
Localizable spectrum and bounded local resolvent
functions

Vladimir Müller and Michael M. Neumann

Abstract. Given a Banach space operator with interior points in
the localizable spectrum and without non-trivial divisible subspaces,
this article centers around the construction of an infinite-dimensional
linear subspace of vectors at which the local resolvent function of the
operator is bounded and even admits a continuous extension to the
closure of its natural domain. As a consequence, it is shown that,
for any measure with natural spectrum on a locally compact abelian
group, the corresponding operator of convolution on the group al-
gebra admits a non-zero bounded local resolvent function precisely
when its spectrum has non-empty interior.

Mathematics Subject Classification (2000). Primary 47A11; Sec-
ondary 43A25, 47A10, 47B40.

1. Introduction. González [?] was the first to observe that, in remarkable
contrast to the case of the usual resolvent function, bounded linear operators
on Banach spaces may well admit non-trivial bounded local resolvent functions.
In fact, as shown in Theorem 2 of [?], a normal operator admits a non-zero
bounded local resolvent function precisely when its spectrum has non-empty
interior. Moreover, by Proposition 2.1 of [?], this characterization remains valid
for all multiplication operators on the space of continuous functions on a com-
pact Hausdorff space; see also Sections 1.2 and 1.5 of [?]. One might expect a
similar result to hold for convolution operators on group algebras, since such
operators are, via the Fourier–Stieltjes transform, intimately related to multi-
plication operators. The question of the existence of non-zero bounded local
resolvent functions for convolution operators was stated as an open problem in
[?], [?], and [?, 6.2.14].

In this article, we provide a positive solution to this problem for the case of
convolution by measures that avoid the Wiener–Pitt phenomenon. In fact, in
Section 5, we settle the more general case of multipliers with natural spectrum on
a regular semi-simple commutative Banach algebra. This result is a consequence
of a new method of constructing bounded local resolvent functions for a general
class of operators in Section 4. Under mild conditions on a bounded linear
operator T on a Banach space X, we find an infinite-dimensional subspace Y of
X such that, for each y ∈ Y, the local resolvent function of T at y is not only
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bounded on its natural domain, the local resolvent set ρT (y), but even has a
continuous extension to the closure of ρT (y). Our approach is based on a certain
closed subset of the usual spectrum, the localizable spectrum σloc(T ), which
happens to coincide with the spectrum in the case of decomposable operators
and of multipliers with natural spectrum. We also need a certain algebraic
version of the classical single-valued extension property. This condition and
some other preliminaries from local spectral theory are discussed in Sections 2
and 3.

2. Algebraic core and algebraic spectral subspaces. Throughout
this section, let T be a linear operator acting on an arbitrary complex vector
space X. Following Saphar [?], the algebraic core C(T ) of T is defined to be the
linear span of all linear subspaces M of X for which TM = M. Thus C(T ) is
simply the largest subspace M with this property. The elementary proof of the
following result may be found in Theorem 1.8 of [?].

Lemma 1 C(T ) consists precisely of all vectors x0 ∈ X for which there exist
xn ∈ X such that Txn = xn−1 for all n ∈ N.

Similarly, for an arbitrary subset F of C, let ET (F ) denote the largest linear
subspace M of X for which (T −λ)M = M for all λ ∈ C \F. The spaces ET (F )
are known as the algebraic spectral subspaces of T. They were first introduced,
via transfinite induction, by Johnson and Sinclair [?] in the context of automatic
continuity theory, but then proved to be a useful tool in local spectral theory
as well; see Sections 1.4, 1.5, 5.4, and 5.5 of [?] and also 2.4 of [?]. Of particular
interest is the space ET (∅), often called the largest divisible subspace for T. In
the theory of automatic continuity of intertwining linear transformations, it is
essential to avoid non-trivial divisible subspaces. In the same vein, the condition
ET (∅) = {0} will be required in the main results of the present article.

Clearly, ET (C \ {λ}) = C(T − λ) for each λ ∈ C. This identity will be
extended in Proposition ?? below, based on the following simple result.

Lemma 2 Let A,B, C,D be mutually commuting linear operators on X, and
suppose that AC + BD = I, the identity operator on X. Let u, v ∈ X satisfy
Au = Bv. Then there exists some y ∈ X such that By = u and Ay = v.

Proof. Set y := Du+Cv. Then By = BDu+BCv = (I−AC)u+CAu = u
and, similarly, Ay = ADu + ACv = DBv + (I −BD)v = v, as desired. ¤

Proposition 3 ET (F ) =
⋂

λ∈C\F C(T − λ) for each subset F of C.

Proof. Given F ⊆ C, let M :=
⋂

λ∈C\F C(T−λ). Clearly, ET (F ) ⊆ C(T−λ)
for each λ ∈ C \ F, and hence ET (F ) ⊆ M. To establish the converse inclusion,
we have to show that (T − λ)M = M for each λ ∈ C \ F. Since M is certainly
invariant under T, it suffices find, for arbitrary λ ∈ C \ F and x0 ∈ M, some
vector y0 ∈ M such that (T − λ)y0 = x0.
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Because x0 ∈ M ⊆ C(T − λ), there exists some y0 ∈ C(T − λ) for which
(T − λ)y0 = x0. We claim that actually y0 ∈ M, i.e., y0 ∈ C(T − µ) for each
µ ∈ C \ F. This is clear for µ = λ, so we may assume that µ 6= λ.

Since x0 ∈ M ⊆ C(T −µ), Lemma ?? leads to a sequence of vectors xn ∈ X
with (T −µ)xn = xn−1 for all n ∈ N. Note that (T −µ)I/(λ−µ)+(T −λ)I/(µ−
λ) = I. Because (T − µ)x1 = x0 = (T − λ)y0, there exists, by Lemma ??, some
y1 ∈ X such that (T−λ)y1 = x1 and (T−µ)y1 = y0. Now (T−µ)x2 = x1 = (T−
λ)y1, so, again by Lemma ??, there exists some y2 ∈ X such that (T−λ)y2 = x2

and (T − µ)y2 = y1. Inductively, we may construct vectors yn ∈ X such that
(T −λ)yn = xn and (T −µ)yn = yn−1 for all n ∈ N. Thus, again by Lemma ??,
y0 ∈ C(T −µ) for all µ ∈ C \F and therefore x0 = (T − λ)y0 ∈ (T − λ)M. This
completes the proof of the inclusion M ⊆ ET (F ). ¤

Proposition ?? may also be deduced from the fact that the algebraic spectral
subspaces preserve arbitrary intersections, in the sense that ET

(⋂
α∈A Fα

)
=⋂

α∈A ET (Fα) for any family (Fα)α∈A of subsets of C. This result was estab-
lished by Laursen [?] based on different methods; see also Theorem 2.69 of [?].
We note that, conversely, Proposition ?? leads to a considerably shorter new
proof of Laursen’s result.

3. Tools from local spectral theory. We now review a few notions
from local spectral theory, with emphasis on the analytic counterparts of the
algebraic core and the algebraic spectral subspaces; see [?] and [?].

Given a bounded linear operator T ∈ L(X) on a complex Banach space X,
let ρ(T ) and σ(T ) denote, as usual, the resolvent set and the spectrum of T. The
analytic core K(T ) of T is defined as the space consisting of all x0 ∈ X for which
there exists a constant c > 0 and a sequence of vectors xn ∈ X such that Txn =
xn−1 and ‖xn‖ ≤ cn for all n ∈ N. Clearly, by Lemma ??, K(T ) ⊆ C(T ), and,
by Theorem 1.22 of [?], equality occurs whenever C(T ) is closed. In particular,
by Theorems 1.10 and 1.24 of [?], the identities K(T ) = C(T ) =

⋂∞
n=1 TnX

hold provided that T is semi-regular or a semi-Fredholm operator.
The local resolvent set ρT (x) of T at a vector x ∈ X is defined as the set

of all λ ∈ C for which there exist an open neighborhood U of λ in C and an
analytic function f : U → X such that (T − µ)f(µ) = x for all µ ∈ U. The local
spectrum of T at x is the set σT (x) := C \ ρT (x). We will use the elementary
fact that σT (u + v) ⊆ σT (u) ∪ σT (v) for arbitrary u, v ∈ X and that equality
holds in this inclusion provided that σT (u) ∩ σT (v) = ∅.

Also, for each F ⊆ C, let XT (F ) consist of all x ∈ X for which σT (x) ⊆
F. The spaces XT (F ) are called the local spectral subspaces of T. Since, by
Proposition 1.2.16 of [?], (T − λ)XT (F ) = XT (F ) for all λ ∈ C \ F, we have
XT (F ) ⊆ ET (F ) for each F ⊆ C. Moreover, by Proposition 1.4.14 of [?], equality
holds for each closed subset F of C provided that T is super-decomposable with
ET (∅) = {0}.

By Proposition 3.3.7 of [?], XT (C \ {λ}) = K(T − λ) for all λ ∈ C. Since
the local spectral subspaces clearly preserve arbitrary intersections, we thus
obtain the analytic counterpart of Proposition ??, namely the identity XT (F ) =⋂

λ∈C\F K(T − λ) for each subset F of C.
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The operator T is said to have the single-valued extension property (SVEP)
if, for each open subset U of C, the only analytic function f : U → X for
which (T − λ)f(λ) = 0 for all λ ∈ U is the zero function f ≡ 0 on U. This
condition dates back to Dunford and is shared by all normal, spectral, and
decomposable operators as well as by all multipliers on semi-simple commutative
Banach algebras; see [?] and [?].

Evidently, if T has (SVEP), then, for each x ∈ X, there exists a unique
X-valued analytic function f on the entire local resolvent set ρT (x) for which
(T − λ)f(λ) = x for all λ ∈ ρT (x). Let RT (λ, x) := f(λ) for all λ ∈ ρT (x).
The function RT (·, x) is called the local resolvent function of T at x. Clearly,
ρ(T ) ⊆ ρT (x) and RT (λ, x) = (T − λ)−1x for all λ ∈ ρ(T ). In particular,
it follows that RT (λ, x) → 0 as |λ| → ∞. Consequently, if RT (·, x) admits a
continuous extension to the closure of ρT (y), then RT (·, x) is certainly bounded
on ρT (x).

4. Main results. In Theorem ?? below, the existence of bounded local
resolvent functions will be established under two conditions on the operator
T ∈ L(X) on an arbitrary complex Banach space X.

The first requirement is that ET (∅) = {0}. This condition entails (SVEP)
for T, since XT (∅) ⊆ ET (∅) and, by Proposition 1.2.16 of [?], T has (SVEP)
precisely when XT (∅) = {0}. On the other hand, since ET (∅) ⊆ ⋂

p∈N
⋂

λ∈C(T−
λ)pX, it follows that ET (∅) is trivial whenever the operator T is normal, hy-
ponormal, generalized scalar, or the restriction of one of such operators to a
closed invariant subspace; see Section 1.5 of [?] for details. However, the clas-
sical Volterra operator T on the Banach space C([0, 1]) satisfies ET (∅) 6= {0},
although, as a quasi-nilpotent operator, T certainly has (SVEP); see Example
1.4.12 of [?].

The second condition involves the localizable spectrum σloc(T ) of an operator
T with (SVEP), defined as the set of all λ ∈ C for which XT (V ) 6= {0} for each
open neighborhood V of λ. As shown by Eschmeier and Prunaru [?], the local-
izable spectrum plays an important role in the theory of invariant subspaces.
see also [?] and [?]. It is known that σloc(T ) is a closed subset of σ(T ) and that
σloc(T ) contains the point spectrum and is included in the approximate point
spectrum of T. Moreover, σloc(T ) = σ(T ) when T is decomposable or, more gen-
erally, the quotient of a decomposable operator by a closed invariant subspace,
while σloc(T ) may well be empty when T is the restriction of a decomposable
operator. For instance, σloc(T ) = ∅ if T is the unilateral right shift on `p(N) for
1 ≤ p < ∞ or any pure isometry on a Hilbert space; see Example 3 of [?].

Let D(λ, r) denote the open disc in C with center λ ∈ C and radius r > 0.

Theorem 4 Let T ∈ L(X) be an operator for which ET (∅) = {0} and σloc(T )
has non-empty interior, suppose that U is a non-empty open subset of σloc(T ),
let x ∈ X be a vector with σT (x) ⊆ U, and let ε > 0. Then there exists some
y ∈ X for which ‖y − x‖ ≤ ε, σT (y) = U, and RT (·, y) can be continuously
extended to C \ U. In particular, T has a bounded local resolvent function at y.
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Proof. Let (λn)n∈N be a sequence of distinct elements of U that is dense
in U. For each n ∈ N, we then construct inductively a vector xn ∈ X with
‖xn‖ = 1, a complex number µn ∈ U ∩ D(λn, n−1), vectors un,i,j ∈ X for all
i, j ∈ N with i < n, and finally a real number αn ≥ 0 such that the following
seven conditions are fulfilled:

(1) σT (xn) ⊆ U ∩D(λn, n−1) \ {µ1, . . . , µn−1} ;
(2) (T − µi)un,i,1 = xn for all i ∈ N with i < n;
(3) (T − µi)un,i,j = un,i,j−1 for all i, j ∈ N with i < n and j ≥ 2;
(4) x +

∑n
i=1 αixi /∈ C(T − µn);

(5) αn ≤ 2−n ε;
(6) sup {‖RT (ζ, αn xn)‖ : ζ ∈ C \ U} ≤ 2−n;
(7) αn ‖un,i,j‖ ≤ 2−n for all i, j ∈ N with i < n and j ≤ n.

Let n ∈ N be given, and suppose that xm, µm, um,i,j , αm satisfying (1)− (7)
have already been constructed for m = 1, . . . , n−1. Since U is an open subset of
σloc(T ), we find some xn ∈ X with ‖xn‖ = 1 such that condition (1) is fulfilled.
Because T has no non-trivial divisible subspace, we know from Proposition ??
that the intersection of the algebraic cores C(T − µ) as µ ranges through C is
{0}. Hence there exists some µn ∈ C such that xn /∈ C(T − µn). Because

XT (C \ {µn}) = K(T − µn) ⊆ C(T − µn),

this ensures that µn ∈ σT (xn) and therefore µn ∈ U∩D(λn, n−1)\{µ1, . . . , µn−1} ,
by the choice of xn satisfying condition (1). On the other hand, for each
i ∈ {1, . . . , n− 1} , we have µi /∈ σT (xn) and therefore xn ∈ C(T − µi). Hence,
by the characterization of the algebraic core from Lemma ??, we can find vectors
un,i,j ∈ X for all j ∈ N such that conditions (2) and (3) are fulfilled.

Finally, for the construction of αn, we distinguish two cases for the vector
z := x +

∑n−1
i=1 αi xi. If z /∈ C(T − µn), then we set αn = 0, so that all the

conditions (4)− (7) are trivially satisfied. If, however, z ∈ C(T − µn), then we
choose any strictly positive number αn that is small enough so that conditions
(5)− (7) hold. This is possible, since the inclusion σT (xn) ⊆ U guarantees
that RT (·, xn) is bounded on C \ U. Because αn > 0, xn /∈ C(T − µn), and
z ∈ C(T − µn), we see that also condition (4) is satisfied. This completes our
inductive construction.

Evidently, by condition (5), the series y := x +
∑∞

i=1 αi xi converges in X
and satisfies ‖y − x‖ ≤ ∑∞

i=1 αi ≤ ε. Similarly, by condition (6), the series

f(ζ) := RT (ζ, x) +
∞∑

i=1

RT (ζ, αi xi)

converges for each ζ ∈ C \ U. As the uniform limit of continuous functions, f
is certainly continuous on C \ U. Moreover, f is analytic on C \ U and satisfies
(T − ζ)f(ζ) = y for all ζ ∈ C \ U. Thus C \ U ⊆ ρT (y) and RT (ζ, y) = f(ζ) for
all ζ ∈ C \ U. In particular, we have σT (y) ⊆ U.
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It remains to show that U ⊆ σT (y). Since, by construction, |λn − µn| < n−1

for all n ∈ N and (λn)n∈N is dense in U, so is (µn)n∈N. Consequently, it is
sufficient to prove that µn ∈ σT (y) for all n ∈ N.

Given an arbitrary n ∈ N, we observe that, for each j ∈ N, condition (7)
ensures that

∑

m≥max{n+1,j}
αm ‖um,n,j‖ ≤

∑

m≥max{n+1,j}
2−m < ∞.

Hence we may define vj :=
∑∞

m=n+1 αm um,n,j . By condition (2), we have

(T − µn)v1 =
∞∑

m=n+1

αm (T − µn)um,n,1 =
∞∑

m=n+1

αm xm.

Similarly, condition (3) ensures that

(T − µn)vj =
∞∑

m=n+1

αm um,n,j−1 = vj−1

for all j ∈ N with j ≥ 2. Again by the characterization of the algebraic core
from Lemma ??, we conclude that

∞∑
m=n+1

αm xm ∈ C(T − µn).

On the other hand, by condition (4), we have x +
∑n

m=1 αmxm /∈ C(T − µn)
and therefore y /∈ C(T − µn). It follows that µn ∈ σT (y) for each n ∈ N and
hence σT (y) = U, as desired. ¤

In the preceding result, it is essential to have some condition on the localiz-
able spectrum, not just the spectrum. For instance, if T denotes the unilateral
right shift on the Hilbert space X := `2(N), then T is subnormal, σ(T ) is the
closed unit disc, and, by Example 2 of [?], all non-trivial local resolvent func-
tions for T are unbounded. Here ET (∅) = {0}, because

⋂∞
n=1 TnX = {0}, while

σT (x) = σ(T ) for all non-zero x ∈ X, so that σloc(T ) = ∅.
It is an interesting open problem if Theorem ?? remains valid when the

requirement that ET (∅) be trivial is weakened to the condition of (SVEP). Of
course, it is tempting to apply the method of the preceding proof to the analytic
instead of the algebraic core, but substantial difficulties arise at the last step of
the proof when trying to establish that y /∈ K(T − µn) for all n ∈ N. Theorem
?? is in the same spirit as Theorem 4 of [?], but here the interior of the point
spectrum need not be void.

We mention that the bounded local resolvent function constructed in Ex-
ample 1.2.13 of [?] does not admit a continuous extension to the closure of
its natural domain. On the other hand, there exists an example of an opera-
tor that admits an everywhere defined non-trivial local resolvent function with
continuous derivatives of all orders on C; see [?].
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If T ∈ L(X) and S ∈ L(Y ) are Banach space operators that are intertwined
by some injective bounded linear mapping A : Y → X, in the sense that TA =
AS, then it is easily seen that (SVEP) for T implies (SVEP) for S, that σloc(S) ⊆
σloc(T ), and that ET (∅) = {0} implies that ES(∅) = {0}. In particular, it follows
that the two conditions of Theorem ?? are preserved under quasi-similarity.

As shown in Corollary 6 of [?], for every operator T ∈ L(X) with (SVEP)
on an arbitrary Banach space X, the set of vectors x ∈ X for which the local
resolvent function is bounded on ρT (x) is of the first category in X. Nevertheless,
this set may be quite large, as illustrated by the following consequences of the
preceding result.

Corollary 5 Suppose that T ∈ L(X) is an operator for which ET (∅) = {0} and
σloc(T ) has non-empty interior. Then there exists an infinite-dimensional lin-
ear subspace Y of X such that, for each y ∈ Y, the local resolvent function
RT (·, y) has a continuous extension to ρT (y). In particular, T has a bounded
local resolvent function at each y ∈ Y.

Proof. Since the interior of σloc(T ) is non-empty, we may choose a sequence
(Un)n∈N of non-empty open discs Un ⊆ σloc(T ) with mutually disjoint closures.
For each n ∈ N, we then apply Theorem ?? with the choice xn := 0 to obtain
some non-zero vector yn ∈ X with σT (yn) = Un such that RT (·, yn) has a
continuous extension to C \ Un = ρT (yn).

Since σT (u + v) ⊆ σT (u) ∪ σT (v) for all u, v ∈ X, the sequence (yn)n∈N is
linearly independent. Indeed, given an arbitrary m ∈ N and α1, . . . , αm ∈ C for
which α1y1 + · · ·+αmym = 0, we obtain from −α1y1 = α2y2 + · · ·+αmym that

σT (α1 y1) ⊆ σT (α1 y1) ∩ (σT (α2 y2) ∪ · · · ∪ σT (αm ym)) ,

hence σT (α1 y1) ⊆ U1 ∩
(
U2 ∪ · · · ∪ Um

)
= ∅, therefore, by (SVEP), α1 = 0,

and, similarly, α2 = · · · = αm = 0. Consequently, the linear span Y of (yn)n∈N
is of infinite dimension.

Finally, given an arbitrary y ∈ Y, we obtain a representation of the form
y = α1 y1 + · · · + αm ym for suitable m ∈ N and α1, . . . , αm ∈ C. Because
σT (yi) ∩ σT (yj) = U i ∩ U j = ∅ whenever i 6= j, we have ρT (y) = ρT (y1) ∩ · · · ∩
ρT (ym) and RT (λ, y) = α1 RT (λ, y1)+ · · ·+αm R(λ, ym) for all λ ∈ ρT (y). Thus
RT (·, y) admits a continuous extension to ρT (y), as desired. ¤

Corollary 6 Suppose that T ∈ L(X) satisfies ET (∅) = {0} and that T is
the quotient of a decomposable operator by a closed invariant subspace. If
X∗

T ∗(∂σ(T )) = {0}, then the set of vectors y ∈ X for which the local resol-
vent function RT (·, y) admits a continuous extension to ρT (y) is dense in X.
The converse holds provided that T is a normal operator on a Hilbert space.

Proof. We may, of course, assume that X 6= {0}. Then the condition that
X∗

T ∗(∂σ(T )) be trivial ensures that the interior intσ(T ) of σ(T ) is non-empty.
On the other hand, as noted above, σloc(T ) = σ(T ), because T is the quo-
tient of a decomposable operator; see [?] or [?]. Hence, by Theorem ??, it
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remains to be seen that XT (intσ(T )) is dense in X. But this is immediate from
the Hahn–Banach theorem, since, by Proposition 2.5.14 of [?], the annihila-
tor of XT (intσ(T )) in the dual space X∗ coincides with X∗

T ∗(C \ intσ(T )) =
X∗

T ∗(∂σ(T )) = {0}. This establishes the first assertion, and the final claim fol-
lows from Theorem 8 of [?] and the fact that, for a normal operator T with
spectral measure E, the space X∗

T∗(∂σ(T )) may be canonically identified with
the range of E(∂σ(T )). ¤

5. Multipliers and convolution operators. Let A be a semi-simple
commutative complex Banach algebra, and let ∆(A) denote the spectrum of A,
i.e., the set of all non-trivial multiplicative linear functionals on A, endowed, as
usual, with the Gelfand topology. Recall from [?] that a mapping T : A → A is
said to be a multiplier on A provided that (Tu)v = uTv for all u, v ∈ A. It is
well known that each multiplier on A is a continuous linear operator and that
the set M(A) of all multipliers on A is a unital closed commutative subalgebra
of L(A); see Proposition 4.1.1 of [?].

Since all multiplication operators are multipliers, A is continuously embed-
ded in M(A), and, in this sense, M(A) contains A as an ideal. Moreover, M(A)
inherits semi-simplicity from A, and ∆(A) may be viewed as a subset of the
spectrum ∆(M(A)) of the multiplier algebra M(A). For each T ∈ M(A), there
exists a unique continuous bounded complex-valued function g on ∆(A) for
which T̂ u = g û for all u ∈ A, where û(ϕ) := ϕ(u) for all ϕ ∈ ∆(A). In fact,
g = T̂ |∆(A), where T̂ is the Gelfand transform of T on ∆(M(A)). Details for
all this may be found in [?] or Section 4.3 of [?].

It is also known that the spectrum σ(T ) of a multiplier T ∈ M(A) as an oper-
ator on A coincides with the spectrum of T as an element of the commutative Ba-
nach algebra M(A). Thus, by elementary Gelfand theory, σ(T ) = T̂ (∆(M(A))).
The multiplier T is said to have natural spectrum provided that T̂ (∆(A)) is dense
in σ(T ). This notion originates from the Wiener–Pitt phenomenon in harmonic
analysis and is discussed in Sections 4.6 and 4.11 of [?].

Theorem 7 Let A be a regular semi-simple commutative Banach algebra, and
suppose that T ∈ M(A) is a multiplier with natural spectrum. Then there exists
a non-trivial bounded local resolvent function for T precisely when σ(T ) has
non-empty interior. Moreover, in this case, there exists an infinite-dimensional
linear subspace Y of A such that, for each y ∈ Y, the local resolvent function
RT (·, y) has a continuous extension to ρT (y).

Proof. First observe that every multiplier T ∈ M(A) satisfies
⋂

λ∈C(T −
λ)A = {0}. Indeed, given u ∈ ⋂

λ∈C(T − λ)A and ϕ ∈ M(A), let λ := T̂ (ϕ) and

choose an element v ∈ A for which u = (T −λ)v. Then ϕ(u) = (T̂ (ϕ)−λ)ϕ(v) =
0 and hence, by semi-simplicity, u = 0. In particular, it follows that ET (∅) = {0}.

We next claim that T̂ (∆(A)) ⊆ σloc(T ) for every T ∈ M(A). To establish
this inclusion, let λ ∈ T̂ (∆(A)), choose ϕ ∈ ∆(A) such that λ = T̂ (ϕ), and
consider an arbitrary open neighborhood V of λ. Since T̂−1(V ) ∩ ∆(A) is an
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open neighborhood of ϕ in the locally compact space ∆(A), there exist an open
set U and a compact set K such that ϕ ∈ U ⊆ K ⊆ T̂−1(V ) ∩ ∆(A). By
the regularity of A, we then find some x ∈ A for which x̂(ϕ) = 1 and x̂ ≡ 0 on
∆(A)\U. Thus x 6= 0 and supp x̂ ⊆ K. Since x̂ has compact support, Proposition
4.7.8 of [?] ensures that σT (x) = T̂ (supp x̂) ⊆ V and therefore 0 6= x ∈ AT (V ).
Thus λ ∈ σloc(T ), as desired.

In particular, we obtain the identity σloc(T ) = σ(T ) for every multiplier T ∈
M(A) with natural spectrum. The assertion is now immediate from Corollary
?? and Proposition 4.7.2 of [?]. ¤

Corollary 8 Let G be a locally compact abelian group with dual group Γ, and
suppose that µ ∈ M(G) is a regular complex Borel measure on G with natural
spectrum, in the sense that µ̂(Γ) is dense in σ(µ), where µ̂ denotes the Fourier–
Stieltjes transform of the measure µ. Then the operator T of convolution by µ on
the group algebra L1(G) admits a non-trivial bounded local resolvent function
if and only if σ(µ) has non-empty interior. Moreover, in this case, there exists
an infinite-dimensional linear subspace Y of L1(G) such that, for each y ∈ Y,
the local resolvent function RT (·, y) has a continuous extension to ρT (y).

The result is immediate from Theorem ??, since A := L1(G) is a regular
semi-simple Banach algebra for which M(A) may be canonically identified with
M(G) via convolution; see [?] and [?].

Note that the Wiener–Pitt phenomenon asserts that each non-discrete lo-
cally compact abelian group supports a measure without natural spectrum; see
Corollary 8.2.6 of [?]. We do not know if the preceding result remains valid for
such measures.

In the case of compact groups, a certain special case of the first assertion of
Corollary ?? was established in Theorem 16 of [?], based on a completely dif-
ferent approach. By Theorem 4.11.1 of [?], Corollary ?? applies to all measures
µ ∈ M(G) for which the corresponding convolution operator Tµ is decomposable
on L1(G) and hence, in particular, to all measures for which the continuous part
is absolutely continuous. It should be noted, however, that, by Theorem 4.11.10
of [?], for every non-discrete locally compact abelian group G, there exists a mea-
sure µ ∈ M(G) with natural spectrum so that Tµ fails to be decomposable on
L1(G).
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