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I. Bock and J. Jarušek∗
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1 Introduction and notation

The dynamic contact problems are not frequently solved in the framework of variational
inequalities. For the elastic problems there is only a very limited amount of results
available (cf. [6] and there cited literature). The aim of the present paper is to extend
these results to the nonlinear von Kármán plates in contact with a rigid obstacle. The
presented results also extend the research made for the quasistatic contact problems for
these plates [3] and [4]. The solvability of dynamic contact problems for von Kármán
plates with short and long memory has been proved in [1] and [2], respectively.

The existence of solutions is proved for an approximate penalized problem at first. The
limit process to the original problem is enabled by an L1 estimate of the penalty term and
by the use of the compact imbedding theorem and by a proper use of the interpolation
technique). The idea of the proof is similar to that introduced by K. Maruo in [8].

Let Ω ⊂ R2 be a bounded convex polygonal or C3,1 domain with a boundary Γ
and I ≡ (0, T ) a bounded time interval. The unit outer normal vector is denoted by
n = (n1, n2), τ = (−n2, n1) is the unit tangent vector. The displacement is denoted by
u ≡ (ui). Strain tensor is defined as εij(u) = 1

2
(∂iuj+∂jui+∂iu3∂ju3)−x3∂iju3, i, j = 1, 2,

εi3 ≡ 0, i = 1, 2, 3. Emploing the Einstein summation convention the constitutional law
has the form

σij(u) =
E

1− ν2

(
(1− ν)εij(u) + νδijεkk(u)

)
. (1)

The constants E > 0 and ν ∈
〈
0, 1

2

)
are the Young modulus of elasticity and the Poisson

ratio, respectively. We shall use the abbreviation

b =
h2

12%(1− ν2)
,

where h is the the plate thickness and % is the density of the material. We denote

[u, v] ≡ ∂11u∂22v + ∂22u∂11v − 2∂12u∂12v. (2)
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Here and in the sequel the notation as follows:

∂

∂s
≡ ∂s,

∂2

∂s∂r
≡ ∂sr, ∂i = ∂xi

, i = 1, 2,

v̇ =
∂v

∂t
, v̈ =

∂2v

∂t2
, Q = I ×Ω, S = I × Γ.

is employed.
By W k

p (M) with k ≥ 0 and p ∈ [1,∞] the Sobolev (for a noninteger k the Sobolev-
Slobodetskii) spaces are denoted provided they are defined on a domain or an appropriate
manifold M . By W̊ k

p (M) we denote the spaces with zero traces on ∂M . If p = 2 we use

the notation Hk(M), H̊k
p (M). For the anisotropic spaces W k

p (M) k = (k1, k2) ∈ R2
+, k1 is

related with the time while k2 with the space variables (with the obvious consequences for
p = 2) provided M is a time-space domain. The duals to H̊k(M) are denoted by H−k(M).
By C we denote the space of continuous functions with the appropriate sup–norm. By
H , H̊ we denote the space L∞(I; H2(Ω)), L∞(I; H̊2(Ω)), respectively.

Remark 1.1 In order to apply Lemma 1 from [7] containing the estimate (11) we need
the regularity v ∈ H3(Ω) for a weak solution of the Dirichlet problem

42v = g on Ω, v = ∂nv = 0 on Γ, g ∈ H−1(Ω).

The regularity result for C3,1 domain Ω is due to Theorem 2.2, Chapter 4 from [9]. In the
case of convex polygonal domain we apply Theorem 2.1 from [10]. Via the local rectification
of the boundary (cf [6]) it seems to be possible to extend the validity of the result to Ω in
C2.

2 Contact of a free plate

2.1 Problem formulation and penalization

Neglecting the rotary inertia of the plate we obtain the classical formulation for the
bending function u and the Airy stress function v composed of the system

ü + bE42u− [u, v] = f + g,

u ≥ 0, g ≥ 0, ug = 0,

42v + E[u, u] = 0

 on Q, (3)

the boundary value conditions

u ≥ 0, Σ(u) ≥ 0, uΣ(u) = 0, M (u) = 0, v = 0 and ∂nv = 0 on S, (4)

M (u) = bEM(u),

M(u) = 4u + (1− ν)(2n1n2∂12u− n2
1∂22u− n2

2∂11u);

Σ(u) = bEV (u),

V (u) = ∂n4u + (1− ν)∂τ [(n
2
1 − n2

2)∂12u + n1n2(∂22u− ∂11u)]

and the initial conditions

u(0, ·) = u0 ≥ 0, u̇(0, ·) = u1 on Ω. (5)

For u, y ∈ L2(I; H2(Ω)) we define the following bilinear form

A : (u, y) 7→ b
(
∂kku∂kky + ν(∂11u∂22y + ∂22u∂11y) + 2(1− ν)∂12u∂12y

)
(6)

almost everywhere on Q and introduce a cone C as

C := {y ∈ H ; y ≥ 0}. (7)
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Then the variational formulation of the problem (3–5) has the following form:

Look for {u, v} ∈ C × L2(I; H̊2(Ω)) such that∫
Q

(EA(u, y1 − u) + ü(y1 − u)− [u, v](y1 − u)) dx dt ≥
∫

Q

f(y1 − u) dx dt, (8)∫
Ω

(
4v4y2 + E[u, u]y2

)
dx = 0 ∀ (y1, y2) ∈ C × H̊2(Ω). (9)

We define the bilinear operator Φ : H2(Ω)2 → H̊2(Ω) by means of the variational
equation ∫

Ω

4Φ(u, v)4ϕ dx =

∫
Ω

[u, v]ϕ dx, ϕ ∈ H̊2(Ω). (10)

The equation (10) has a unique solution, because [u, v] ∈ L1(Ω) ↪→ H2(Ω)∗. The well-
defined operator Φ is evidently compact and symmetric. The domain Ω fulfils the assump-
tions enabling to apply Lemma 1 from [7] due to which Φ : H2(Ω)2 → W 2

p (Ω), 2 < p < ∞
and

‖Φ(u, v)‖W 2
p (Ω) ≤ c‖u‖H2(Ω)‖v‖W 1

p (Ω) ∀u ∈ H2(Ω), v ∈ W 1
p (Ω). (11)

With its help we reformulate the system (8,9) into the following variational inequality:

Problem P. We look for u ∈ C such that ü ∈ H ∗, the initial conditions (5) are satisfied
in a certain generalized sense, and the inequality

〈ü, y − u〉0 +

∫
Q

E
(
A(u, y − u) + [u, EΦ(u, u)](y − u)

)
dx dt

≥
∫

Q

f(y − u) dx dt.

(12)

holds for any y ∈ C .

Here 〈·, ·〉0 denotes the duality pairing between H and its dual as a natural extension
extension of the scalar product in L2(Q).

In the sequel we shall prove the existence of solutions to problem P.

For any η > 0 we define the penalized problem which includes the system of equations

ü + bE42u− [u, v] = f + η−1u−,

42v + E[u, u] = 0

}
on Q (13)

with u− = max{0,−u}, the boundary value conditions

Σ(u) = 0, M (u) = 0, v = 0 and ∂nv = 0 on S (14)

and the initial conditions (5). It has the variational formulation:

Look for {u, v} ∈ L∞(I; H2(Ω)) × L2(I; H̊2(Ω)) such that ü ∈ L2(I; (H2(Ω))∗) and the
following system∫

Q

(
üz1 + EA(u, z1)− [u, v] z1 − η−1u−z1

)
dx dt =

∫
Q

fz1 dx dt, (15)∫
Ω

(
4v4z2 + E[u, u])z2 dx = 0 (16)

is satisfied for any (z1, z2) ∈ L2(I; H2(Ω))× H̊2(Ω) and there hold the conditions (5).
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With the help of the operator Φ we get the following reformulation of (15), (16):

Problem Pη.

We look for u ∈ L∞(I,H2(Ω)) such that ü ∈ L2(I; (H2(Ω))∗), the equation∫
Q

(
− üz + EA(u, z) + E[u, Φ(u, u)]z − η−1u−z

)
dx dt

=

∫
Q

fz dx dt,

(17)

holds for any z ∈ L2(I; (H2(Ω)) and the initial conditions (5) remain valid.
We shall verify the existence of a solution to the penalized problem.

Theorem 2.1 Let f ∈ L2(Q), u0 ∈ H2(Ω), and u1 ∈ L2(Ω) Then there exists a solution
u of the problem Pη.

If v = −E0Φ(u, u), then a couple {u, v} is a solution of the problem (15), (16), (5).

Proof. Let us denote by {wi ∈ H2(Ω); i ∈ N} an orthonormal in L2(Ω) basis of H2(Ω).
We construct the Galerkin approximation um of a solution in a form

um(t) =
m∑

i=1

αi(t)wi, αi(t) ∈ R, i = 1, ...,m, m ∈ N,∫
Ω

(
üm(t)wi + EA(um(t), wi)

+ E[um(t), wi]Φ(um, um)(t) )− η−1um(t)−wi

)
dx

=

∫
Ω

f(t)wi dx, i = 1, ...,m,

(18)

um(0) = u0m, u̇m(0) = u1m, u1m → u1 in L2(Ω), and u0m → u0 in H2(Ω) (19)

The system (18) can then be expressed in the form

α̈i = Fi(t, α̇1, ..., α̇m, α1, ..., αm), i = 1, ...,m.

Its right-hand side satisfies the conditions for the local existence of a solution fulfilling
the initial conditions corresponding the functions u0m, u1m. Hence there exists a Galerkin
approximation um(t) defined on some interval Im ≡ [0, tm], 0 < tm < T . After multiplying
the equation (18) by α̇i(t), summing up with respect to i, taking in mind∫

Ω

[u, v]y dx =

∫
Ω

[u, y]v dx (20)

if at least one element of {u, v, y} belongs to H̊2(Ω), cf. [5] and integrating we obtain for
Qm := Im × Ω∫

Qm

1

2
∂t

(
u̇2

m + EA(um, um) +
E

2
(4Φ(um, um))2 + η−1(u−m)2

)
dx dt

=

∫
Q

fu̇m dx dt

(21)

which leads to the estimates
‖u̇m‖2

L∞(I;L2(Ω)) + ‖um‖2
L∞(I;H2(Ω)) + ‖Φ(um, um)‖2

L∞(I;H2(Ω)) + η−1‖u−m‖2
L∞(I;L2(Ω))

≤ c ≡ c(f, u0, u1).
(22)

The validity of this a priori estimate on the time interval Im is obvious. As the right
hand side of such an estimate does not depend on m the prolongation of a solution to the
whole interval I is possible and (22) holds as written. Moreover the estimate (11) implies

‖Φ(um, um)‖L∞(I;W 2
p (Ω)) ≤ cp ≡ cp(f, u0, u1)∀ p > 2. (23)
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The estimate (23) further implies

[um, Φ(um, um)] ∈ L2(I; Lr(Ω)), r =
2p

p + 2
,∥∥[um, Φ(um, um)]

∥∥
L2(I;Lr(Ω))

≤ cr ≡ cr(f, u0, u1).
(24)

From the equation (18) we obtain straightforwardly the estimate

‖üm‖2
L2(I;V ∗

m) ≤ cη, m ∈ N, (25)

where Vm ⊂ H2(Ω) is the linear hull of {wi}m
i=1. We proceed with the convergence of

the Galerkin approximation. Applying the estimates (22-25) and the compact imbedding
theorem we obtain for any p ∈ [1,∞) a subsequence of {um} (denoted again by {um}),
and a function u the convergences

um ⇀∗ u in H ,

u̇m ⇀∗ u̇ in L∞(I; L2(Ω)),

üm ⇀ ü in
(
L2(I; H2(Ω))

)∗
,

um → u in C(I; H1−ε(Ω)) ∩ L∞(I; H2−ε(Ω)) for any ε > 0,

Φ(um, um) → Φ(u, u) in L2(I; H2(Ω)),

Φ(um, um) ⇀∗ Φ(u, u) in L∞(I; W 2
p (Ω))

(26)

Indeed, the first two convergences are obvious and imply

um ⇀ u in H1,2(Q)) ↪→ H1/2+ε′(I; H1−ε′′(Ω)) for ε′ > 0

and 0 < ε′′(ε′) ↘ 0 if ε′ ↘ 0.
(27)

The fourth convergence is a consequence of the convergence in the last space in (27)
and the compact imbedding H1/2+ε′(I; H1−ε′′(Ω)) ↪→ C(I; H1−ε(Ω)) valid for any ε > ε′′.
Clearly 0 < ε can be arbitrarily small again. The rest is a result of the interpolation of
this result with the first convergence.

The fifth convergence is then the consequence of the compactness of the operator
Φ : H2(Ω)×H2(Ω) 7→ H2(Ω). The last convergence follows using (11).

Let µ ∈ N and zµ =
∑µ

i=1 φi(t)wi, φi ∈ D(0, T ), i = 1, ..., µ. We have∫
Ω

(
üm(t)zµ(t) + EA

(
um(t), zµ(t)

)
+ E[um(t), zµ(t)]Φ(um(t), um(t) )− η−1um(t)−zµ(t)

)
dx

=

∫
Ω

f(t)zµ(t) dx ∀ m ≥ µ, t ∈ T.

The convergence process (26) and the property (20) imply that a function u fulfils∫
Q

(
üzµ + EA(u, zµ) + E[u, Φ(u, u)]zµ − η−1u−zµ

)
dx dt =

∫
Q

fz dx dt.

Functions {zµ} form a dense subset of the set L2(I; H2(Ω)), hence a function u fulfils the
identity (17). The initial conditions (5) follow due to (19) and the proof of the existence
of a solution is complete.

It is obvious that the estimates
‖u̇η‖2

L∞(I;L2(Ω)) + ‖uη‖2
L∞(I;H2(Ω))+‖Φ(uη, uη)‖2

L∞(I;W 2
p (Ω)) + η−1‖u−η ‖2

L∞(I;L2(Ω))

≤c ≡ c(f, u0, u1).
(28)

with uη a solution of the penalized problem remain valid. In fact, here c depends on
‖f‖(

L∞(I;L2(Ω))
)∗ . Hence, since L2(Q) is dense in

(
L∞(I; L2(Ω))

)∗
, for f ∈

(
L∞(I; L2(Ω))

)∗
,

there is a sequence {fk} ⊂ L2(Q) such that fk → f in
(
L∞(I; L2(Ω))

)∗
. It is easy to see
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that the solutions uk of the penalized problems with fk satisfy the same convergences as
in (26). Hence for any f ∈

(
L∞(I; L2(Ω))

)∗
the penalized problem posesses a solution.

2.2 The limit process to the original problem

We rewrite the penalized problem (13) into the operator form

üη + B(uη)− η−1u−η = f (29)

with

B : H2(Ω) → H2(Ω)∗, 〈B(v), w〉 = E

∫
Ω

(A(v, w) + [Φ(v, v), v]w) dx, w ∈ H2(Ω)

and the initial conditions (5).
Let us multiply the equation (13) by z = 1. We get

0 ≤
∫

Q

η−1u−η dx dt =

∫
Ω

u̇(
ηT, ·) dx−

∫
Ω

u1 dx−
∫

Q

f dx dt ≤ C, (30)

where C is independent of η (cf. (28)). Since B(uη) takes its estimate in (28) and
L1(Ω) ↪→ L∞(Ω)∗ ↪→ H2(Ω)∗, we get the dual estimate of the accelaration term

‖üη‖H ∗ ≤ C (31)

with C η-independent. Hence there is a sequence ηk ↘ 0 such that for uk ≡ uηk
the

following convergences hold

uk ⇀∗ u in H ,

u̇k ⇀∗ u̇ in L∞(I; L2(Ω)),

ük ⇀∗ ü in H ∗,

uk → u in C(I; H1−ε(Ω)) ∩ L∞(I; H2−ε(Ω)), ε > 0,

Φ(uk, uk) → Φ(u, u) in L2(I,H2(Ω)),

Φ(uk, uk) ⇀∗ Φ(u, u) in L∞(I; W 2
p (Ω)),

η−1
k u−k ⇀∗ g in L∞(Q)∗ ↪→ H ∗,

(32)

where g is the corresponding contact force. The fourth convergence in (32) and the
estimate (30) yield that u ≥ 0 on Q and, in particular

uk → u in L∞(Q). (33)

The last convergence implies g ≥ 0 in the dual sense. Obviously the expression

‖u̇‖L∞(I;L2(Ω)) + ‖u‖L∞(I;H2(Ω)) + ‖Φ(u, u‖L∞(I;W 2
p (Ω)) + ‖ü‖H ∗ (34)

is finite. Moreover, t 7→ u(t) is strongly (I → L2(Ω))-continuous, hence it is weakly (I →
H2(Ω))-continuous. This yields it is strongly (I → H2−ε(Ω))-continuous, in particular
u ∈ C(Q̄). The performed convergences have proved that the limit u satisfies the equation

ü + B(u) = f + g (35)

in the dual sense in (L∞(I; H2(Ω)))∗. To prove 〈g, u〉 = 0 we take in mind that from the
just proved facts 〈g, u〉 = lim

k→+∞
1/ηk 〈u−k , u−k 〉 = 0, because u−k → 0 in L∞(Q) and η−1

k u−k

is bounded in L1(Q). With this fact it is obvious that putting v − u as a test function in
(35) with an arbitrary v ∈ C we get the variational inequlity (12). The initial condition
for u is satisfied in the sense of a weak limit in H2(Ω) while that for u̇ is satisfied in the
sense of the integration by parts.

Hence we have proved the following
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Theorem 2.2 Let the domain Ω be convex polygonal or C3,1 domain in R2. Let u0 belong
to H2(Ω), u1 belong to L2(Ω) and let f be an element of

(
L∞(I; L2(Ω))

)∗
. Then there

exists a solution of Problem (P).

Remark 2.3 The idea of the proof of this theorem was substantially based on the imbed-
ding H2(Ω) into L∞(Ω). It cannot be extended to contact problems of membranes or
bodies.

3 Contact of a clamped plate

In this section we again treat the system (3) with the Dirichlet boundary value condition

u = U, ∂nu = 0 on S. (36)

and the initial condition (5). We assume that U is defined on Q and satisfies

U̇ ∈ L2(I; H2(Ω)), ü ∈ L2(Q), U ≥ U0 on Q, U(0, ·) = u0, and ∂nU = 0 on S. (37)

for a fixed constant U0 > 0. To state the variational formulation of this problem we shall
use the cone

K := {y ∈ H̊ + U ; y ≥ 0}, (38)

where H̊ = L∞(I; H̊2(Ω)). The problem to be solved is

Problem P̃ We look for u ∈ K such that ü ∈ (H̊ )∗, the initial conditions (5) are
satisfied in a certain generalized sense, and

〈ü, y − u〉0 +

∫
Q

E
(
A(u, y − u) + [u, EΦ(u, u)](y − u)

)
dx dt

≥
∫

Q

f(y − u) dx dt.

(39)

holds for any y ∈ K .

As earlier we apply the penalization of the contact condition. The classical formulation
of the penalized problem is (13), (36), and (5). This leads to its variational formulation

Problem P̃η We look for u ∈ L2(I; H̊2(Ω)) + U such that ü ∈ L2(I; (H−2(Ω))), the
equation ∫

Q

(
üz + EA(u, z) + [u, EΦ(u, u)]z − η−1u−z

)
dx dt =

∫
Q

fz dx dt, (40)

holds for any z ∈ L2(I; H̊2(Ω)) and the conditions (5) remain valid.

To derive the a priori estimate for this problem we put z = χt(u̇− U̇) for t ∈ (0, T ] in
(40), where

χt : R → {0, 1}; χt : s 7→

{
1, s ∈ [0, t],

0, elsewhere.

With the assumption (37) it is not difficult to prove the a priori estimates (28).
The existence of solutions to P̃η is again proved via Galerkin approximations. Since all

convergences in (26) remain valid, such existence is proved as earlier. Also the uniqueness
result is analogously derived.

We proceed with the convergence of the penalization method. We write uη for the

solution of P̃η. To get the estimate of the penalty term we put u = uη, z = U − uη in
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(40). We arrive at the estimate

U0

∫
Q

η−1u−η dx dt ≤
∫

Q

η−1u−η (U − uη) dx dt =

+

∫
Q

(
− u̇η(U̇ − u̇η) + EA(uη, U − uη) + +

(
([uη, EΦ(uη, uη)]− f)(U − uη)

)
dx dt

+

∫
Ω

(
u̇η(U − uη)

)
(T, ·) dx.

Applying the a priori estimates (28) we obtain in a same way as in Section 2 the estimate

‖η−1u−η ‖L1(Q) ≤ c(f, u0, u1, U) (41)

We proceed similarly as in the case of a free plate. We obtain from (40), (41) the dual
estimate

‖üη‖(H̊ )∗ ≤ c (42)

with c η−independent. Combining the last estimate with (28) we obtain the convergences

(32) with (H̊ )∗ instead of H ∗. Applying the same approach as in the case of free plate
we are proving that the limit function u is a solution of P̃:

Theorem 3.1 Let the domain Ω be convex polygonal or C3,1 domain in R2. Let u0 belong
to H2(Ω), u1 belong to L2(Ω), f be an element of

(
L∞(I; L2(Ω))

)∗
and let U satisfy the

assumption (37). Then there exists a solution to the problem P̃.

Remark 3.1. The presented method can also prove the solvability of the unilateral dy-
namic contact problem for simply supported von Kármán plates. Different combinations
of the presented boundary value conditions are admissible, too.

Remark 3.2. The nonuniqueness of solutions of the dynamic contact problem, due to
the lack of information about the quality of the response of the system to the contact, is
a well-known fact (cf. [6], Chapter 4 and the references cited there). The only hope is to
get the uniqueness in the class of elastic reactions (energy conserving solutions), because
the penalty method is well assumed to lead to such kind of solution.
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