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Abstract

A characterization of Banach spaces admitting uniformly Gâteaux
smooth norms in terms of σ-finite dual dentability indices is given.
Some applications in the area of weak compactness are discussed. We
also study σ-locally uniformly rotund dual renormings in connection
with σ-countable dual dentability indices.

1 Introduction

Banach spaces that can be renormed by uniformly Fréchet smooth norms
were characterized by Enflo, James, and Pisier in terms of Walsh-Paley mar-
tingales (see, e.g., [3, Chapter IV]). For a more elementary approach see,
e.g., [7, Chapter 9]. This result was extended to spaces admitting uniformly
Gâteaux smooth norms by Troyanski in [25] (see, e.g., [3, Theorem IV.6.8]).
A characterization of spaces that admit uniformly Fréchet smooth norms in
terms of dual dentability indices was given by Lancien in [19] (see, e.g., [16],
[20]).
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In this note we extend Lancien’s result to spaces that admit uniformly
Gâteaux smooth norms. As a byproduct, we will encounter a notion, strictly
stronger than that of weak compactness, which we will briefly discuss. We
will show that this approach leads to a characterization of uniform Eberlein
compacts in terms of dual dentability indices in the space of Borel measures
on them. We also study σ-countable dual dentability indices with respect
to renorming by σ-locally uniformly rotund norms and the weak compact
generating.

An asset of our approach is its transparent elementary character. We believe
that this may help solving some problems in this area, for example Question
5.11a in [2] on the so called three space problem for weakly uniformly rotund
renormings.

Our notation is standard. Let (X, ‖·‖) be a Banach space (we write just X if
mentioning of the norm is not necessary). The dual norm on the dual space
X∗ will be denoted again ‖ · ‖ if there is no possibility of misunderstanding.
BX (or, more precisely, B(X,‖·‖)) is the closed unit ball of X, and SX (or
S(X,‖·‖)) its unit sphere. Unexplained concepts can be found, for example, in
[7].

Let M be a bounded subset of X. Given f ∈ X∗, we denote |f |M :=
supx∈M |f(x)| and, for a bounded set S ⊂ X∗, we let diamM(S) := sup{|f −
g|M ; f, g ∈ S}, the M -diameter of S.

Let M be a bounded set in a Banach space (X, ‖ · ‖) and let ε > 0 be given.
We say that the dual norm ‖·‖ on X∗ is (M, ε)-LUR if lim supn |fn−f |M ≤ ε
whenever f, fn ∈ SX∗ are such that limn ‖fn +f‖ = 2. The dual norm ‖·‖ on
X∗ is called σ-LUR if for every ε > 0, there is a decomposition BX =

⋃∞
k=1 M ε

k

such that ‖ · ‖ is (M ε
k , ε)-LUR for every k ∈ N. We say that the dual norm

‖ · ‖ on X∗ is M-LUR if it is (M, ε)-LUR for every ε > 0. The dual norm
‖ · ‖ on X∗ is called weak∗-LUR if it is M -LUR for every finite subset M
of X. We say that the norm ‖ · ‖ on X is M-uniformly Gâteaux smooth if
limn |fn − gn|M = 0 whenever fn, gn ∈ SX∗ are such that limn ‖fn + gn‖ = 2.
We say that the norm ‖ · ‖ on X is strongly uniformly Gâteaux smooth if
it is M -uniformly Gâteaux smooth for some bounded linearly dense set M
in X. Using the Šmulyan duality (see, e.g., [3, Section I.1]), we can also
define that ‖ · ‖ on X is uniformly Gâteaux smooth [3, Definition II.6.5] if it
is M -uniformly Gâteaux smooth for every finite subset M of X [3, Lemma
II.6.6].
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The notion of dual σ-LUR norms represents a sort of a common roof over
uniformly Gâteaux smooth and Fréchet smooth norms (see Theorem 4 and
Theorem 7 below). It is closely related to weak compactness (see [9] and [13]).
In particular, the existence of such a norm in a weakly Lindelöf determined
space implies that this space is necessarily a subspace of a weakly compactly
generated space [9]. We recall that a Banach space X is weakly Lindelöf
determined if (BX∗ , w∗) is a Corson compact space (for definitions see, e.g.,
[3, Chapter VI], [4], and [7, Chapter 12]). By a weak∗-slice of a set D ⊂ X∗

we understand the intersection of D with a weak∗-open halfspace in X∗.
Given a bounded set M ⊂ X, ε > 0, and D ⊂ BX∗ , we introduce the
(M, ε)-dentability derivative of D by

D′
(M,ε) := {f ∈ D; diamM(S) ≥ ε for each weak∗-slice S of D containing f}

Let α > 1 be an ordinal number and assume that we already defined a
dentability derivatve D

(β)
(M,ε) for every ordinal β < α. If α − 1 exists, we

define the α-th (M, ε)-dentability derivative of D as D
(α)
(M,ε) = (D

(α−1)
(M,ε) )′(M,ε).

Otherwise, we put D
(α)
(M,ε) =

⋂
β<α D

(β)
(M,ε). We observe a simple fact that, if

D is convex and weak∗-closed, then so is D′
(M,ε).

Definition 1 Let (X, ‖ · ‖) be a Banach space. Let a bounded set M ⊂ X
and ε > 0 be given. We say that M has finite (resp. countable) ε-dual index

if (BX∗)
(α)
(M,ε) = ∅ for some finite (resp. countable) ordinal number. The first

ordinal with this property, if it exists, is called the ε-dual index of M .

Definition 2 We say that a Banach space (X, ‖ · ‖) has σ-finite (resp. σ-
countable) dual index if, for every ε > 0, there is a decomposition BX =⋃∞

k=1 M ε
k such that each set M ε

k has finite (resp. countable) ε-dual index.

Remark 3 1. The property of a bounded set in a Banach space X to
have finite (resp. countable) ε-dual index is invariant under equiva-
lent renormings of the space X. Therefore, the concept of a Banach
space having a σ-finite (resp. σ-countable) index is also invariant under
equivalent renormings.

2. It follows from the statement (and the proof) of Theorem 4 that the
set BX in the definition of a Banach space having σ-finite (resp. σ-
countable) dual index can be substituted in the very definition by any
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bounded and linearly dense set Γ ⊂ X. Now Γ can be written, for
every ε > 0, as

⋃∞
k=1 Γε

k, where Γε
k has finite (resp. countable) ε-dual

index.

2 The results

Theorem 4 Let (X, ‖ · ‖) be a Banach space. Then the following assertions
are equivalent:
(i) X admits an equivalent uniformly Gâteaux smooth norm.
(ii) X has σ-finite dual index.

Theorem 5 Let (X, ‖ · ‖) be a Banach space. Let M be a bounded subset of
X. Then the following assertions are equivalent:
(i) X admits an equivalent M-uniformly Gâteaux smooth norm.
(ii) M has finite ε-dual index for every ε > 0.
Thus, X admits an equivalent strongly uniformly Gâteaux smooth norm if
and only if there exists a bounded linearly dense set M ⊂ X that has finite
ε-dual index for every ε > 0.

Remark 6 1. In view of Remark 11 below, every Banach space with a
strongly uniformly Gâteaux smooth norm is weakly compactly gener-
ated [8].

2. Note that any norm compact subset K of an arbitrary Banach space
(X, ‖ ·‖) has finite ε-dual index for every ε > 0. Indeed, let {xi; i ∈ N}
be a dense subset of K, and consider the dual norm in X∗ given by

|‖f |‖2 = ‖f‖2 +
∞∑
i=1

1

2i
f 2(xi), f ∈ X∗.

Then it is standard to check (see, e.g., [3, Chapter II]) that the norm
|‖ · |‖ is K-uniformly Gâteaux smooth and thus, by Theorem 5, K has
the proclaimed property.

3. By using Enflo’s renorming result (see, e.g., [7, Theorem 9.18]) and
Theorem 5, the unit ball in any superreflexive space has finite ε-dual
index for every ε > 0.
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Theorem 7 Assume that X has σ-countable dual index. Then X∗ admits
an equivalent dual σ-LUR, and hence weak∗-LUR norm.

Theorem 8 Assume that a bounded set M in a Banach space X has count-
able ε-dual index for every ε > 0. Then X∗ admits an equivalent dual M-LUR
norm.

Examples

1. A Banach space X is said to be strongly generated by a Banach space Z
if there exists a bounded linear operator T : Z → X such that, for every
weakly compact subset M of X and for every ε > 0, there exists n ∈ N
such that M ⊂ nT (BZ)+ εBX (see [24]). Every Banach space strongly
generated by a superreflexive Banach space admits an equivalent norm
that is M -uniformly Gâteaux smooth for every weakly compact set
M ⊂ X (see, e.g., [12]); thus such a norm is then uniformly Gâteaux
smooth. For a finite measure µ, the space L1(µ) is strongly generated
by the Hilbert space L2(µ). Let X0 be the Rosenthal subspace of L1(µ),
for a certain finite measure µ, that is not weakly compactly generated
([23]). By Theorem 4, X0 has σ-finite dual index. The space X0 is
weakly Lindelöf determined as it is a subspace of the weakly compactly
generated space L1(µ) (see, e.g., [7, Chapters 11 and 12]). Assume
that X0 contained a bounded linearly dense set M that had countable
ε-dual index for every ε > 0. By Theorem 8, X0

∗ would then admit an
equivalent dual M -locally uniformly rotund norm. Thus X0 would be
weakly compactly generated ([9, Theorem 1]). Therefore, X0 is a space
that has σ-finite dual index but for no ε > 0, X0 contains a bounded
linearly dense set having countable ε-dual index.

2. Let X be the Ciesielski-Pol space C(K), where K is a scattered com-
pact of finite height (see e.g., [3, Chapter VI]). Thus BX has count-
able ε-dual index for every ε > 0 ([20]). However, X does not admit
any equivalent uniformly Gâteaux smooth norm. Indeed, otherwise X
would be a subspace of a weakly compactly generated Banach space
([6], see, e.g., [7, Theorem 12.18]). However, this is not the case as
there is no bounded linear injection of X into any c0(Γ) ([3, Chapter
VI]). Thus the Ciesielski-Pol space does not have σ-finite dual index by
Theorem 4.
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3. The space X in [1, page 421] admits a dual weak∗-LUR norm ([22])
but does not have σ-countable dual index. Indeed, otherwise, it would
admit an equivalent dual σ-LUR norm by Theorem 7. Thus X would
be a subspace of a weakly compactly generated space as X is weakly
Lindelöf determined ([9]). However, as it is proved in [1], X is not a
subspace of a weakly compactly generated space.

4. If M is the unit ball of the space C[0, ω1], then for every ε > 0 there is

an ordinal α such that (BX∗)
(α)
(M,ε) = ∅. This is so as C[0, ω1] is an As-

plund space (see, e.g., [3, Theorem 12.29]), and hence its dual is weak∗

dentable. However, C[0, ω1] does not have σ-countable dual index as
otherwise C[0, ω1] would admit an equivalent dual strictly convex norm
by Theorem 5, which is not the case by a classical Talagrand’s result
(see, e.g., [3, page 313]).

3 Proofs

A main tool is the following lemma, which is an adjustment of results in [18]
and [19].

Lemma 9 Let (X, ‖ · ‖) be a Banach space. Let M ⊂ X be a bounded set,
and ε > 0, ∆ > 0 be given.
(i) Assume that M has finite ε-dual index. Then X∗ admits a dual norm
|‖ · |‖ such that ‖ · ‖ ≤ |‖ · |‖ ≤ (1 + ∆)‖ · ‖, and lim supn |fn − gn|M ≤ 2ε
whenever fn, gn ∈ B(X∗,|‖·|‖), n ∈ N, satisfy that limn ‖|fn + gn|‖ = 2.
(ii) Assume that M has countable ε-dual index. Then X∗ admits a dual norm
|‖ · |‖ such that ‖ · ‖ ≤ |‖ · |‖ ≤ (1 + ∆)‖ · ‖, and lim supn |fn − f |M ≤ 2ε
whenever f, fn ∈ B(X∗,|‖·|‖), n ∈ N, satisfy that limn ‖|f + fn|‖ = 2.
(iii) Assume that the dual norm ‖ · ‖ on X∗ satisfies lim supn |fn − gn|M < ε
whenever fn, gn ∈ B(X∗,‖·‖), n ∈ N, are such that limn ‖fn + gn‖ = 2. Then
M has finite ε-dual index.

Proof.
(i) Put D0 := B(X∗,‖·‖). Let r denote the ε-dual index of M . For j ∈
{1, 2, . . . , r} put Dj = (D0)

(j)
(M,ε). Define F : X∗ → [0, +∞) by

F (f) := ‖f‖+ ∆
r−1∑
j=0

1

2j+1
dist(f, Dj), f ∈ X∗, (1)
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where the distance function is considered in the original dual norm ‖·‖ on X∗.
Clearly, the function F is symmetric. It is also weak∗-lower semicontinuous
and convex since each Dj is a weak∗-closed and convex set. We shall need
the following
Claim. Let (fn) and (gn) be sequences in B(X∗,‖·‖) such that

1
2
F (fn) + 1

2
F (gn)− F

(
1
2
(fn + gn)

)
→ 0 as n →∞. (2)

Then lim supn |fn − gn|M ≤ 2ε.
Proof of the Claim. Assume, by contradiction, that this is not so. Then
lim supn |fn − gn|M > 2ε + δ for a suitable δ > 0. Hence |fn − gn|M > 2ε + δ
for infinitely many n ∈ N. Assume, for simplicity, that this inequality holds
for all n ∈ N. We shall prove the following
Subclaim. For every j ∈ {0, 1, . . . , r − 1} we have

dist (fn, Dj) → 0 and dist (gn, Dj) → 0 as n →∞. (3)

Proof of the Subclaim. For j = 0 the statement (3) is trivial. So further
asssume that r > 1. Fix k ∈ {0, 1, . . . , r − 2} and assume that (3) was
already proved for j = k. Fix for a while any n ∈ N. Find f ′n, g′n ∈ Dk so
that

‖f ′n − fn‖ ≤ 2dist(fn, Dk) and ‖g′n − gn‖ ≤ 2dist(gn, Dk).

Then

|f ′n − g′n|M ≥ |fn − gn|M − |f ′n − fn|M − |g′n − gn|M
> 2ε + δ − (2dist(fn, Dk) + 2dist(gn, Dk)) sup{‖m‖; m ∈ M}.

Hence |f ′n − g′n|M > 2ε for all large n ∈ N; assume for simplicity that this
inequality holds for all n ∈ N. Now, since any weak∗-slice S of Dk, containing
1
2
(f ′n + g′n), contains either f ′n or g′n, we have from the above estimate that

diam M(S) ≥
∣∣∣∣f ′n − f ′n + g′n

2

∣∣∣∣
M

=

∣∣∣∣g′n − f ′n + g′n
2

∣∣∣∣
M

=
1

2
|f ′n − g′n| > ε.

Therefore, 1
2
(f ′n + g′n) ∈ Dk+1. This holds for every n ∈ N. From (2), using

convexity, we get that

1
2
dist (fn, Dk+1) + 1

2
dist (gn, Dk+1)− dist

(
1
2
(fn + gn) , Dk+1

)
→ 0
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for n → ∞. And, as ‖f ′n − fn‖ → 0 and ‖g′n − gn‖ → 0, we can conclude
that (3) holds for j = k + 1. This proves the Subclaim.

Now, (3) for j = r − 1 means that

dist (fn, Dr−1) → 0 and dist (gn, Dr−1) → 0 as n →∞.

For n ∈ N find f ′n, g
′
n ∈ Dr−1 so that

‖f ′n − fn‖ ≤ 2dist (fn, Dr−1) and ‖g′n − gn‖ ≤ 2dist (gn, Dr−1) .

Fix any n ∈ N. Since Dr = ∅, there must exist a weak∗-slice S of Dr−1,
containing 1

2
(f ′n + g′n), so that diam M(S) < ε. Hence, as {f ′n, g′n} ∩ S 6= ∅,

we have ∣∣f ′n − 1
2
(f ′n + g′n)

∣∣
M

=
∣∣g′n − 1

2
(f ′n + g′n)

∣∣
M

< ε,

and so |f ′n − g′n|M < 2ε. Thus

lim sup
n

|fn − gn|M = lim sup
n

|f ′n − g′n|M ≤ 2ε,

a contradiction. The Claim is proved.
Let |‖ · |‖ be the Minkowski functional of the set {f ∈ X∗; F (f) ≤ 1}. From
the properties of F it easily follows that |‖ · |‖ is a dual norm on X∗ and that
‖f‖ ≤ ‖|f |‖ ≤ (1 + ∆)‖f‖ for every f ∈ X∗. Let fn, gn, n ∈ N, be as in (i).
Then F (fn) ≤ 1, F (gn) ≤ 1, n ∈ N. Further, the uniform continuity of the
function F on bounded sets yields that

F

(
fn + gn

2

)
− F

(
fn + gn

‖|fn + gn|‖|

)
→ 0 as n →∞.

Thus (2) is satisfied, and the Claim guarantees that lim supn |fn − gn|M ≤ 2ε.

(ii) Denote by β the ε-dual index of M ; we know that it is a countable ordinal.
Choose an indexed family {aα; 0 ≤ α < β} of positive numbers such that∑

0≤α<β aα < 1. Put D0 = B(X∗,‖·‖) and Dα = (D0)
(α)
(M,ε) for 0 < α ≤ β; thus

Dβ = ∅. Define G : X∗ → [0, +∞) by

G(f) = ‖f‖2 + ∆
∑

0≤α<β

aαdist2(f, Dα), f ∈ X∗
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where the distance functions are considered in the original dual norm on X∗.
Clearly, G is symmetric, weak∗-lower semicontinuous, and ‖f‖2 ≤ G(f) ≤
(1 + ∆)‖f‖2 for all f ∈ X∗. It is also convex, since the square of a convex
non-negative function is convex.
Claim. Let f, fn ∈ B(X∗,‖·‖), n ∈ N, be such that

1
2
G(f) + 1

2
G(fn)−G

(
1
2
(f + fn)

)
→ 0 as n →∞. (4)

Then lim supn |f − fn|M ≤ 2ε.
Proof of the Claim. Let α (≤ β) be the first ordinal such that f 6∈ Dα. A
simple weak∗-compactness argument reveals that α has a predecessor, α− 1.
Convexity and (4) yield that

1
2
dist2(f, Dα) + 1

2
dist2(fn, Dα)− dist2

(
1
2
(f + fn) , Dα

)
→ 0

and

1
2
dist2(f, Dα−1) + 1

2
dist2(fn, Dα−1)− dist2

(
1
2
(f + fn) , Dα−1

)
→ 0

as n →∞. Hence, the convexity of the functions dist(·, Dα) and dist(·, Dα−1)
yields

dist(fn, Dα) → dist(f, Dα), dist(1
2
(f + fn), Dα) → dist(f, Dα),

dist(fn, Dα−1) → dist(f, Dα−1), and dist(1
2
(f + fn), Dα−1) → dist(f, Dα−1)

as n →∞. Observe that dist(f, Dα) > 0 and dist(f, Dα−1) = 0 as f ∈ Dα−1.
Put δ = 1

2
dist(f, Dα). Then, for all large n ∈ N we have

dist(fn, Dα) > δ, dist
(

1
2
(f + fn), Dα

)
> δ,

dist(fn, Dα−1) < δ, and dist
(

1
2
(f + fn), Dα−1

)
< δ.

For n ∈ N find f ′n ∈ Dα−1 so that ‖f ′n−fn‖ ≤ min{δ, 2dist(fn, Dα−1)}. Then,
for all n ∈ N sufficiently large we have

f, f ′n,
1
2
(f + f ′n) ∈ Dα−1\Dα;

the latter inclusion holds because of the following estimate:

dist(1
2
(f + f ′n), Dα) ≥ dist(1

2
(f + fn), Dα)− 1

2
‖f ′n − fn‖ > δ − 1

2
δ > 0.
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Hence, for all n ∈ N large enough there exists a weak∗-slice S of Dα−1 such
that S 3 1

2
(f + f ′n) and diam M(S) < ε. Therefore,

|f − f ′n|M = 2
∣∣f − 1

2
(f + f ′n)

∣∣
M

= 2
∣∣f ′n − 1

2
(f + f ′n)

∣∣
M

< 2ε,

for all n ∈ N large enough. Then, finally,

lim sup
n

|f − fn|M ≤ lim sup
n

|f − f ′n|M + lim
n
|fn − f ′n|M ≤ 2ε.

The Claim is thus proved.

Let |‖ · |‖ be the Minkowski functional of the set {f ∈ X∗; G(f) ≤ 1}. From
the properties of G it easily follows that |‖ · |‖ is a dual norm on X∗ and that
‖f‖2 ≤ ‖|f |‖2 ≤ (1 + ∆)‖f‖2 for every f ∈ X∗. Let f, fn, n ∈ N, be as in
(ii). Then, as in the proof of (i), we can verify the validity of (4). Now, by
the Claim, we conclude that lim supn |f − fn|M ≤ 2ε.

(iii) From the premise here, find δ > 0 so small that |f−g|M < ε−δ whenever
f, g ∈ B(X∗,‖·‖) and ‖f + g‖ > 2− 2δ. Then

(BX∗)′(M,ε) ⊂ (1− δ)BX∗ . (5)

Indeed, assume, there is f0 ∈ BX∗\(1−δ)BX∗ . Find x0 ∈ SX so that f0(x0) >
1− δ. Put S = {f ∈ BX∗ ; f(x0) > 1− δ}. This is a weak∗-slice of BX∗ and
S 3 f0. On the other hand, if f, g ∈ S, then ‖f +g‖ ≥ f(x0)+g(x0) > 2−2δ,
and hence, |f − g|M < ε − δ. Therefore f0 6∈ (BX∗)′(M,ε). This proves (5).
Now, from (5), a homogeneity argument yields that

(BX∗)
(2)
(M,ε) ⊂ (1− δ)2BX∗ , (BX∗)

(3)
(M,ε) ⊂ (1− δ)3BX∗ , . . . .

However, once k ∈ N is big enough, then diam M((1 − δ)kBX∗) < ε and so
the ε-dual index of M must be equal to k at most.

Proof of Theorem 4. (i)=⇒(ii). Because of Remark 3, we may and do
assume that the original norm ‖·‖ on X is already uniformly Gâteaux smooth.
Fix any ε > 0. Put

M ε
k :=

{
x ∈ BX ; |f(x)− g(x)| < ε

2

whenever f, g ∈ BX∗ and ‖f + g‖ > 2− 1
k

}
, k ∈ N.
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From the Šmulyan duality [3, Theorem II.6.7] and the uniform Gâteaux
smoothness, it follows that

⋃∞
k=1 M ε

k = BX . Moreover, for every ε > 0
and every k ∈ N, we can immediately see that the premise of (iii) in Lemma
9 is satisfied with M := M ε

k . Therefore, each set M ε
k has finite ε-dual index.

We thus proved (ii).

(ii)=⇒(i). For every ε > 0 we have the decomposition BX =
⋃∞

k=1 M ε
k where

each M ε
k has finite dual index. For m ∈ N and k ∈ N let |‖ · |‖m,k be the dual

norm on X∗ found in Lemma 9 (i) for the set M := M
1/m
k and for ∆ := 1;

thus ‖f‖ ≤ |‖f |‖m,k ≤ 2‖f‖ for all f ∈ X∗. Define

|‖f |‖2 := ‖f‖2 +
∞∑

m,k=1

2−m−k|‖f |‖2
m,k, f ∈ X∗; (6)

this is a dual norm on X∗ and ‖f‖ ≤ |‖f |‖ ≤ 3‖f‖ for all f ∈ X∗. Let |‖·|‖ be
the corresponding predual norm on X. We shall show that this norm on X
is uniformly Gâteaux smooth. So, consider sequences (fn), (gn) in B(X∗,|‖·|‖)
such that |‖fn + gn|‖ → 2 as n → ∞. According to Šmulyan duality, [3,
Theorem II.6.7], we have to show that fn − gn → 0 in the weak∗ topology
of X∗. Assume that this is not the case. Find then ε > 0, x ∈ BX , and an
increasing sequence(ni) in N so that |fni

(x)− gni
(x)| > ε for every i ∈ N.

Take m ∈ N such that m > ε
4
. Finally, find k ∈ N such that M

1/m
k 3 x.

Equation (6) and convexity yield that

2|‖fni
|‖2

m,k + 2|‖gni
|‖2

m,k − 2|‖fni
+ gni

|‖2
m,k → 0 as i →∞,

and hence

|‖fni
|‖m,k − |‖gni

|‖m,k → 0 and |‖fni
+ gni

|‖m,k − 2|‖fni
|‖m,k → 0

as i →∞. Note that |‖fni
|‖ ≤ 3‖fni

‖ ≤ 3|‖fni
|‖m,k for every i ∈ N, and that

|‖fni
|‖ → 1 as i →∞. Put f ′i := fni

/|‖fni
|‖m,k and g′i := gni

/|‖gni
|‖m,k, i ∈ N.

The sequences (f ′i), (g′i) lie in B(X∗,|‖·|‖m,k) and |‖f ′i + g′i|‖m,k → 2 as i → ∞.
Therefore, by Lemma 9 (i),

lim sup
i→∞

|f ′i(x)− g′i(x)| ≤ lim sup
i→∞

|f ′i − g′i|M1/m
k

≤ 2 · 1
m

.

However,
|‖fni

|‖m,k ≤ 2‖fni
‖ ≤ 2|‖fni

|‖ ≤ 2,
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and so lim supi→∞ |fni
(x)− gni

(x)| ≤ 2 · 2
m

< ε, a contradiction.

Proof of Theorem 5
(i)=⇒(ii). Fix any ε > 0. Let | · | be an equivalent M -uniformly Gâteaux

smooth norm on X. By Lemma 9 (iii), we have that
(
B(X∗,|·|)

)(k)

(M,ε)
= ∅ for

some k ∈ N. Then, by Remark 3, we have also
(
B(X∗,‖·‖)

)(k′)
(M,ε)

= ∅ for a

suitable k′ ∈ N.
(ii)=⇒(i). For m ∈ N, let ‖ · ‖m be a dual norm on X∗ such that ‖f‖ ≤
|‖f |‖m ≤ 2‖f‖ for every f ∈ X∗ and with the property that limn |fn−gn|M ≤
2
m

whenever fn, gn ∈ B(X∗,|‖·|‖m), n ∈ N, satisfy that limn |‖fn + gn|‖m = 2.
The existence of such a norm is guaranteed by Lemma 9 (i). Define

|‖f |‖2 :=
∞∑

m=1

2−m|‖f |‖2
m, f ∈ X∗.

Then |‖ · |‖ is a dual norm on X∗ and (1/2)‖f‖2 ≤ |‖f |‖2 ≤ 4‖f‖2 for every
f ∈ X∗. It remains to prove that the corresponding predual norm on X∗ is
M -uniformly Gâteaux smooth. So let fn, gn ∈ B(X∗,|‖·|‖), n ∈ N, satisfy that
limn |‖fn+gn|‖ = 2. An argument very similar to the proof of the implication
(ii)=⇒(i) in Theorem 4 yields that lim supn |fn− gn|M ≤ 4

m
for every m ∈ N.

And this is what we wanted to prove.

Proof of Theorem 7 follows the same lines as those in the proof of (ii)=⇒(i)
in Theorem 4 (this time part (ii) of Lemma 9 is used, instead) and hence is
omitted.

Proof of Theorem 8 follows the same lines as those in the proof of (ii)=⇒(i)
in Theorem 5 and hence is omitted.

4 Applications

In [10], Banach spaces that are subspaces of WCG Banach space were char-
acterized in terms of ε-weakly relatively compact sets, i.e., subsets M of a

Banach space X that satisfy M
w∗

⊂ X + εBX∗∗ (see also [9] and [11]). Here
we prove that sets with finite ε-dual index have a more precise property than
being ε-weakly relatively compact.

12



Theorem 10 Let M be a bounded closed convex subset of a Banach space
(X, ‖ · ‖), and ε > 0 be given.

If M has finite ε-dual index, then for every ε′ > ε we have M
w∗

⊂ M +

2ε′BX∗∗, where M
w∗

denotes the closure of M in (X∗∗, w∗).
In particular, if M has finite ε-dual index for every ε > 0, then M is relatively
weakly compact.

Proof Fix any ∆ > 0. By Lemma 9 (i), there exists a dual norm |‖ · |‖ on
X∗ such that ‖ · ‖ ≤ |‖ · |‖ ≤ (1 + ∆)‖ · ‖ and lim supn |fn − gn|M ≤ 2ε,
whenever fn, gn ∈ B(X∗,|‖·|‖), are such that limn |‖fn + gn|‖ = 2. Its predual
norm |‖ · |‖ on X then satisfies |‖x|‖ ≤ ‖x‖ ≤ (1 + ∆)|‖x|‖ for all x ∈ X.
Using an elementary argument based on Goldstine’s theorem, we get that
whenever Fn, Gn ∈ B(X∗∗∗,|‖·|‖), n ∈ N, are such that limn |‖Fn + Gn|‖ = 2,
then lim supn |Fn −Gn|M ≤ 2ε.

Fix any z∗∗0 ∈ M
w∗

. Assume that M ∩ (z∗∗0 + rB(X∗∗,|‖·|‖)) = ∅ for some
r > 2ε. Separate M and z∗∗0 + rB(X∗∗,|‖·|‖) by some F ∈ S(X∗∗∗,|‖·|‖). This
means that for some γ we have F (x) ≤ γ for all x ∈ M and F (z∗∗) ≥ γ
for all z∗∗ ∈ (z∗∗0 + rB(X∗∗,|‖·|‖)). Note that then F (z∗∗0 ) − r ≥ γ. Find
z∗∗1 , z∗∗2 , . . . ∈ B(X∗∗,|‖·|‖) such that limk F (z∗∗k ) = 1. By Goldstine’s theorem,
there is a sequence (fn) in B(X∗,|‖·|‖) such that F (z∗∗k ) = limn fn(z∗∗k ) for every
k = 0, 1, 2, . . . Then, clearly, limn |‖fn+F |‖ = 2 and thus lim supn |fn−F |M ≤
2ε. Then

F (z∗∗0 ) = lim
n→∞

fn(z∗∗0 ) ≤ lim sup
n→∞

sup
M

fn

≤ sup
M

F + 2ε ≤ γ + 2ε ≤ F (z∗∗0 )− r + 2ε < F (z∗∗0 ),

a contradiction. Thus, for every r > 2ε, there exists mr ∈ M such that

|‖z∗∗0 − mr|‖ ≤ r, and hence ‖z∗∗0 − mr‖ ≤ r(1 + ∆). This proves M
w∗

⊂
M + r(1 + ∆)B(X∗∗,‖·‖). Here r > 2ε and ∆ > 0 were arbitrary. Hence the
proclaimed inclusion follows.
The proof of the second part is immediate.

Remark 11 In a Banach space, every bounded subset M with finite ε-dual
index for every ε > 0 is weakly relatively compact. Indeed, it is clear that
the closed convex hull of M has also ε-dual index finite for every ε > 0, hence
the conclusion follows from Theorem 10. It is worth noticing that there are
weakly compact sets that do not have finite ε-dual index for some ε > 0; see
the next theorem.
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Theorem 12 If K is an infinite compact set, then C(K) contains a weakly
compact set W that does not have finite ε-dual index for some ε > 0.

Proof (Sketch) We follow the notation in e.g., [7, Chapter 9]. Let (X, ‖·‖) =
(c0, ‖ · ‖∞), and put, for n = 1, 2 . . .,

Wn :=

{
2n−1−1∑

i=0

εie2n+i ; εi = ±1

}
where ei, i ∈ N, are the canonical unit vectors in X. Then let

W :=

(
∞⋃

n=1

Wn

)
∪ {0}.

It is standard to check that W is a weakly compact set in c0. In order
to see that W does not have finite ε-dual index for some ε > 0, consider
first the element y0 := (1

2
, 1

2
, 0, 0, . . .) in `1. Then y0 = 1

2
(y1 + y2), where

y1 := (1, 0, 0, . . . , ) and y2 := (0, 1, 0, 0, . . .). Every w∗-slice of the unit ball
of `1 that contains y0, contains either y1 or y2, thus it has W -diameter ≥ 1.
It follows that y0 ∈ (B`1)

′
(W,1). Now, let v0 := (0, 0, 0, 1

4
, 1

4
, 1

4
, 1

4
, 0, 0, . . .).

Then we have v0 = 1
2
(v1 + v2), where v1 := (0, 0, 0, 1

2
, 0, 1

2
, 0, 0, . . .) and v2 :=

(0, 0, 0, 0, 1
2
, 0, 1

2
, 0, 0, . . .). Proceed similarly to prove that v0 ∈ (B`1)

(2)
(W,1).

Using this observation, one can construct, for each n ∈ N, an n-tree Tn in
the unit ball of `1 so that the supremum over W of the difference of two next
elements stays bounded below uniformly by 1. It follows that the root of Tn

lies in the n-th (W, 1)-derivative of B`1 . Thus W does not have finite 1-dual
index.
As it is well known (see, e.g., [7, Theorem 12.30]), the space c0 is isomorphic
to a subspace of C(K). From the previous paragraph and Remark 3, a weakly
compact subset having the sought property can be found in C(K).

Theorem 13 Every weakly compact subset of a Banach space X that is
strongly generated by a superreflexive space (for definition, see Example 1)
has finite ε-dual index for every ε > 0. In particular, if µ is a finite measure,
this happens for the space L1(µ).

Proof It is shown in [15] (see also [12] and [17, Chapter 6]) that X admits
an equivalent norm that is M -uniformly Gâteaux smooth for every weakly
compact set M ⊂ X. Now, it is enough to apply Theorem 5.
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A compact space K is called a uniform Eberlein compact if K is homeo-
morphic to a weakly compact set in a Hilbert space endowed with its weak
topology.

Theorem 14 Let K be a compact space. Then the following are equivalent.
(i) K is a uniform Eberlein compact.
(ii) There is a bounded linearly dense set in C(K) that has finite ε-dual index
for every ε > 0.
(iii) C(K) has σ-finite dual index.

Proof. If K is a compact set, then K is a uniform Eberlein compact if and
only if C(K) admits a uniformly Gâteaux smooth norm if and only if C(K)
admits a strongly uniformly Gâteaux smooth norm (see, e.g., [7, Theorem
12.18]). Now, apply Theorem 4 and Theorem 5.

Remark 15 Theorem 14 should be compared with the Amir-Lindenstrauss
result that K is an Eberlein compact if and only if C(K) contains a weakly
compact linearly dense set (see, e.g., [7, Theorem 12.12]), and with a result
that K is a Radon-Nikodým compact if and only if C(K) contains a bounded
linearly dense Asplund set M (see, e.g., [5]), i.e., a set such that each con-
tinuous convex function on C(K) is differentiable at points of a dense set in
C(K) uniformly in the directions from M ([21], see, e.g., [4, Theorem 1.5.4]).
A compact space is called Radon-Nikodým compact if it is homeomorphic to
a weak∗ compact set in the dual of some Asplund space. ([21]).
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Mountain J. Math. 23 (1993), 395–446.
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(2005), 237–248.

[12] M. Fabian, V. Montesinos, and V. Zizler, A note on weakly compact sets
in L1-spaces, Rocky Mountain J. Math., to appear.

[13] M. Fabian, V. Montesinos, and V. Zizler, Weak compactness and σ-
Asplund generated Banach spaces, Studia Math., 181 (2007), 125–152.

[14] M. Fabian, V. Montesinos, and V. Zizler, Sigma-locally uniformly rotund
and sigma-weak∗ Kadets norms, to appear.

[15] J. R. Giles and S. Sciffer, On weak Hadamard differentiability of convex
functions on Banach spaces, Bull. Austral. Math. Soc. 54 (1996), 155–
166.

16



[16] G. Godefroy Renormings of Banach spaces, in Handbook of the geom-
etry of Banach spaces, Ed. W. Johnson and J. Lindestrauss, Vol. I, pp.
781–835, Elsevier, 2001.
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