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Abstract

A method dealing with recognition of partially occluded and affine transformed bi-
nary objects is presented. The method is designed for objects with smooth curved
boundary. It divides an object into affine-invariant parts and uses modified radial
vector for the description of parts. Object recognition is performed via string match-
ing in the space of radial vectors.
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1 Introduction

Recognition of objects under partial occlusions and deformations caused by
imaging geometry is one of the most difficult problems in computer vision. It
is required always when analyzing 2-D images of a 3-D scene. Although many
methods trying to solve this task have been published, it still remains open.
Clearly, there is no universal algorithm which would be ”optimal” in all cases.
Different methods should be designed for different classes of objects and for
different groups of assumed deformations.
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This paper is devoted to objects with complicated curved boundary. Such a
boundary cannot be approximated by a polygon without loss of accuracy, so
we do not employ polygonal-based methods at all. Furthermore, we assume the
objects are deformed by an unknown affine deformation. When photographing
a planar object arbitrary oriented in 3-D space, the precise image deformation
would be a perspective projection. It is well known it can be approximated by
affine transform when the object-to-camera distance is large comparing to the
size of the object. We use the approximation by affine transformation because
it is easy to handle, mainly because it is linear and its jacobian is constant in
the image.

We introduce a method developed for the recognition under the above men-
tioned conditions. First, the object is divided into parts which are defined by
means of inflection points of the object boundary. Then the shape of each
part is described by a special kind of radial vector. Finally, the parameters of
the affine deformation are estimated and classification is performed by string
matching in the space of radial vectors. The performance of the method is
demonstrated by experiments.

2 Overview of current methods

Current methods can be classified into two major categories. The methods of
the first group divide the object into affine-invariant parts. Each part is de-
scribed by some kind of ”standard” global invariants, and the whole object is
then characterized by a string of vectors of invariants. Recognition under oc-
clusion is performed by maximum substring matching. Since inflection points
of the boundary are invariant to affine (and even projective) deformation of
a shape, they become a popular tool for the definition of the affine-invariant
parts. This approach was used by Ibrahim and Cohen (1998), who described
the object by area ratios of two neighboring parts. As a modification which
does not use inflection points, concave residua of convex hull could be used
(Lamdan, 1988). For polygon-like shapes, however, inflection points cannot be
used. Instead, one can construct pats defined by three or four neighboring ver-
tices. Yang and Cohen (1999) used area ratios of the parts to construct affine
invariants. Flusser (2002) further developed their approach by finding more
powerful invariant description of the parts. A similar method was successfully
tested for perspective projection by Rothwell (1992).

The methods of the second group are ”intrinsically local”, i.e. they do not di-
vide the shape into subparts but rather describe the boundary in every point
by means of its small neighborhood. In that way they transform the boundary
to a so-called signature curve which is invariant to affine/projective transform.
Recognition under occlusion is again performed by substring matching in the
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space of signatures. Typical representatives of this group are differential in-
variants. They were discovered hundred years ago by Wilczynski (1906) who
proposed invariant signatures based on derivatives of up to 8-th order. Weiss
(1992) introduced differential invariants to the computer vision community.
He published a series of papers on various invariants of orders from four to six
(Weiss, 1988; Bruckstein at al., 1997). Although differential invariants seemed
to be promising from theoretical point of view, they have been experimentally
proven to be extremely sensitive to inaccurate segmentation of the boundary,
discretization errors and noise.

Following methods dealing with recognition of transformed object could be
relevant to our conditions, too. Mokhtarian and Abbasi (2002) used inflection
points themselves to characterize the boundary. They constructed so-called
Curvature Scale Space and traced the position of inflection points on different
levels of image pyramid. The trajectories of the inflection points then served
as object descriptors. Lamdan (1988) used mutual position of four ”inter-
esting” points for the recognition. To verify the received match, normalized
concave areas were described by the radial vector. There are also methods
based on wavelet transform of the boundary. Tieng at al. (1995) introduced
wavelet-based boundary representation, where affine invariance was achieved
by enclosed area contour parametrization. A similar approach was used by
Khalil at al. (2001). However, the use of the wavelet-based methods in case of
partial occlusions is questionable.

3 Definition of affine-invariant parts

Both inflection points and central points of straight lines are affine invariant,
i.e. the properties ”to be an inflection point” and ”to be a central point of a
straight line” are preserved under arbitrary nonsingular affine transform. Thus,
we use these points (called ”cut points” in the sequel) for the construction of
affine-invariant parts. We connect each pair of neighboring cut points by a line.
This line and the corresponding part of the object boundary form a convex
region which may but need not to lie inside the original object (in Fig. 1c).
The sequence of such parts carries efficient information about the object.

Detection of inflection points of discrete curves has been discussed in numerous
papers. Let us recall that in the continuous domain an inflection point is
defined by a constraint ẍ(t)ẏ(t) − ẋ(t)ÿ(t) = 0, where x(t), y(t) represent a
parametrization of the curve and the dots denote derivatives with respect to t.
When this definition is directly converted to the discrete domain, it becomes
very sensitive to sampling and noise. Thus, we propose a new robust method
of curvature estimation.
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For each boundary point, we construct a circle with its center in this point and
having fixed radius (see Fig. 1a). We estimate the object boundary curvature
as object covered area

whole circle area
− 1

2
. The curvature is negative for convex parts of the object

boundary (less than a half of the circle is covered by the object), positive
for concave parts, and equals zero for inflection points and straight lines. To
suppress small fluctuation of the curvature value, we apply a smoothing of
the curvature series by convolution with a narrow gaussian kernel. We get a
smoothed curvature graph, such as in Fig. 1b.

Now we construct the division of the original object into parts. Zero crossing
points of the curvature and middle points middle points of approximately zero-
value segments on the curvature graph serve as cut points, it means points
separating the object parts. We connect neighboring cut points by straight
line (see Fig. 1, which defines the object into parts. The parts, the area of
which is less than a given threshold, are not considered.
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a) Curvature estimation.
The boundary color illus-
trates absolute value of
the curvature.

b) The curvature graph
with the cut points.

c) Division of the object
into parts.

Fig. 1. Definition of affine-invariant parts.

4 Description of the parts

The object is represented by the parts defined in the previous section. By
adding a description of the shape of the individual parts we get a description
of the whole object which is robust to occlusion. Robustness to occlusion
means that if some part of the object boundary is missing or changed, only
few elements of the feature vector are changed. This is an important attribute.
Note that traditional global methods, for instance description of the object by
moment invariants or Fourier descriptors, do not have this property.

It would be possible to describe each part individually and eliminate the im-
pact of the deformation by using proper affine invariants (moment invariants
or Fourier descriptors for instance). In such case, however, we do not employ
important information that all the parts were deformed by the same trans-
formation. Including this consistency information in the object description
can significantly increase the recognition performance. Thus, we propose the
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following description of the parts by a modified radial vector, with included
position of control points. See complete demo object description in Fig. 2a.

The spokes of the modified radial vector come from the middle of the cutting
line and they divide the part into subparts of equal area. For each object part,
they are constructed as follows.

(1) Let n be the required number of the spokes (i.e. the length of the radial
vector).

(2) For each boundary point, do the following.
(3) Calculate the area of the triangle between the current boundary point,

the neighboring boundary point, and the midpoint of the cutting line.
(4) If the cumulated area exceeds k/(n − 1) fraction of the total part area,

we put the ending of the k-th spoke in the current boundary point.
(5) The radial vector consists of the n spokes lengths. For each part, we store

its radial vector. It describes the part shape completely.
(6) We store also absolute position of the part. It is represented by position of

its cut points and position of the mid-spoke end-point. This affine variant,
complementary information will allow us to recover the transformation
later.

The introduced modified radial vector divides the part invariantly under affine
transformation. Note that a classical radial vector with constant-angle spokes
distribution or constant-boundary length spokes distribution has not such a
favorable property.
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a) Object description by radial vectors. b) Sequence of similar parts.

Fig. 2. Description and matching of the demo object.

5 Matching

The image is classified by finding the longest and best matching section of
the border (in Fig. 2b). This is realized by comparing sequences of parts,
represented by their radial vectors, between the classified image and database
objects.
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(1) Initialize minimal required match length P to 1 and similarity threshold
Sthre to its minimal required value Smin (Smin is a user defined parameter,
we recommend Smin = 0.8).

(2) For each part of the database object take a sequence of this parts and
P − 1 next parts.

(3) For each part of the image object take a sequence of this parts and P − 1
next parts.

(4) Calculate affine transformation T that transforms the image parts se-
quence to the database sequence. The least square fit is applied to their
cut points and mid-spoke end-point.

(5) Transform the spokes of the image radial vectors by the transformation
T and calculate their length, i.e. get their radial vectors.

(6) Compare each radial vector with the one from the database by means of
the similarity measure S (described bellow).

(7) If S > Sthre, these two sequences match. Mark these sequences as the
best ones, denote their length as Pbest and its similarity as Sbest. Now
try to make the sequence even longer, set P = P + 1, Sthre = Smin and
continue by step 4).

(8) Otherwise reset the sequence length and similarity threshold to the last
best values P = Pbest and S = Sbest and continue the by loop 2), resp. 3).

There are many choices how to measure similarity between who radial vectors
u = u1, . . . , un and v = v1, . . . , vn. It may be misleading to use `2 norm. We
introduce original similarity measure S ∈ 〈0, 1〉, that we have found to perform
well in the practical experiments.

Before defining concrete S, we put some general constraints on it. We require
S = 1 only if u = v, S decreases to zero for growing vector difference. The
single similarity measure si of the i-th spoke lengths ui, vi is a Gaussian
quantity of the ui − vi difference (in Fig. 3a)

si = e
− 1

σ2
i
(ui−vi

2 )
2

, σi = k1 + k2

∣∣∣∣
ui + vi

2

∣∣∣∣ ,

where k1 and k2 are user-defined parameters.

We have the following requirements for combining single component si to
overall similarity measure S. We require S = si if all si are equal, S = 0
if at least one si = 0, and S needs to be sensitive to all si. Moreover, it is
reasonable to require S to be 0.75 if all but one si equal 1 and one si equals 0.5
(in Fig. 3b). One can construct many heuristic functions fulfilling the above
constraints. After testing several possibilities we decided to use the following
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functions because of their simplicity and good performance

S =

∑n
i=1 wi · si∑n

i=1 wi

, wi =
n− 2

si

− (n− 3).
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lengths.

b) Total similarity measure of radial
vectors S is a combination of the
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Fig. 3. Similarity measure is introduced for radial vectors comparison.

6 Experimental results

The proposed method was tested on a set of 24 binary objects (Fig. 4) seg-
mented from original color images. The objects were successively deformed
by various affine transforms, their various regions were occluded and then the
objects were matched against the original database. The sufficient number of
matching parts is used as a criterion for match of the objects. This is in fact
a well-known principle of string matching.

Fig. 4. Our object database. These 24 objects are represented by 204 object parts.

For illustration, two examples are shown in Fig. 5. On the left-hand side,
one can see partially occluded and transformed objects. The corresponding
database objects (which were successfully found in both cases) are shown
on the right-hand side. The control (inflection) points are highlighted, their
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connecting lines define the division into parts. The spokes of the corresponding
radial vectors are drawn inside the matched parts of the image.
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a) Deformed object, overlapped by
a square. Radial vector is drawn in
matching parts.

b) Recognized database object.
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c) Partially occluded and deformed im-
age.

d) Recognized database object. Note
the radial vectors of this complicated
shape.

Fig. 5. Recognition examples and description of recognized database objects.

The modified radial vector describes the boundary with a good precision,
the tolerance to a shape perturbations is controlled by user-defined param-
eters/thresholds. This enables an optimization for various types of shapes.
Surprisingly, the boundary does not need to be a smooth curve with well-
defined inflection points. The method finds control points even on polygonal
parts (in Fig. 5a). Furthermore, due to some tolerance threshold for the detec-
tion of inflection points, we can obtain even some non-convex parts. We are
able to construct radial vector also for these non-convex parts (in Fig. 5d).
Remind that our modified radial vector is created by dividing cumulative area
while proceeding the part boundary.

The object description and the result of a recognition naturally depends on
the conditions of the experiment: character of the shapes, amount of occlu-
sion, degree of the transformation, and noise. Before summing up statistical
experiments, let’s focus on some situations in detail. As we can see in Fig.
6b), thanks to our robust curvature estimation and similarity measure, the
proposed method’s resistance to noise is quite good. It is possible to set the
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c) Transformed image was recog-
nized, even if the back part did not
match.

d) The match was shorten by image
transformation.

Fig. 6. Influence of affine transformation and noise to recognition.

method parameters to be even more robust to noise than in the Fig. 6b),
but the number of false positive matches would grow. Affine transformation
was applied to the images in Fig. 6c) and 6d). The original object was recog-
nized from the image, but some parts were not included in the match. We will
explain this phenomenon on following example.

At the bottom of Fig. 7 are two overlapped objects, the second one was trans-
formed by a slightly harder transformation. One can see that the position of
the marked control point was evaluated differently due to changed curvature of
the boundary. Therefore, one of the parts changed its shape and did not match
with the pattern part. This leads to match reduction and worse position de-
tection (the overlayed database object is drawn by dotted line). Control point
instability is caused by unsuitable shapes (without clear inflection points),
affine transformation (affects the curvature), or occlusion (inflection points
originally ignored can become significant). Although our control point detec-
tion on a smooth boundary was improved comparing to traditional methods,
it still remains a principal problem. In general, we can say that the recognition
is as good as the stability of the critical points.
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Control points are stable for this oc-
clusion and transformation.

Instability of a control point leads to
match reduction and worse position de-
tection.

Fig. 7. The impact of instability of the control points.

Recognition under various conditions is summarized in Table 1. ”Image area”
denotes the size of the visible part of the test object (in per cent), ”Constant
scale of details” indicates whether or not the same thresholds were used for
database and test objects when detecting inflection points, and ”Transforma-
tion” means the significance of the deformation measured by skewing. The
transformation was chosen randomly to significant skewing and the occlusion
was made automatically by straight white area. The image degradation is vi-
sualized on the square image in the table header. The table itself shows the
maximum number of matching parts over all database objects. In all instances
where the maximum number of matching parts was greater than two the test
objects were recognized correctly. One or two matching parts does not ensure
unique correct match, so the classification can be wrong. These not-recognized
objects are represented inside the table by image. Their problem is caused by
strong deformation or large amount of occlusion which leads to instability of
control points.

We tested also the impact of a perspective transformation on the recognition
rate. We took several photos of an object (trencher) with a camera in various
positions. The object was segmented by single thresholding. Boundary of the
segmented binary image was noisy and there was notable impact of the object
thickness. When the camera was about 1 meter from the trencher, the per-
spective effect of the image transformation was not too strong and the object
was recognized well (in Fig. 8). After we moved the camera to about 25cm
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Table 1
Experiment of 8 object recognition under various conditions. Correct recognition
is represented by the numbers of matching parts. Icons inside the table denote the
cases where only an insufficient number of parts were found for unique recognition.

Image area 100% 90% 50% 50% 100% 100% 50%

Constant scale yes yes no yes yes yes yes

Transformation none none none none medium strong medium

Input image

12 7 4 3 10 7 3

11 8 7 4 6

11 8 3 4 6 4 3

11 9 3 4 3 3

7 4 7 7

13 8 3

10 7 6 8 4

9 6 4 4 4 8 4
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Fig. 8. Recognition under mild perspective projection. Both objects on the left were
identified correctly.

from the object, the transformation became obviously nonlinear (see Fig. 9).
This is in contradiction with our original assumption about the linearity of
the deformation, and that is why the recognition may failed in some cases.

6.0.1 Comparison with area ratio method

The presented method is compared to Ibrahim and Cohen (1998) paper, which
is based on area ratio of shape parts. Although their algorithm was originally
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Fig. 9. Recognition under heavy perspective projection. The object top left was iden-
tified correctly, while the object bottom left was misclassified because of significant
nonlinear deformation.

Table 2
The number of incorrect matches of area ratio and proposed method. Thresholds of
Ali’s method was set to classify our correct matches as good ones.

Length of possible match Area ratio method The proposed method

4-part string 12 wrong matches 0 wrong matches

3-part string 59 wrong matches 0 wrong matches

2-part string 249 wrong matches 10 wrong matches

not developed for recognition of partially occluded objects, it is suitable for
these conditions too. Their parts are bounded by inflection points as well.

Recognition power and discriminability of the methods were tested by mu-
tual matching of our 24 database objects (in Fig. 4). Note, the objects are
represented by 204 parts and a match can be detected on each of their combi-
nation. Implementations of both algorithms use the same detection of inflec-
tion points, therefore we can set a threshold of the Ali’s method to classify
our correct matches as good ones. In Table 2, counts of incorrectly matched
neighboring parts are compared.

It is clear that the area ratio carries much less information than our modified
radial vector. Proposed method needs only 3 parts for unique correct match,
while the area ratio method requires 5 parts. These numbers are relevant to
our database, different number of matching parts could be required for unique
object match on some other database. Both methods can be affected by control
points instability. In Fig. 10 you can see one of the 10 worst two-part wrong
matches of presented method and a sample of wrong four-part match of area
ratio method.

12



50 100 150 200 250

20

40

60

80

100

120

50 100 150 200 250 300 350 400

20

40

60

80

100

Two-part wrong match of the proposed method.

10 20 30 40 50 60

10

20

30

40

50

60

50 100 150 200 250 300

20

40

60

80

100

120

Four-part wrong match of the area ratio method

Fig. 10. Example of too short matches for correct recognition, for both compared
methods. Proposed method needs 3 parts for unique correct match, the area ratio
method requires 5 parts.

7 Conclusion

We presented a method for recognition of partially occluded binary objects
deformed by affine transformation. The method uses local affine-invariant de-
scription of the object boundary by means of inflection points and radial vec-
tors. When working with digital boundary, the major limitation of the method
is stability of inflection points. As the experiments demonstrated, if the curve
has ”prominent” inflection points, they are usually very stable under affine
transformation and the method works perfectly. On the other hand, in the
case of obscure boundary the inflection points may be detected at different
positions depending on the particular transformation and/or occlusion and
the recognition may fail.

Our experiment proved a good discrimination power of the method. On the
given test set, we discovered that if the maximum number of matched bound-
ary parts between the unknown object and the database element is greater
than two, it always indicates a correct match. Thus, this threshold can be
recommended for prospective real experiments too.
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