embedding Ûj → Rm as above. Clearly the section s2 satisfies the

condition s∗2(βk(z)) = g1(z) for all z ∈Mm. This completes the second step.

Step 3. We put
s = (s1, s2),

where s1 is the constructed section in Step 1 and s2 is the constructed section in Step 2.
Clearly s satisfies the condition of Lemma 3.13. 2

Proposition 3.7 now follows from Proposition 3.10 and Proposition 3.12. 2

3.17. Final remark. We conjecture that the isometric embedding map f̃ in Theorem
3.6 is unique up to homotopy. It is the case, if φk is a closed stable form on Mm (i.e. the
orbit of GLx(TxMm)(φk) is dense in the space Λkx(T ∗M) for all x ∈ Mm, see [LPV2007]
for more information).
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Appendix.
in communication with Kaoru Ono1

A soft proof of the existence of a universal space.

For readers’ convenience, we present here an elementary proof of the following

A.1. Theorem. For any given positive integers n, k there exists a smooth manifold M
of dimension N(n, k) and a closed differential k-form α on it with the following property.
For any closed differential k-form ω on a smooth manifold Mn such that [ω] ∈ Hk(Mn,Z)
there is a smooth immersion f : Mn →MN(n,k) such that f∗(α) = ω.

Proof. As in the proof of Theorem 3.6 we reduce this problem to the existence of an
embedding of Mn to the space RN1 with the constant k-form βN1

such that the pull-back
of βN1

is equal to a given exact k-form g. Since g is an exact form there exists a (k−1)-form
φ on Mn such that dφ = ω.

Next we use the Nash trick of a construction of an open covering Ai on Mn

(A.2) Mn = ∪ni=0Ai,

such that each Ai is the union of disjoint open balls Di,j , j = 1, . . . , J(i) on Mn. (Pick
a simplicial decomposition of Mn and construct Ai by the induction on i. Let D0,j be a
small coordinate neighborhood of the j-th vertex. We may assume that they are mutually
disjoint. Set A0 = ∪J(0)

j=1D0,j . Suppose that A0, . . . , Ai are defined. Let Di+1,j be a
small coordinate neighborhood, which contains Si+1

j \ ∪i`=0A`, where Si+1
j is the j-th i +

1-dimensional simplex. We may assume that they are mutually disjoint. Set Ai+1 =
∪J(i+1)
j=1 Di+1,j . Hence we obtain desired open sets A0, . . . , An.)

Let {ρi} be the partition of unity on M subordinate to the covering {Ai}. We write
φ(x) =

∑n
i=0 ρi(x) · φ. Note that ω = dφ =

∑
dφi. Clearly the form φi = ρi(x) · φ has

support on Ai.
1Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
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Let N1 =
(
n
k−1

)
and

γ =
N1∑
j=1

x1
jdx

2
j ∧ · · · ∧ dxkj .

Note that j = 1, . . . ,
(
n
k−1

)
are in one-to-one correspondence with the sequences 1 ≤ i2 <

· · · < ik ≤ n.

A.3. Proposition. There is an immersion fi : Ai → (RN1k, γ) such that f∗i (γ) = φi. In
particular, f∗i dγ = dφi.

Proof of Proposition A.3. Since Ai is a union of the disjoint balls Di,j it suffices to prove
the existence of immersion fi on each ball D = Di,j . Take some coordinate (x1, · · · , xn)
on the ball D. We can write the restriction of the (k − 1)-form φi to D as φ, where

φ(x) =
∑

1≤i2<···ik≤n
λi2···ikdx

i2 ∧ · · · ∧ dxik .

We construct map fi as follows

(A.4) fi(x) = (. . . , fi;i2···ik(x), . . . )1≤i2<···<ik≤n

where for x = (x1, x2, · · · , xn) we put

fi;i2···ik(x) : D → Rk
i2···ik(x1, x2, · · · , xk),

(x1, · · · , xn) 7→ (x1 = λi2···ik(x), x2 = xi2 , · · · , xk = xik).

Clearly we have f∗i (ω) = φ. It is easy to check that fi is an immersion on D. 2

We shall use cut-off functions χi with support contained in Ai ⊂ M such that χi = 1 on
the support of ρi. Then f̃i = χi · fi can be extended to the whole Mn.

Now we construct an immersion f : Mn → RN1 = RN1k(n+1) by setting

(B.5) f(x) = (f̃0, · · · , f̃n).

Clearly f is an immersion such that f∗α = ω.

Finally we note that we can choose f : Mn → RN1 such that its image is contained in an
arbitrary small neighborhood of the origin. It suffices to construct immersion f̃i in (A.5)
such that the image of f̃i is contained in an arbitrary small neighborhood of the origin.
Since f̃i is constructed from immersion of ball Dij with help of cut-off function χi such
that |χi| ≤ 1 we reduce this problem to construct fi whose image lies in arbitrary small
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neighborhood of origin. We do it by refining a given covering Dij of Mn and modifying an
immersion f satisfying the condition of Theorem A.1.

Choose R > 0 such that the image of f is contained in the R-ball centered at the origin
O ∈ RN1 . For a given integer m, we pick a refinement {Vp} of the covering {Di,j}i,j such
that fi(p)(Vp) is contained in a ball of radius 1/m2. (The center of the ball may not be the
origin.) Here i(p) is chosen so that Vp ⊂ Ai(p), i.e., there is j(p) such that Vp ⊂ Di(p),j(p).
Applying the Nash trick again to refine {Vp} so that there is an open covering {A′`} of
M such that each of A′i is a union of some mutually disjoint family of Vp’s. On Vp ⊂ A′i
we modify the construction of the mapping fi;i2,...,ik as follows. Using the translation in
x2, . . . xk-coordinates in each Rk

i2,...,ik
, we may assume that

fi;i2,...ik(Vp) ⊂ [−R,R]× [−1/m2, 1/m2]× · · · × [−1/m2, 1/m2].

Now we consider the mapping

Φm : (x1, x2, . . . , xk) 7→ (
x1

m
,m · x2, x3, . . . , xk).

Then we find that Φ∗mdx
1 ∧ · · · ∧ dxk = dx1 ∧ · · · ∧ dxk and

Φm ◦ fi;i2,...,ik(Vj) ⊂ [−R/m,R/m]× [−1/m, 1/m]× [−1/m2, 1/m2]× · · · × [−1/m2, 1/m2].

Clearly the modified map f̃i with components f̃i;i2,...,ik(Vj) := Φm ◦ fi;i2,...,ik(Vj) (see (A.4)
for definition of fi) together with the new refined partition of Ai as above has its image
contained in an arbitrary small neighborhood of origin by taking m arbitrary large. 2
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