
Convergence of solutions of a non-local
phase-field system

Stig-Olof Londen Hana Petzeltová ∗

1 Introduction

This paper is devoted to the study of asymptotic properties and convergence to equi-
libria of a two-phase model involving non-local terms. Considering a binary alloy with
components A and B occupying a spatial domain Ω, and denoting by u and 1 − u
the local concentrations of A and B respectively, Gajewski and Zacharias [5] studied a
model describing also long range interaction of particles. This phenomenon is repre-
sented by spatial convolution with a suitable kernel, cf. Chen and Fife [2]. The system
in question reads:

ut −∇ · (µ∇v) = 0 in (0, T )× Ω, (1.1)

v = f ′(u) +
∫

Ω
K(|x− y|)(1− 2u(t, y))dy, (t, x) ∈ (0, T )× Ω. (1.2)

µν · ∇v = 0 in (0, T )× ∂Ω, (1.3)

u(0, x) = u0, u0 ∈ L∞(Ω), 0 ≤ u0(x) ≤ 1, 0 <
∫

Ω
u0 dx = uα < 1. (1.4)

Gajewski and Zacharias [5] proved global existence, uniqueness of solutions and com-
pactness of trajectories in the space L2(Ω) under assumptions stated below. However,
convergence of trajectories of this system to equilibria was proved only in the case when
the norm of the convolution operator is smaller than 2, which means that the global
interactions must be small compared with the convexity of f . This condition ensures
that the equilibrium state is uniquely defined, which need not be the case in general.

The convergence of solutions of various phase-field systems to equilibria have been
proved by many authors with help of the ÃLojasiewicz inequality. In our case, we
have compactness of trajectories in L2(Ω) space only, where the energy functional is
not twice continuously differentiable, so we have to use the non-smooth version of the
Simon-ÃLojasiewicz theorem which was proved in [6] and generalized in [4]. This version
is formulated in Section 4.

Also, boundedness od solutions was proved in [5] on compact time intervals only.
The aim of the present paper is to show that any solution with initial datum bounded
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away from ”pure states” stabilizes to a single stationary state, and any solution starting
from u0 satisfying (1.4) separates from 0 and 1 in the sense that

max
{
‖ ln u(t)‖Lr(Ω), ‖ ln(1− u(t))‖Lr(Ω)

}
≤ Cr2 for all t ≥ 1, r ≥ 1, (1.5)

and there is a sequence of times {tr}, tr →∞, such that

max
{
‖ ln u(t)‖Lr(Ω), ‖ ln(1− u(t))‖Lr(Ω)

}
≤ C for all t ≥ tr. (1.6)

We will proceed as follows. First, we start with the initial value such that

c ≤ u(0, x) ≤ 1− c for a.a. x ∈ Ω, and some 0 < c < 1, (1.7)

and prove that u remains bounded away from 0 and 1 for all t ≥ 0. To this end, we apply
the method of Alikakos [1] in a bit different way than in [5]. Then we prove (1.5), (1.6)
(Lemma 3.3, Lemma 3.5). Finally, we apply a generalized version of the ÃLojasiewicz-
Simon theorem to show that the time derivative of u belongs to L1(T, +∞; H1(Ω)∗)
which in turn allows us to show convergence of u in L2(Ω.

2 Assumptions and Preliminaries

We assume that Ω ⊂ Rn is a bounded domain with a smooth boundary ∂Ω. The
existence of global weak solutions of the problem (1.1)-(1.4) in the class

u ∈ C(0, T ; L∞(Ω)) ∩ L2(0, T ; H1(Ω)), ut ∈ L2(0, T ); H1(Ω)∗), (2.1)

w =
∫

Ω
K(|x− y|)(1− 2u(t, y))dy ∈ C(0, T ; H1,∞(Ω)), (2.2)

v = f ′(u) + w, (2.3)

was proved in [5] under the following assumptions:

f(u) = u log u + (1− u) log(1− u), (2.4)

µ =
a(x, |∇v|)

f ′′(u)
, a satisfies some monotonocity conditions, (2.5)

∫

Ω

∫

Ω
|K(|x− y|)| dx dy = k0 < ∞, sup

x∈Ω

∫

Ω
|K(|x− y|)|dy = k1 < ∞, (2.6)

and the operator J defined by J z =
∫
Ω K(|y − x|)z(x) dx satisfies

‖J z‖H1,p ≤ rp‖z‖Lp(Ω), 1 ≤ p ≤ ∞. (2.7)

In addition, the existence of a triple (u∗, v∗, w∗) and a sequence of times tn → ∞
such that

u(tn) → u∗ strongly in L2(Ω) (2.8)

w(tn) → w∗ strongly in H1 (2.9)
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arctan(e−v(tn)/2) → arctan(e−v∗/2) strongly in H1, v∗ = const. (2.10)

with

u∗ =
1

1 + exp(w∗ − v∗)
, v∗ = const, w∗ =

∫

Ω
K(|x− y|)(1− 2u∗(t, y))dy (2.11)

was proved.
In what follows, for the sake of simplicity, and without loss of generality, we will

assume that
a = const, |Ω| = 1. (2.12)

Then
µ =

a

f ′′(u)
= a u(1− u), v = ln

u

1− u
+ w. (2.13)

3 Global boundedness

Assume that

0 < c ≤ u(0, x) ≤ 1− c, for a.a. x ∈ Ω. (3.1)

Then there is t0 > 0 such that 1
u
∈ L2(0, t0; H

1(Ω)). It follows that time derivative of∫
Ω ln u dx is L1−function and we have

d

dt

∫

Ω
| ln u(t)| dx = − d

dt

∫

Ω
ln u(t) dx =

∫

Ω

1

u2
∇u a∇u(t)− 1

u2
∇u(t) au(1−u)∇w(t) dx

= −
∫

Ω
a|∇ ln u(t)|2 dx−

∫

Ω
a(1− u)∇ ln u∇w(t) dx

≤ −1

2

∫

Ω
a|∇ ln u|2 dx +

1

2

∫

Ω
a|∇w|2 dx.

Similarly,

d

dt

∫

Ω
− ln(1− u) dx = −

∫

Ω

1

(1− u)2
∇u a∇u− 1

(1− u)2
∇u au(1− u)∇w dx

= −
∫

Ω
a|∇ ln(1− u)|2 dx +

∫

Ω
au∇ ln(1− u)∇w dx

≤ −1

2

∫

Ω
a|∇ ln(1− u)|2 dx +

1

2

∫

Ω
a|∇w|2 dx.

Denote
C1 =

a

2
ess sup

t≥0
‖|∇w(t)|‖2

∞, (3.2)

Ωt
1 = {x ∈ Ω; u(t, x) ≥ 1

2
uα}. (3.3)

Then, necessarily,

|Ωt
1| ≥

1

2
uα for all t ≥ 0. (3.4)
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Indeed, if it is not the case, then we have

uα =
∫

Ω
u(t, x) dx =

∫

Ω1

+
∫

Ω\Ω1

<
uα

2
· 1 +

uα

2
|Ω\Ω1| < uα,

a contradiction.
To estimate

∫
Ω a|∇ ln u|2 dx, we use the following lemma, which is a particular case

of Theorem 4.2.1 in [7].

Lemma 3.1 Let Ω be a connected, Lipschitz domain and suppose u ∈ H1(Ω). If
L ∈ [H1(Ω)]∗ and L(χΩ) = 1, then

‖u− L(u)‖L2(Ω) ≤ C2‖L‖‖∇u‖L2(Ω), (3.5)

where C2 = C2(Ω).

(Here we denoted by L(u) both the value of the functional and the corresponding
constant function). We apply Lemma 3.1 with the functional L given by

Lz =
1

|Ω1|
∫

Ω1

z(x) dx, Ω1 ⊂ Ω.

Then

‖L‖ =
1

|Ω1| ,

and we have for a.a. t ≥ 0:

∫

Ω
|∇ ln u(t)|2 dx ≥

( |Ωt
1|

C2

(
‖ ln u(t)− L(ln u(t))‖L2(Ω)

))2

≥ |Ωt
1|2

2C2
2

( ∫

Ω
| ln u(t)| dx

)2 − |Ωt
1|

C2
2

∣∣∣ ln uα

2

∣∣∣
2
. (3.6)

It follows that
d

dt

∫

Ω
| ln u(t)| dx + β2

( ∫

Ω
| ln u(t)| dx

)2 ≤ N2

where
β2 =

a

2C2
2

(uα

2

)2
, N2 =

a

2C2
2

∣∣∣ ln uα

2

∣∣∣
2
+ C1.

Then
∫
Ω | ln u(t)| dx is dominated by a solution b of the equation

ḃ(t) + β2b2(t) = N2, b(0) =
∫

Ω
| ln u(0)| dx. (3.7)

The solution of this equation is bounded by N
β

if the initial value b(0) ≤ N
β
, and it is

given by

b(t) =
N

β

exp(2Nβ(t + k)) + 1

exp(2Nβ(t + k))− 1
(3.8)
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for b(0) > N
β
, where k is chosen such that the initial condition is satisfied. We see that

for t ≥ 1 and any k ≥ 0, the estimate

‖ ln u(t)‖1 ≤ m1 =
N

β

exp(2Nβ) + 1

exp(2Nβ)− 1
(3.9)

holds true, where m1 depends only on uα, the integral mean of u0.
If u(0) satisfies (1.4) but not (3.1), we find a sequence of functions un(0) satisfying

(3.1) such that
un(0) → u(0) in L∞(Ω),

and use the following lemma on continuous dependence of solutions on the initial data:

Lemma 3.2 Let u1, u2 be two solutions of (1.1), (1.2). Then

‖(u1 − u2)(t)‖2
L2(Ω) ≤ C(t)‖(u1 − u2)(0)‖2

L2(Ω). (3.10)

Proof: . We subtract the corresponding equations (1.1) and multiply by u1 − u2. We
get

d

dt

1

2
‖u1 − u2‖2

L2(Ω) = −
∫

Ω
a|∇u1 −∇u2|2 − (µ1∇w1 − µ2∇w2(∇u1 −∇u2) dx

≤ −
∫

Ω

a

2
|∇u1−∇u2|2+ a

2

[
u1(1−u1)(∇w1−∇w2)+(u1(1−u1)−u2(1−u2))∇w2(t)

]2
dx

≤ a

16
‖∇w1 −∇w2‖2

L2(Ω) + a‖∇w2‖2
L∞(Ω)‖u1 − u2‖2 ≤ C‖u1 − u2‖2

L2(Ω).

Hence (3.10) follows.
q.e.d.

Consequently, un(t) → u(t) in L2(Ω), for any t > 0, and also in Lr(Ω) for any r > 0
because ‖u(t)‖L∞(Ω) ≤ 1. Moreover,

∫
Ω | ln un(t)| dx ≤ m1 for any n and any t > 1,

which allows us to deduce
∫

Ω
| ln u(t)| dx ≤ m1, t > 1. (3.11)

The same procedure applies to
∫
Ω | ln(1− u)| dx, which, together with (2.7) yields:

Lemma 3.3 Let u0 satisfy (1.4), (u, v, w) be a solution of (1.1)-(1.4). Then

‖v(t)‖L1(Ω) ≤ m1 + r∞ for all t ≥ 1, (3.12)

‖w(t)‖H1,∞ ≤ r∞ for t ≥ 0, (3.13)

where m1, r∞ are given by (3.9), (2.7) respectively.

Next, we derive estimates of the norm of ln u(t) in the space Lr(Ω), r ≥ 2.

Lemma 3.4 Let u be a solution of (1.1)-(1.4). Then there exist constants B1, B2, B3,
depending only on uα, and a sequence of times {tr} such that the following estimates
hold for r ≥ 2:
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(i) ‖ ln u(t)‖Lr(Ω) ≤ B1‖ ln u(0)‖Lr(Ω) for all t ≥ 0,
(ii) ‖ ln u(t)‖Lr(Ω) ≤ B2r

2 for all t ≥ 1,
(iii) ‖ ln u(t)‖Lr(Ω) ≤ B3 for all t ≥ tr.

Proof. For r ≥ 2 we denote

Mr(t) =
∫

Ω
(− ln u(t))rdx, (3.14)

and estimate its time derivative:
d

dt
Mr(t)

=
d

dt

∫

Ω
(− ln u(t))r dx = −r

∫

Ω

(− ln u)r−1

u
ut(t) dx = r

∫

Ω
∇

((− ln u)r−1

u

)
µ∇v(t) dx

= −r
∫

Ω

(r − 1)(− ln u)r−2∇u + (− ln u)r−1∇u

u2
a(∇u + u(1− u)∇w) dx

= −r
∫

Ω
a
[
(r − 1)(− ln u)r−2 + (− ln u)r−1

][
|∇ ln u|2 +∇(ln u)(1− u)∇w

]
dx

≤ −r
∫

Ω
a
[
(r − 1)(− ln u)r−2 + (− ln u)r−1

][1

2
|∇ ln u|2 − 1

2
(1− u)2|∇w|2

]
dx

≤ −r
∫

Ω
a(r− 1)(− ln u)r−2 1

2
|∇ ln u|2 dx +

∫

Ω

[
r(r− 1)(− ln u)r−2 + r(− ln u)r−1

]
C1 dx

= −2a(r − 1)

r

∫

Ω

∣∣∣∇(− ln u)
r
2

∣∣∣
2

dx + C1

∫

Ω
r(r − 1)(− ln u)r−2 + r(− ln u)r−1 dx

≤ −2a(r − 1)

r

[
ε−1

∫

Ω
(− ln u(t))r dx− Cε

−n−2
2

( ∫

Ω
(− ln u(t))

r
2 dx

)2]

+C1

∫

Ω
r(r − 1)(− ln u(t))r−2 + r(− ln u(t))r−1 dx,

where we used the inequality

‖ξ‖2
L2 ≤ ε‖∇ξ‖2

L2 + Cε−n/2‖ξ‖2
L1 .

With the notation (3.14) we have Ms(t) ≤ Mr(t) whenever s ≤ r and Mr(t) ≥ 1.
Then, taking ε = a

C1r2 , we arrive at

d
dt
Mr(t) ≤ −C1r(r − 2)Mr(t) + 2C1rCa−

n
2 C

n
2
1 (r − 1)rn

(
M r

2
(t)

)2

≤ −2C1rMr(t) + 2C1rArn+1
(
M r

2
(t)

)2
,

(3.15)

provided that r ≥ 4 and A = Ca−n/2C
n/2
1 . This yields

Mr(t) ≤ 2 max{1, ess sup
t∈(0,t0)

Arn+1
(
M r

2
(t)

)2
, Mr(0)}. (3.16)

Consequently, choosing r = 2k, we get

M2k(t) ≤ A2k(n+2) ·
(
A2(k−1)(n+2)

)2 · · ·
(
A2(k−(k−1))(n+2)

)2k−1

·
(
M1,2k

)2k

, (3.17)
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where
M1,r = max{1, ess sup

t>0
M1(t), Mr(0)}.

The right hand side of (3.17) becomes

A2k−1
(
M1,2k

)2k

· 2[n+2][k+2(k−1)+22(k−2)+...+2k−1(k−(k−1))]

= A2k−1
(
M1,2k

)2k

· 2(n+2)(−k+2k+1−2).

Taking the 1/2k power of both sides of (3.17) we obtain

‖ ln u(t)‖Lr(Ω) ≤ AM1,r · 22(n+2), r = 2k, (3.18)

which implies (i).

To get estimates independent of the size of the initial value ‖ ln u(0)‖Lr(Ω), we
proceed in a similar way as in the proof of Lemma 3.3. Dominating the equation for

M
1
r
r by a quadratic differential equation, we get an estimate which does not depend

on the size of the initial datum, but it grows as r2. It is sufficient to show (ii) for some
t0 ∈ (0, 1], and then proceed as in the proof of (i) starting at t0. We denote

Mr(t) = M
1
r
r (t) = ‖ ln u(t)‖Lr(Ω),

and estimate its time derivative:

d

dt
Mr =

1

r
M

1
r
−1

r · d

dt
Mr.

We proceed in the same way as above but this time we do not neglect the term

−ar(− ln u)r−1 1

2
|∇ ln u|2.

Thus we have
d

dt
Mr =

−2a(r − 1)

r2
M

1
r
−1

r ·
∫

Ω

∣∣∣∇(− ln u)| r2
∣∣∣
2

dx− 2a

(r + 1)2
M

1
r
−1

r ·
∫

Ω

∣∣∣∇(− ln u)
r+1
2

∣∣∣
2

dx

+M
1
r
−1

r · C1

[
(r − 1)Mr−2 + Mr−1

]

Now, we apply Lemma 3.1 with

z = | ln u| r2 , z = | ln u| r+1
2 ,

respectively. Taking (3.4) and (3.6) into account, we get

∫

Ω

∣∣∣∇(− ln u)| r2
∣∣∣
2

dx ≥ u2
α

8C2
2

Mr − uα

C2
| ln uα

2
|r,
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∫

Ω

∣∣∣∇(− ln u)| r+1
2

∣∣∣
2

dx ≥ u2
α

8C2
2

Mr+1 − uα

C2
| ln uα

2
|r+1.

If
1

2

u2
α

8C2
2

Mr ≤ uα

C2
| ln uα

2
|r, 1

2

u2
α

8C2
2

Mr+1 ≤ uα

C2
| ln uα

2
|r+1,

at some point t0 ∈ (0, 1) then we can start at this point and proceed as in the proof
of (i) to show that Mr(t), Mr+1(t) are bounded for all t ≥ t0. If it is not the case, we
arrive at the estimate

d

dt
Mr ≤ −au2

α

4C2
2

r − 1

r2
Mr − au2

α

16C2
2

1

(r + 1)2
M2

r + C1((r − 1)M−1
r + 1). (3.19)

Again, we are done if we can find a constant C3 > 0 such that Mr(t1) ≤ C3r for some
t1 ∈ (0, 1). Otherwise we have

au2
α

4C2
2

r − 1

r2
Mr ≥ C1((r − 1)M−1

r + 1)

for t ∈ (0, 1), which implies that Mr satisfies a quadratic differential inequality, and we
deduce that

Mr(1) ≤ C4r
2, C4 =

32C2
2

au2
α

. (3.20)

Hence (ii) follows.

To prove (iii), we use (ii), (2.8), and the interpolation inequality. There is a sequence
of times {tn)} → ∞ such that

u(tn) → u∗ strongly in L2(Ω),

and ‖ ln u(tn)‖L2(Ω) ≤ 4B1. Hence, we get

ln(utn) → ln(u∗) strongly in L2(Ω),

where, due to (2.11),

max{‖u∗‖L∞(Ω), ‖1− u∗‖L∞(Ω)} = m < 1

and, subsequently,

max{‖ ln u∗‖L∞(Ω), ‖ ln(1− u∗)‖L∞(Ω) ≤ C5 = − ln m.

Now, we find a sequence {εr} such that

εr ≤
( 1

4B2r2 + C5

)r−1
,

and a corresponding sequence of times {tr} such that

‖ ln u(tr)− ln u∗‖L2(Ω) ≤ εr.
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It follows that

‖Mr(tr)‖Lr(Ω) ≤ ‖ ln u(tr)− ln u∗‖
1

r−1

L2(Ω) · ‖ ln u(tr)− ln u∗‖
r−1
r−2

L2r(Ω) + C5

≤ ε
1

r−1
r (4B2r

2 + C5) + C5.

Again, starting at tr, we repeat the proof of (i) to get (iii). q.e.d.

Remark 1. This procedure applied to ‖ ln(1− u)‖r
r yields the same estimates also in

this case. With Lemma 3.3 at hand, we can also deduce the convergence of a sequence
v(tn) to v∗ in L2(Ω), in addition to (2.10).

Remark 2. Assuming that
f ′(u0) ∈ L∞(Ω), (3.21)

we can take the limit as k →∞ of both sides of (3.18) to infer that there is a constant
B (which does not depend on time) such that

‖v(t)‖L∞(Ω) ≤ B for all t ≥ 0, (3.22)

which extends the assertion of Theorem 3.5 in [5]. We also have the L∞-estimate for
u, namely, there exists a constant 0 < k < 1 depending only on uα such that

k ≤ u(t, x) ≤ 1− k for a.a. x ∈ Ω, t ≥ 1. (3.23)

4 ÃLojasiewicz-Simon Theorem

In this section, we state the generalized version of the ÃLojasiewicz-Simon Theorem
proved in [4].

Let V and W be Banach spaces densely and continuously embedded into the Hilbert
space H and its dual H∗, respectively. Assume that the restriction of the duality
map J ∈ L(H, H∗) to V is an isomorphism from V onto W = J(V ). Moreover, let
H = H0 + H1 where H1 ⊂ V is a finite-dimensional subspace and H0 is its orthogonal
complement in H. Denote by H0

0 the anihilator of H0:

H0
0 = {g ∈ H∗; 〈g, z〉 = 0 for all z ∈ H0}.

Let
F = Φ + Ψ, (4.1)

with Φ, Ψ satisfying the following conditions:

Φ is a Fréchet differentiable functional from an open set U ⊂ V → R. Moreover,
assume that the Fréchet derivative DΦ : U → W is a real analytic operator which
satisfies

〈DΦ(u)−DΦ(v), u− v〉 ≥ α‖u− v‖2
H , ‖DΦ(u)−DΦ(v)‖H∗ ≤ γ‖u− v‖H ,
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for all u, v ∈ U and some constants α, γ > 0. In addition, the second Fréchet derivative
D2Φ(u) ∈ L(V, W ) is assumed to be an isomorphism for all u ∈ U .

Ψ(u) =
1

2
〈Tu, u〉+ 〈l, u〉+ d, u ∈ H,

where T ∈ L(H, H∗) be a self-adjoint and completely continuous operator such that
its restriction to V is a completely continuous operator in L(V, W ). l ∈ W and d ∈ R
are fixed.

Theorem 4.1 Let F be given by (4.1) and the above assumptions be satisfied. Let
(u∗, v∗) ∈ U × H0

0 satisfy DF (u∗) = v∗. Then we can find constants δ, λ > 0, and
θ ∈ (0, 1

2
] such that for all u ∈ U which satisfy u−u∗ ∈ H0 and ‖u−u∗‖H ≤ δ we have

the following inequality:

|F (u)− F (u∗)|1−θ ≤ λ inf{‖DF (u)− f‖H∗ ; f ∈ H0
0}. (4.2)

5 Convergence

In this section, we prove that there is T > 0 such that ut ∈ L1(T,∞; (H1)∗), which
enables us to show convergence of the whole trajectory of u to u∗, a stationary solution
given by (2.11). We will apply Theorem 4.1 to the energy functional associated with
our system, i.e.,

F (u) =
∫

Ω
f(u) + uJ (u) + u ·K ∗ 1 dx, (5.1)

the corresponding spaces beeing

H = H∗ = L2(Ω), H0 = {u ∈ H,
∫

Ω
u dx = 0}, H0

0 = {v = const}, V = L∞(Ω),

Φ(u) =
∫

Ω
f(u) dx, T (u) = −2J (u), l = K ∗ 1, d = 0.

Multiplying (1.1) by v and (1.2) by ut, integrating over Ω and subtracting, we
obtain the energy equality

d

dt
F (u(t)) =

d

dt

∫

Ω
f(u(t))− u(t)J(u(t)) + u(t)ldx = −

∫

Ω
µ|∇v|2dx (5.2)

As u(t) stays bounded away from zero and one, the functional F is bounded from
below and the hypotheses in Theorem 4.1 are fulfilled.

The limit energy
F∞ = lim

t→∞F (u(t)) = F (u∗)

is the same for any u∗ in the ω−limit set of u.
The Fréchet derivative of F (u(t)) is represented by

F ′(u(t)) = f ′(u(t))− 2J(u(t)) + l = v(t).
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Now, let (u∗, v∗, w∗) belong to the ω-limit set and satisfy (2.11). (Existence of such
solutions was proved in [5]). Then

F ′(u∗) = v∗,

and integrating (5.2) from t to ∞, we get

∫ ∞

t

∫

Ω
µ|∇v|2 dxdt = F (u(t))− F∞ = F (u(t))− F (u∗). (5.3)

By virtue of Theorem 4.1, we have

|F (u(t))− F (u∗)|1−θ ≤ λ inf{‖v(t)− z‖L2(Ω); z = const} = λ‖v(t)− v(t)‖L2(Ω)

provided that
‖u(t)− u∗‖L2(Ω) ≤ δ. (5.4)

This, combined with (5.2) and taking into account (2.12), (3.21), yields

4

a

∫ ∞

t

∫

Ω
(µ|∇v|)2dxds ≤

∫ ∞

t

∫

Ω
µ|∇v|2 dxds ≤ λ‖v(t)− v(t)‖

1
1−θ

L2(Ω) (5.5)

≤ λ
(
ak2

) 1
θ−1‖µ|∇v|(t)‖

1
1−θ

L2(Ω),

where k is the bound from (3.23).
At this point, we employ the following lemma, the proof of which can be found in

[3].

Lemma 5.1 Let Z ≥ 0 be a measurable function on (0,∞) such that

Z ∈ L2(0,∞), ‖Z‖L2(0,∞) ≤ Y

and there exist α ∈ (1, 2), ξ > 0 and an open set M⊂ (0,∞) such that

(
∫ ∞

t
Z2(s) ds)α ≤ ξ Z2(t) for a.a. t ∈M.

Then Z ∈ L1(M) and there exists a constant c = c(ξ, α, Y ) independent of M such
that ∫

M
Z(s) ds ≤ c.

Setting Z(t) = ‖µ|∇v|(t)‖L2(Ω) in Lemma 5.1, we get

∫

M
‖µ∇v(s)‖L2(Ω)ds < ∞, (5.6)

where
M = ∪J{J | J is an open interval where (5.4) holds}.

Since u∗ ∈ ω[u], M is non-empty, and we get
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∫

M
‖∂tu(t)‖(H1)∗(Ω) dt < ∞. (5.7)

Our next goal is to show that there exists τ such that (τ, +∞) ⊂ M. To begin
with, realize that from the energy inequality (5.2) we deuce that

ut ∈ L2(0, +∞; H1(Ω)∗)

|∇v| ∈ L2(0, +∞; L2(Ω)).

Denote
N = ‖u‖L∞(0,+∞;L2(Ω)) + ‖∇w‖L∞(0,+∞;L2(Ω)). (5.8)

To any δ > 0 we find T (δ) > 0 such that

‖ut‖L1(M∩(T (δ),+∞;H1(Ω)∗) < δ (5.9)

‖ut‖L2((T (δ),+∞;H1(Ω)∗) < δ (5.10)

‖∇v‖L2((T (δ),+∞;L2(Ω)) < δ (5.11)

Next, let (t1, t2) ⊂ M, ti ≥ T (δ) for some δ < 1. In view of (5.11), (5.8) we find
t3 ∈ [t1, t1 + 1] such that ‖u(t3)‖H1(Ω) ≤ N + 1. Then

‖u(t1)− u(t2)‖2
L2(Ω) ≤ 2

[
‖u(t1)− u(t3)‖2

L2(Ω) + ‖u(t3)− u(t2)‖2
L2(Ω)

]

and we have
1

2
‖u(t1)− u(t3)‖2

L2(Ω) =
∫ t3

t1
〈ut(s), u(t3)− u(s)〉

≤
∫ t3

t1
‖ut(s)‖H1(Ω)∗

[
‖u(t3)‖H1(Ω) + ‖u(s)‖L2(Ω) + ‖∇w(s)‖L2(Ω) + ‖∇v(s)‖L2(Ω)

]

≤ ‖ut‖L1((t1,t1+1);H1(Ω)∗)

[
N + 1 + ‖u‖L∞(0,+∞;L2(Ω)) + ‖∇w‖L∞(0,+∞;L2(Ω))

]

+‖ut‖L2(T (δ),+∞;H1(Ω)∗)‖∇v‖L2(T (δ),+∞;L2(Ω)) ≤ δ(2N + 1 + δ).

The same estimate holds for ‖u(t3) − u(t2)‖L2(Ω) provided that t3 ≥ t2, and also for
t3 < t2, where we use (5.9). Summing up, we have

‖u(t1)− u(t2)‖2
L2(Ω) ≤ 8δ(2N + 1 + δ) (5.12)

and we can find δ and the corresponding T (δ) = τ such that

‖u(t1)− u(t2)‖L2(Ω) < ε
3

whenever

‖u(t)− u∗‖L2(Ω) < ε for all t ∈ (t1, t2) where τ ≤ t1 < t2.





(5.13)

12



Since u∗ ∈ ω[u], a large τ can be chosen so that

‖u(τ)− u∗‖L2(Ω) <
ε

3
, (5.14)

and then (5.13) yields [τ,∞) ⊂ M . Indeed taking

t = inf{t > τ | ‖u(t)− u∗‖L2(Ω) ≥ ε},
we have t > τ and

‖u(t)− u∗‖L2(Ω) ≥ ε if t is finite. (5.15)

On the other hand, by virtue of (5.13), (5.14),

‖u(t)− u∗‖L2(Ω) ≤ ‖u(t)− u(τ)‖L2(Ω) + ‖u(τ)− u∗‖L2(Ω) <
2

3
ε for all τ ≤ t < t

which, together with (5.15), yields t = ∞.
We have proved the following result.

Theorem 5.1 Let (u, v, w) be a solution of the problem (1.1)-(1.4) with the data given
by (2.4),(2.6),(2.7),(2.12), and let (3.21 hold. Then there is (u∗, v∗, w∗) satisfying
(2.11) such that,

u(t) → u∗ strongly in L2(Ω),

v(t) → v∗ strongly in L2(Ω),

w(t) → w∗ strongly in H1(Ω),

as time goes to infinity.

Remark 3. It is still an open question whether any solution with the initial datum
u0 satisfying (1.4) stabilizes to a single stationary state as time tends to infinity even
in the case that there is a continuum of equilibria.
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