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A random point process model for the score in sport matches
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A sequence of goals scored during sport match is modelled as a realization of two dependent random point
processes. It is assumed that the scoring intensity of each team has several components depending on time
or on factors describing the teams and other conditions of the match. This dependence is modelled with
the aid of a semi-parametric multiplicative regression model of intensity. A method of model evaluation
is presented and demonstrated on a real data set. Prediction obtained from the model via the Monte Carlo
simulation is compared with real results.
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1. Introduction

Poisson processes and their generalizations are used frequently for the probabilistic modelling of oc-
currence of certain events in time. Main characteristics of such a process is its intensity. Influence of
other factors, covariates, is as a rule expressed via a regression model. In the present contribution, a
random point process model is applied to the modelling of score development during a match (like for
instance the ice hockey or football). A main advantage of dynamic point process models is their ability
to estimate the team performance during the match period. It can be a valid source of information for the
team management. Dynamic model also offers a possibility of ‘on-line’ prediction, i.e. the prediction of
future match development from the information on the match ‘history’ and its actual state.

The paper is organized as follows. First, static Poisson models used commonly for the modelling
of matches results are recalled. Then, a random point process model of scoring is introduced. It will
generalize to some extent the model ofDixon & Robinson(1998). In our formulation, the intensity of
scoring of each team consists of the product of two parts: a time-dependent non-parametric baseline
intensity and a regression part dependent on factors like the rival team defence strength and the match
state. The procedure of model evaluation is described, then it is applied to the analysis of real data
from the football World Championship 2006. The model is also used for random generation of artificial
results. Finally, a generalization with time-dependent defence parameters is considered.

2. Models of score in sport statistics

A basic model presented inMaher(1982) assumes that the numbers of goals scored by home and away
teams in any particular game are independent Poisson variables: in a match where a home teami plays
against an away teamj , let Xi j andYi j be the numbers of goals scored by the home and away sides,
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respectively. Then,

Xi j ∼ Poisson(λ1 = αiβ j γ ),

Yi j ∼ Poisson(λ2 = α jβi ),
(1)

whereXi j andYi j are independent,αi , βi > 0,αi measure the attack strength of teami andβi measure
its defence ability (the smallerβi , the better defence). Finally,γ > 0 is a parameter characterizing the
effect of home field.

Such a model has at least two weak aspects. First, it is known from experience that the frequencies
of certain results do not correspond to model (1), for instance, in football the draws 0:0, 1:1 and also
results 1:0, 0:1 are more frequent than predicted by the model. Hence, an improvement uses the ‘inflated’
version of Poisson model which is the mixture of (1) with certain fixed additional probability of those
more frequent results. This fact is discussed for instance inDixon & Coles(1997). Further improvement
leads to the bivariate Poisson model with dependent components. For the score-modelling purposes,
such a model has been utilized for instance inKarlis & Ntzoufras(2003).

Though the models based on Poisson distribution yield the match score, they are used mostly just
for the prediction of the winner or draw result. As underlined also inDixon & Robinson(1998), the
prediction of exact score is not reliable sufficiently, there are always several different results with com-
parably high probabilities. Another set of models, namely the trinomial classification models, have been
designed for direct evaluation of probabilities of the victory (home, away) or the draw. They can utilize
for instance the logistic regression models or other classification techniques.

The models described above do not contain any component describing temporal aspects of inten-
sities, their possible development and variation. First, the performance of teams (i.e. their parameters)
can change during each season. It can be incorporated by updating the parameters, giving more weight
to recent than to older results, as inDixon & Coles(1997). Further,Rue & Salvesen(2000) introduced
a dynamic autoregressive model for parameters innovation during the season and considered the Bayes
approach to solution (with the Markov chain Monte Carlo computations). In the same context,Crowder
et al. (2002) used the state-space modelling technique, namely a normal approximation leading to a
variant of Kalman filter method.

Another type of dynamic models, studied, e.g. inDixon & Robinson(1998), describes the variation
of the scoring intensity or at least of certain parameters during the match. It leads then to the concept
of random point process and to the regression models of time-varying intensity commonly used in
statistical survival analysis. This is the type of model we shall consider in the rest of our paper.

There exist also other attempts to take into account the match development. For instance,Croxson &
Reade(2007) have developed a model based on bivariate Poisson distribution which adapts its parame-
ters to actual match state. On this basis, the probabilities of final results are updated during the match.
Again, though the bivariate Poisson model yields the whole probability distribution of final score, the
authors analyse just probabilities of home, away win or draw.

Dixon and Robinson consider a piecewise-constant intensity which changes after the ‘birth’ of a new
goal, so that it depends on actual state of the match. Intensity is parametrized for each team separately.
This part is then multiplied by corresponding attack and defence parameters. In their most complex
model VI, they add an intensity component depending directly on time, as a linear (or other parametric)
trend function. Formally, the resulting intensity model can be written as

λ(t) = a · b(t)+ ξ · t,

wherea is a basic part andb(t) is a piecewise-constant intensity of birth process. The last term is the
common trend of changes of intensity during the match (ξ > 0).
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The model we shall present here consists also of two parts, a regression part and a baseline intensity.
However, in our setting, the baseline intensity is a non-parametric function reflecting the team’s scoring
ability. The defence strength of the rival and actual match state then influence the regression part of
intensity. At least in the first stage of the analysis, it has a sense to visualize the variation of the team
attack strength as a function of time. Then, in a further step, it is naturally possible to use a proper
parametric function suggested by the shape of obtained non-parametric estimate. Thus, our model differs
from the model ofDixon & Robinson(1998) and is also more general due to its semi-parametric form.

3. Random point processes in time

Let us now recall briefly random point process models for time sequences of events. In a homogeneous
Poisson process, the events occur with a constant intensity. In a non-homogeneous variant, the intensity
is a non-negative, bounded, measurable functionλ(t), t > 0. More generally, the intensity can depend
on some explanatory variables, covariates, such a dependence is modelled via regression models.

The values of covariates can again be given by an observed random process depending on time. Let
us denote it byZ(t). Then, the regression model for intensity assumes that the random point process
behaviour is governed by a (bounded and smooth, say) hazard functionh(t, z) from [0, T ] ×X to
[0,∞), whereX is the domain of values ofZ(t). The intensity of point process is then

λ(t) = h(t, Z(t)),

so that it is actually a random process too. In order to make this setting tractable from the point of view
of mathematical theory, it is assumed that the intensities att (and the processZ(t) too) are predictable
and depend just on the history of system beforet (are adapted to a proper set ofσ -algebras, a filtration).
Corresponding theory as well as the methodology of statistical analysis is collected in many papers and
monographs devoted to statistical survival analysis, e.g. inAndersenet al. (1993).

3.1 Examples of regression models

The idea to separate a common hazard rate from the influence of covariates led to the multiplicative
model, called also the proportional hazard model,

h(t, z) = h0(t) · exp(b(z)).

Functionh0(t) is the baseline hazard function andb(z) is the regression (response) function. If the re-
sponse function is parametrized, we obtain semi-parametric Cox’s model. Its most popular form assumes
thath(t, z) = h0(t) exp(βz).

Alternatives are for instance the Aalen’s additive regression model or the accelerated time model
used frequently in reliability analysis. In the present paper, the Cox’s model is utilized, hence we shall
employ ‘maximum partial likelihood’ estimators of parametersβ and the Breslow–Crowley estimator
of the increments of cumulated baseline hazard functionH0(t) =

∫ t
0 h0(s)ds. Functionh0(t) is then

obtained by kernel smoothing of these increments.

4. Process of score development

In the match of teami playing against teamj , let λ0i (t) be the attack intensity part of teami and
α j the defence parameter ofj . Further,βββ = (β1, . . . , βm) are the regression parameters expressing
the influence of different factors, as the actual state of score, the power play in ice hockey, one missing
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player (red card) in football, the advantage of home field, etc. The state of these factors will be described
by anm-dimensional vector of corresponding indicatorszi j (t), some of them may be switched on or off
during the match. Then,

λi j (t) = λ0i (t)e
α j eβββzi j (t), λ j i (t) = λ0 j (t)e

αi eβββzj i (t), (2)

are the intensities of scoring of teami against teamj (the first expression) and vice versa, at timet .
It is seen that expressions (2) have a form of Cox’s model. In the follow-up, we shall takeai = eαi

and treat it as a heterogeneity component specific for the defence of teami (compare so-called frailty
models in survival analysis). Such an approach is convenient from the computational point of view.
One step of global iteration, which can sometimes converge rather slowly, is then divided into two
alternating simpler steps. Note also that we actually deal with two interacting processes, their interaction
is modelled with the aid of shared components and covariates (here just indicators).

4.1 Computation procedure

In this part, we shall recall (and adapt to our case) the method of evaluation of Cox’s model components.
It is described elsewhere, for instance, also inAndersenet al.(1993). The data—record of each match—
should contain the times of goals and other important time moments of covariate changes, so that at each
time we know actual covariate values. Then, we can construct the likelihood function. Its logarithm is

L =
∑

i

∑

j

{∫ T

0
(logλ0i (t)+ logaj + βββzi j (t))dNi j (t)−

∫ T

0
λ0i (t)aj exp(βββzi j (t))dt

}
.

The indices are over all matches,i 6= j , so that each match is recorded twice, from the point of view
of both teams. Indices are repeated if there are more matches of the same teams.T is the match period
(here 90 min) andNi j (t) is the counting process of goals of teami against teamj : dNi j (t) = 1 at
moments of goals, dNi j (t) ≡ 0 otherwise. Hence, the first integral is just a finite sum.

Let us denote dΛ0i (t) = λ0i (t)dt the increments of cumulative baseline intensities, and formally
compute, by putting∂L/∂dΛ0i (t) = 0, the Breslow–Crowley estimate of these increments (for fixedi
andt):

dΛ̂0i (t) =

∑
j 6=i dNi j (t)

∑
k 6=i ak exp(βββzik(t))

. (3)

Again, Λ̂0i (t) are stepwise functions with steps dΛ̂0i (t) > 0 at the times of goals scored by teami .
Further, by putting∂L/∂aj = 0, we obtain the estimate of defence parameteraj :

â j =

∑
i 6= j Ni j (T)

∑
k 6= j

∫ T
0 dΛ0k(t) exp(βββzk j (t))

. (4)

The estimate compares the number of goals obtained by teamj in all matches (in the numerator) with
the sum of cumulated intensities of obtaining the goal (again in all matches) if the defence parameter is
set to one. The integral in the denominator is again in fact a finite sum.

Finally, parametersβββ are estimated separately from the so-called partial likelihood. It can be ob-
tained also when estimators (3) are inserted back toL, so that in this case the partial likelihood equals
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to the profile likelihood. Namely, the logarithm of partial likelihood is now

L p =
∫ T

0

∑

i

∑

j

log
exp(βββzi j (t))∑

k
∑

l al exp(βββzkl(t))
dNi j (t), (5)

again with i 6= j and k 6= l . The estimate of parametersβββ, i.e. the solution of a set of equations
∂L p/∂βr = 0 (βββ can be multidimensional), is found as a rule by the Newton–Raphson algorithm.
Hence, iterated estimation of all model components proceeds in the following way:

1. Set all initialâ j = 1.

2. Computeβ̂ββ from (5) by several iterations of the Newton–Raphson algorithm.

3. Compute increments d̂Λ0i (t) from (3).

4. Compute neŵaj from (4). Normalize them in order to ensure their uniqueness.

For instance, we kept the mean ofâ j s equal to 1.
Steps 2–4 are repeated till convergence. In the following example, the convergence was rather fast,

10–20 cycles sufficed. In Step 2, just five iterations of the Newton–Raphson algorithm were enough.
Final shapes of scoring intensities are obtained by kernel smoothing,

λ̂0i (t) =
1

d

∫ ∞

0
W

(
t − s

d

)
dΛ̂0i (s).

A frequent choice of the kernel function is the standard Gauss density,W(x) = (2π)−1/2 exp(−x2/2),
d is a conveniently selected smoothing parameter.

5. Example

The objective of this example is to show the method applicability and the form of obtained outputs. We
apply model (2) to a rather small data from the football World Championship in Germany 2006.

We were interested in the analysis of the performance of eight teams participating in quarterfinals.
We took into account all their matches (together 40), including their results in groups and eight-finals.
That is why we introduced also ‘imaginary’ teams: number nine represented all four unsuccessful eight-
finals rivals and numbers 10, 11 and 12 all other teams met in first three rounds in the groups. From one
point of view, such an aggregation might bias the estimation; on the other side, the data contained too
small information on those remaining 24 participants that we preferred to collect these teams to such a
small set of ‘average’ teams.

Let us first summarize certain basic statistics. For instance, Fig.1(a) shows the distribution of times
of all goals in a histogram form. It has to be taken into account that the conclusions based on rather
small data are not reliable, still the graph shows certain non-uniformity of distribution, with rather large
number of goals achieved in first 10 min, and (what is more common in other studies) a higher fre-
quency in final periods of matches (including ‘extra-time’ goals assigned to the last minute). Prolonged
times (2× 15 min) of several matches were not taken into account. Together, 86 goals were scored in
regular period of 90 min. Red card was given 16 times, weakened teams obtained nine goals after such
a punishment.

Figure1(b) shows the distribution of times to the first goal (i.e. the duration of state 0:0) and Fig.1(c)
shows the time between the first and second goals, shape of its distribution is more similar to (expected)
exponential form.
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FIG. 1. Histograms of distributions of scoring times: (a) all goals, (b) first goals and (c) times from first to second goal.

After such an initial analysis, model (2) has been utilized for the analysis of matches of leading
eight teams and of four others representing the rest of teams. We selected the following factors—
covariates (from the point of view of teami, i, j = 1, . . . , 12):

zi j 1(t) = 1, when the rival had one player missing (red card),zi j 1(t) = 0, otherwise,
zi j 2(t) = 1, if actual score was positive,zi j 2(t) = 0 otherwise,
zi j 3(t) = 1, if actual score was negative,zi j 3(t) = 0 otherwise.

Thus, the ‘pure’ model without covariates corresponded to the intensity in balanced score state, with-
out red card. Consequently, the following functions and parameters should be estimated (we preferred
the ‘frailty’ form of defence parametersaj ):

λ0 j (t), aj , j = 1, . . . , 12, βr , r = 1, 2, 3.

As the number of analysed data was small compared to the number of unknown components, we could
not afford to select more different covariates. Still the confidence of some parameters was rather vague.
Table1 contains estimated parameters and their 95% confidence intervals (approximate, because based
on asymptotic normality). Parametersaj for j = 1, . . . , 8 correspond to the following teams (first
four are in the final order): Italy, France, Germany, Portugal, Argentina, Ukraine, England, Brazil and
parametersβ1, . . . , β3 then to indicatorsz1(t), . . . , z3(t), respectively. Figure2 displays the scoring
intensitiesλ0 j (t) (kernel smoothed from the Breslow–Crowley estimate) for first four teams. Certain
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TABLE 1 Estimated parameters and approximate95% confi-
denceintervals

β1 0.5045(−0.3398, 1.3488)
β2 −0.4395(−1.0031, 0.1240)
β3 0.8243 (0.0713, 1.5773)

a1 0.2630 (0, 0.6276) a7 0.5069 (0, 1.2094)
a2 0.4120 (0, 0.8783) a8 0.5481 (0, 1.3077)
a3 0.5686 (0.0114, 1.1258) a9 1.1695 (0.5078, 1.8312)
a4 0.6899 (0.0852, 1.2946) a10 1.2148 (0.4969, 1.9327)
a5 0.4950 (0, 1.0552) a11 1.8848 (1.0373, 2.7323)
a6 2.7090 (0.7022, 4.7158) a12 1.5383 (0.7846,2.2921)

FIG. 2. Estimated attack intensities of first four teams.

differences of teams attack performance can be traced from their shapes and also from the area below
the curves.

The influence of a covariate is taken as significant when the confidence interval of corresponding
parameterβr does not contain zero. It is here the case ofβ3 only, suggesting that the effort of loosing
team increases. With regards to defence parametersaj , they are taken as significant when their confi-
dence interval does not contain one, hence here it concerns just the teams number 1, 2 and 11. Again,
confidence intervals are rather wide, though they vary and still yield some information on the defence
strength of teams.
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5.1 Randomly generated results

An important advantage of studied model is connected with the possibility to simulate a ‘virtual’ match
course, using estimated intensities and parameters. A part of covariates depends on actual match state
and is derived throughout the match development, others (e.g. the red-card punishment) are actually also
random point processes running in parallel with the process of scoring (and can also depend on it). Its
intensity has to be estimated, and then such a covariate process has to be simulated simultaneously with
the process of the match. Thus, we deal with a scheme of several processes influencing each other.

We have employed this method to repeat ‘artificially’ the matches of the World Championship 2006,
starting from quarterfinals and assuming the same pairs of teams. For simplicity, as there were 16 red
cards in 40 matches, the red-card occurrence was modelled by a Poisson process with constant intensity
λ∗ = 16/(90× 2× 40) ≈ 0.002. Thousand simulations of each match were performed. The final order
of teams was the same as in reality, except that simulations preferred England to Portugal (their real
match ended without goals and the Portugal team passed on after penalties). Except the final score of
each match, the prediction procedure generated also the times of all goals.

By another set of simulations, we checked the influence of increased number of data to confidence of
estimates. Figure3 shows the cumulated baseline intensityΛ0(t) =

∫ t
0 λ0(s)ds estimated for the English

team, first from small real data (actually just five matches) and then from simulated data (together 22
matches with different championship participants). Naturally, as simulated data were generated with the
help of the model evaluated from real cases, the shapes are rather similar. Simultaneously, it is seen how
the width of confidence band decreases with increased amount of data (the plots contain approximated

FIG. 3. Estimates of the cumulated attack rateΛ07(t) for team 7, with approximate 95% confidence bands, above from real data
and below from artificial data.
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95% confidence bands). As regards the defence parameters, for instance, the estimate of the English
team parameter from the same 22 simulated matches wasa7 = 0.4678(±0.2051) (compare it with the
value in Table1).

In the next part of example, we shall show how the dynamic model can be used for the prediction
of match future development conditionally on its actual state. However, let us first present one possible
model generalization.

6. Time-dependent defence parameters

A variant of Cox’s model with time-dependent parameters has been proposed by several authors in
the nineties, an overview can again be found inAndersenet al. (1993). The estimate of variability of
regression parameter is in a standard setting based on a piecewise-constant (i.e. histogram-like) ap-
proximation. The proof of consistency of such an estimation uses the idea that the width of histogram
intervals is adapted properly to the number of data.

In the example presented here, we again preferred a piecewise-constant model of transformed pa-
rametersaj (t) = exp(α j (t)) because it led to a more comfortable (and stable) computations. First, the
time interval(0, T) was divided into several intervals and piecewise-constant estimates ofaj (t) were
obtained. It was repeated several times for different divisions. Finally, for eachj , estimatedaj (t) were
averaged and then smoothed by a Gauss kernel function. Resulting curves for four selected teams are
presented in Fig.4.

FIG. 4. Defence parameters estimated as time varying, for teams 1–4. Constant lines correspond to values of constant parameters
from Table1.
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TABLE 2 Proportions of predicted final results conditioned by the state of
match at time T1

T1 Score Italy–France T1 Score Italy–Portugal
(min) atT1 proportion of results (min) atT1 proportion ofresults
0 0:0 3:5:2 0 0:0 5, 5:4:0, 5
7 0:1 2:5:3 10 0:1 4, 5:4, 5:1

30 0:1 1:4:5 30 0:1 3, 5:5:1, 5
45 0:1 1:3:6 45 0:1 2, 5:5, 5:2
60 0:1 0, 5:3:6, 5 60 0:1 2:5:3
7 1:0 6:3:1 80 0:1 1:4:5

6.1 Prediction conditioned by actual match state

Let us imagine that we have observed a match until a timeT1 and we wish to model its future develop-
ment. Hence, we start to generate two new scoring processes (for both teams) with intensities

λi j (t) = λ0i (t)aj (t)e
βββzi j (t), λ j i (t) = λ0 j (t)ai (t)e

βββzj i (t),

with time running fromT1 to T and with actual states of covariates (they reflect also the state of score).
We considered different timesT1 and different states at this time. For each case, 1000 possible match
continuations were generated. The left side of Table2 displays results of several such examples for the
match Italy–France. In real match, France scored first at 7th min and Italy levelled score at 19th min. The
table shows the rounded proportions of victories, draws and losses from generated 1000 matches (from
the point of view of Italy). We see that while the non-conditioned prediction preferred Italy slightly
(with proportion 3:5:2), the fact that France scored first changed the probabilities and, naturally, the
chance of Italy to level (or even to win) decreased with increasing timeT1. The right part of table shows
similar results for the match between Italy and Portugal (they did not meet during the championship).
Results reflect quite different shapes of attack and defence functions of both teams. In this case, the
model preferred Italy even when the half-time state was 0:1 for Portugal. Note also rather large (more
or less realistic) proportion of draws in both examples.

7. Conclusion

The objective of the present study was to demonstrate advantages of random point process model for the
score development in a sport match. The results show that even a small data study can reveal interesting
patterns of teams characteristics and can be used for the analysis of team performance and then to
appropriate measures. Moreover, the analysis is quite interesting also from the statistical methodology
point of view. Naturally, a reliable analysis and prediction in the framework of a model with many
parameters and several non-parametric components need much larger learning data.

Use of large data set would enable also the testing of model fit, either by statistical procedures
developed for this purpose in the survival analysis field or by comparing predictions with real results.
This is what remains to be done. Nevertheless, as the model generalizes standard Poisson models, we
believe that its predictive ability is at least comparable with others. And, as underlined above, the main
benefit consists, first, in the time-dependent form of model components and, further, in the possibility
of match course prediction, even conditionally on actual match state.
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