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Abstract

In this note we construct a first example of a closed 3-form of G̃2-type on S3 × S4. We
prove that S3 × S4 does not admit a homogeneous 3-form of G̃2-type. Thus our example is
a first example of a closed 3-form of G̃2-type on a compact 7-manifold which is not stably
homogeneous.
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1 Introduction.

Let Λk(V n)∗ be the space of k-linear anti-symmetric forms on a given linear space V n. For each
ω ∈ Λk(V n)∗ we denote by Iω the linear map

Iω : V n → Λk−1(V n)∗, x 7→ (xcω) := ω(x, · · · ).

A k-form ω is called multi-symplectic, if Iω is a monomorphism. Two k-forms are equivalent, if
they are in the same orbit of the action of Gl(V n) on Λk(V n)∗.

The classification of multi-symplectic 3-forms on R7 has been done by Bures and Vanzura [1].
There are together 8 types of these forms, among them there are two stable forms of G2-type and
G̃2-type. More precisely the orbits of these stable 3-forms under the action of Gl(V 7) are open
sets in Λ3(V 7)∗ and their corresponding isotropy groups are the compact group G2 and its dual
non-compact group G̃2.

There are many known results on 7-manifolds admitting a (closed) 3-form of G2-type, see e.g.
[2],[3], [6],[7], [9], [10], [11]. Manifolds which admit a (closed) 3-form of G̃2-type are less known.
In particular, known examples of closed 3-forms of G̃2-type on compact 7-manifolds up to now are
homogeneous examples or obtaining from those by adding a small closed 3-form. We call such a
closed 3-form of G̃2-type stably homogeneous.

In this note we construct a first example of a closed 3-form ω3 of G̃2-type on a manifold X7 = S3×S4

by identifyingX7 with a submanifold of the group SU(3) provided with the Cartan 3-form (Theorem
2.1.) In section 3 we prove that the codimension of the action of the full automorphism group of
(X7, ω3) on X7 is 1 (Theorem 3.1), thus (X7, ω3) is not homogeneous. Moreover we prove that

∗MSC: 53C10, 53C42

1

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-20 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic



X7 admits no homogeneous G̃2-structure (Proposition 3.2). So our example is a G̃2-structure on
S3 × S4 with maximal symmetrie.

This note also contains an appendix which gives a necessary and sufficient condition for a closed
7-manifold to admit a G̃2-structure. As a corollary we obtain many examples of open 7-manifolds
admitting a closed 3-form of G̃2-type.

2 New example of a closed 3-form of G̃2-type on S3×S4.

On each semi-simple Lie group G there exists a natural bi-invariant 3-form φ3 which is defined at
the Lie algebra g = TeG as follows

φ3(X,Y, Z) =< X, [Y,Z] >,

where <,> denotes the Killing form on g. This 3-form φ3 is also called the Cartan 3-form.

We claim that the Cartan 3-form ω3 is multi-symplectic. To show the injectivity of the linear map
Iφ3 we notice that if X ∈ ker Iφ3 , then

< X, [Y,Z] >= 0 for all Y, Z ∈ g.

But this condition is incompatible with the semi-simplicity of g.

Let us consider the group G = SU(3). For each 1 ≤ i ≤ j ≤ 3 let gij(g) be the complex function on
SU(3) induced from the standard unitary representation ρ of SU(3) on C3: gij(g) :=< ρ(g)◦ei, ēj >.
Here {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} is a unitary basis of C3. Let us denote by X7 the
co-dimension 1 subset in SU(3) which is defined by the equation Im(g11(g)) = 0.

2.1. Theorem. The subset X7 is diffeomorphic to the manifold S3×S4. Moreover X7 is provided
with a closed 3-form of G̃2-type which is the restriction of φ3 to X7.

Proof. Let SU(2) be the subgroup in SU(3) consisting of all g ∈ SU(3) such that ρ(g) ◦ e1 = e1.
We denote by π the natural projection

π : SU(3)→ SU(3)/SU(2).

We identify SU(3)/SU(2) with the sphere S5 ⊂ C3 using the standard representation ρ of SU(3)
on C3. Namely we set

ρ̃(g · SU(2)) := ρ(g) ◦ e1.

We denote by Π the composition ρ̃ ◦ π : SU(3) → SU(3)/SU(2) → S5. Let S4 ⊂ S5 be the
geodesic sphere which consists of points v ∈ S5 such that Ime1(v) = 0. Here {ei, i = 1, 2, 3} are
the complex 1-forms on C3 which are dual to {ei}. The pre-image Π−1(S4) consists of all g ∈ SU(3)
such that

Ime1(ρ(g) ◦ e1) = 0.

⇐⇒ Im (g11) = 0.
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So X7 is SU(2)-fibration over S4. But this fibration is the restriction of the SU(2)-fibration
Π−1(D5) over the half-sphere D5 to the boundary ∂D5 = S4. Hence X7 is a trivial SU(2)-fibration.
This proves the first statement of Theorem 2.2.

Let us denote by SO(2)1 the orthogonal group of the real subspace R2 ⊂ C3 such that R2 is the
span of e1 and e2 over R. Clearly SO(2)1 is a subgroup of SU(3).

We denote by mL(g) (resp. mR(g)) the left multiplication (resp. the right multiplication) by an
element g ∈ SU(3).

2.2. Lemma. X7 is invariant under the action of mL(SU(2)) ·mR(SU(2)). For each v ∈ S4 there
exist an element α ∈ SO(2)1 and an element g ∈ SU(2) such that Π(g · α) = v. Consequently for
any point x ∈ X7 there are g1, g2 ∈ SU(2) and α ∈ SO(2)1 such that

(2.2.1) x = g1 · α · g2,

Proof. Using the identification that X7 = Π−1(S4) we note that the orbits of mR(SU(2))-action
on X7 are the fibers Π−1(v). Now the first statement follows by straightforward calculations. Let
v = (cosα, z2, z3) ∈ S4, where zi ∈ C. We choose α ∈ SO(2)1 so that

ρ(α) ◦ e1 = (cosα, sinα) ∈ R2.

Clearly α is defined by v uniquely up to sign ±. We set

w := (sinα, 0) ∈ C2 =< e2, e3 >⊗C .

We notice that
|z2|2 + |z3|2 = sin2 α.

Since SU(2) acts transitively on the sphere S3 of radius | sinα| in C2 =< e2, e3 >⊗C, there exists
an element g ∈ SU(2) such that ρ(g) ◦ w = (z2, z3). Clearly

Π(g · α) = v.

This proves the second statement. The last statement of Lemma 2.2 follows from the second
statement and the fact that X7 = Π−1(S4) 2

Continuation of the proof of the second part of Theorem 2.1. Let us write here a canonical expression
of a 3-form ω3 of G̃2-type (see e.g. [2], [1])

(2.3) ω3 = θ1 ∧ θ2 ∧ θ3 + α1 ∧ θ1 + α2 ∧ θ2 + α3 ∧ θ3.

Here αi are 2-forms on V 7 which can be written as

α1 = y1 ∧ y2 + y3 ∧ y4, α2 = y1 ∧ y3 − y2 ∧ y4, α3 = y1 ∧ y4 + y2 ∧ y3

and (θ1, θ2, θ3, y1, y2, y3, y4) is an oriented basis of (V 7)∗.

Using Lemma 2.2 we reduce the proof of the second statement of Theorem 2.1 to verifying that the
value of φ3

|X7 at any point α ∈ SO(2)1 ⊂ X7 is a 3-form of G̃2-type. First we shall compute that
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value at point e ∈ SO(2)1 ⊂ X7 and then we shall compute that value at any point α ∈ SO(2)1.

Step 1. We shall use the Killing metric to identify the Lie algebra su(3) with its co-algebra g.
In what follows we shall not distinguish co-vectors and vectors, poly-vector and exterior forms on
su(3). Clearly we have

TeX
7 = {v ∈ su(3) : Img11(v) = 0}.

Now we identify gl(C3) with C3 ⊗ (C3)∗ and we denote by eij the element of gl(C3) of the form
ei ⊗ (ej)∗. Let δi be the 1-forms in TeX

7 which are defined as follows:

δ1 =
i√
2

(e22 − e33), δ2 =
1√
2

(e23 − e32), δ3 =
i√
2

(e23 + e32).

Furthermore, ωi are 2-forms on TeX
7 which have the following expressions:

2ω1 = −(e12 − e21) ∧ i(e12 + e21) + (e13 − e31) ∧ i(e13 + e31),

2ω2 = −(e12 − e21) ∧ (e13 − e31)− i(e12 + e21) ∧ i(e13 + e31),

2ω3 = −(e12 − e21) ∧ i(e13 + e31) + i(e12 + e21) ∧ (e13 − e31).

2.4. Lemma. The restriction of the Cartan 3-form to X7 at the point e is

(2.4.1) φ3
|TeX7 =

√
2δ1 ∧ δ2 ∧ δ3 +

1√
2
ω1 ∧ δ1 +

1√
2
ω2 ∧ δ2 +

1√
2
ω3 ∧ δ3,

Proof. We set

f1 :=
e12 − e21√

2
, f2 :=

i(e12 + e21)√
2

f3 :=
e13 − e31√

2
, f4 :=

i(e13 + e31)√
2

Then (δ1, δ2, δ3, f1, f2, f3, f4) form an ortho-normal basis of TeX7 w.r.t. to the restriction of the
Killing metric to X7. Next we observe that (δ1, δ2, δ3) form a su(2)-algebra. Furthermore we
have

(2.5.1) [δ2, δ3] =
√

2δ1, [δ1, δ2] =
√

2δ3, [δ1, δ3] = −
√

2δ2.

(2.5.2) [f1, f2] = i(e11 − e22), [f1; f3] = − 1√
2
δ2, [f1, f4] = − 1√

2δ3
.

(2.5.3) [f2, f3] =
1√
2
δ3, [f2, f4] = − 1√

2
δ2.

(2.5.4) [f3, f4] = i(e11 − e33).
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Using (2.5.1) - (2.5.4) we compute all the values φ3(X1, X2, X3) easily, where either (X1, X2) are
(δi, δj) or (X1, X2) are (fi, fj) for some (i, j) and X3 is one of the basic vectors (δi, fi). In this way
we get the equality (2.4.1). 2

Now compare (2.4.1) with (2.3) we observe that these two 3-forms are Gl(R7) equivalent (e.g. by
rescaling δi with factor (1/2)). This proves that φ3

|TeX7 is a 3-form of G̃2-type. This completes the
first step.

Step 2. Using step 1 it suffices to show that

(2.6) DmL(α−1)(TαX7) = TeX
7

for any α ∈ SO(2)1 ⊂ X7, α 6= e.

Since X7 ⊃ α · SU(2), we have

(2.7) su(2) ⊂ DmL(α−1)(TαX7).

Denote by SO(3) the standard orthogonal group of R3 ⊂ C3. Since α ∈ SO(3) ⊂ X7, we have
DmL(α−1)(TαSO(3)) ⊂ DmL(α−1)(TαX7). In particular we have

(2.8) < (e12 − e21), (e13 − e31) >⊗R⊂ DmL(α−1)(TαX7).

Since SU(2) · α ⊂ X7, we have

(2.9) Ad(α−1)su(2) ⊂ DmL(α−1)(TαX7).

Using the formula

Ad(α−1) = exp(−ad(t · e12 − e21√
2

)), t 6≡ 0

we get immediately from (2.7), (2.8), (2.9) the following inclusion

< i(e12 + e21), i(e13 + e31) >⊗R⊂ DmL(α−1)(TαX7))

which together with (2.7), (2.8) imply the desired equality (2.6).

This completes the proof of Theorem 2.1. 2

3 The orbits of the action of the automorphism group of
(X7, ω3) on X7.

Denote by Aut(X7, ω3) the full automorphism group of the manifold X7 equipped by the 3-form
ω3 constructed in Theorem 2.1. In this section we shall prove the following

3.1. Theorem. The co-dimension of the Aut(X7, ω3)-action on X7 is equal to 1.
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Lemma 2.2 implies that the group SU(2) × SU(2) is a subgroup of the automorphism group
Aut(X7, ω3). Further taking into account (2.2.1) we note that the dimension of a generic orbit
of the Aut(X7, ω3)-action on X7 is at least 6. Hence Theorem 3.1 is a corollary of the following
Proposition, which implies that our manifold (X7, ω3) is not stably homogeneous.

3.2. Proposition. Let G be a Lie group which acts transitively on X7. Then there does not exist
a G-invariant 3-form of G̃2-type on X7.

Proof of Proposition 3.2. Since S3 × S4 is connected, we can assume that G is connected, because
the identity component of G acts also transitively on S3 × S4. Denote by Ḡ the simply connected
covering of G. Then Ḡ acts transitively and almost effectively on X7. We shall prove the following

3.3. Proposition. Let Xn be a compact connected space with π1(Xn) = 0 = π2(Xn). Suppose that
Ḡ is a connected and simply connected group which acts transitively Xn. Let Ḡs,u be a maximal
compact group of Ḡ. Then Ḡs,u acts transitively on Xn.

Proof. We denote by H̄ the isotropy of the action of Ḡ on Xn. Since Xn is simply connected, the
subgroup H̄ is connected. From the homotopy exact sequence

π2(Xn) = 0→ π1(H̄)→ π1(Ḡ) = 0

we obtain that H̄is also simply connected. Using the Levi-Maltsev decomposition theorem we
write

Ḡ = Ḡs × V k, H̄ = H̄s × V r,

where Ḡs is a semisimple Lie subgroup of Ḡ, V k is a solvable normal subgroup of Ḡ and H̄s is
semisimple Lie subgroup of H̄ and V r is a solvable normal subgroup of H̄. Moreover we can
assume that H̄s is a subgroup of Ḡs after applying an inner automorphism group of Ḡ. Using the
fbration

V r → Ḡ/H̄ → Ḡ/H̄s

we conclude that the quotient space Ḡ/H̄s is homotopic to Ḡ/H̄. Further using the fibration
V k → Ḡ/H̄s → Ḡs/H̄s we conclude that Ḡs/H̄s has the same homotopy type of X7.

Denote by hs the Lie algebra of H̄s and by hs,u the maximal compact Lie sub-algebra of the semi-
simple Lie algebra hs. The Lie subalgebra hs,u is the Lie algebra of a maximal compact Lie group
H̄s,u of H̄s. We can also assume that hs,u is a subalgebra of a maximal compact Lie subalgebra
gs,u of gs. Denote by Ḡs,u the maximal compact subgroup of Ḡs whose Lie algebra is gs,u. Using
the Iwasawa decomposition we conclude that the quotient space Ḡs,u/H̄s,u has the same homotopy
type of Xn. Since Ḡs,u and H̄s,u are compact and using

Hi+1(Xn,Z) = 0, if i ≥ n, Hn(Xn,Z) = Z,

we obtain that dim Ḡs,u = dim H̄s,u+n. Thus to show that the action of Ḡs,u on Xn is transitively,
it suffces to prove

(3.4) gs,u ∩ h = hs,u,
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where h is the Lie algebra of H̄. We have the Iwasawa and Levi-Maltsev decomposition

h = hs,u + hf + r,

where r is the radical of h which is the Lie algebra of V r. Suppose that v ∈ ((gs,u ∩ h) \ hs,u).
Since hs,u ∈ gs,u we can assume that v ∈ (hf + r) after adding some vector w in hs,u, if necessary.
Let v = vf + vr be the decomposition of v into the components in hf and r. Assume that vf 6= 0.
Then the the closure of the 1-parameter subgroup exp tv in H̄ is noncompact, since its projection to
the quotient group (H̄/V r) = H̄s is non-compact. Since H̄ is a closed subgroup of Ḡ, we conclude
that the closure of exp tv in Ḡ is non-compact. On the other hand, the subgroup exp tv lies in the
compact subgroup Ḡs,u. Thus we arrive at a contradiction. Hence vf = 0, so v = vr. If vr 6= 0,
then the closure of the subgroup exp tv in H̄ lies in V r and it is also non-compact. Hence vr also
vanishes. This proves (3.4) and completes the proof of Proposition 3.3. 2

Continuation of the proof of Proposition 3.2. Using Proposition 3.2 it suffces to consider only the
transitive action of the compact, connected and simply connected group Ḡs,u on X7 = S3 × S4.
Next we can assume that this action is almost effective, since otherwise the quotient Ḡs,u/N acts
effectively and transitively on X7, where N is the kernel of the action. The group Ḡs,u/N is
compact, connected, and semi-simple. Its compact universal covering acts almost effectively on
X7.

Next we observe that the isotropy group of the action of Ḡs,u on X7 is H̄s,u, since the isotropy
group of this action must be connected. From now on we shall assume that Ḡs,u = H̄s,u admits a
Ḡs,u-invariant 3-form ω3 of G̃2-type on X7.

Let e = e · {H} be a reference point on X7. Denote by ρ the isotropy representation of hs,u on
Te(Ḡ/H̄) = R7. Since hs,u is semi-simple, the representation ρ is faithful, i.e. the kernel of ρ is
empty. Clearly ρ(hs,u) must be a sub-algebra of the Lie algebra g̃2 of G̃2, in particular the rank of
hs,u is at most 2.

3.5. Lemma. We have hs,u = su(2)⊕ su(2).

Proof. Since ρ is faithful, we identify hs,u with its image in g̃2. Clearly the algebra hs,u is also a
subalgebra of a maximal compact Lie subalgebra in g̃2, so hs,u is either su(2) or su(2)×su(2).

Suppose that hs,u = su(2). Then dim Ḡs,u = 10 and therefore Ḡs,u must be a product of classical
Lie groups. In particular we know that π4(Ḡs,u) is a finite group (see e.g. [8, §25.4].)

We also have π3(H̄s,u) = Z. Further we observe that the inclusion π3(H̄s,u)→ π3(Ḡs,u) is injective,
since the subgroup H̄s,u realizes a non-trivial element in H3(Ḡs,u,R). Now let us consider the
homotopy exact sequence

(3.6) π4(Ḡ)→ π4(X7) = Z2 ⊕ Z→ 0 = ker(π3(H̄)→ π3(Ḡ)).

The exact sequence (3.6) implies that π4(Ḡ) contains a subgroup Z̄ which is impossible. Hence hs,u
cannot be su(2). 2

3.7. Lemma. We have gs,u = su(2)⊕ so(5).
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Proof. Since dim gs,u = 6 + 7 = 13, it is easy to see that gs,u must be the product of classical
compact Lie groups. Furthermore we notice that, since the dimension of Ḡs,u/H̄s,u is odd, the rank
of Ḡs,u must be strictly greater than the rank of H̄s,u. Let g1

s,u be a simple component of gs,u.
Then the rank of g1

s,u is less than or equal to 2, otherwise the dimension of gs,u is greater than or
equal to 15. Thus gs,u must be a sum of simple components of rank 1 or 2. Next, by dimension
reason, gs,u cannot be a sum of only components of rank 1 and it cannot contain more than one
simple component of rank 2. Looking at the table of simple Lie algebras we arrive at Lemma 3.7.
2

3.8. Lemma. The subalgebra hs,u lies in the component so(5) of gs,u.

Proof. We notice that Ḡs,u has the same homotopy type as Ḡ and hence it is simply connected.
Thus Ḡs,u is the product SU(2)× Spin(5). Analogously H̄s,u must be SU(2)× SU(2). Denote by
e1 the composition of the embedding e : hs,u → gs,u with the projection p : gs,u → su(2). To prove
Lemma 3.8 it suffces to show that the kernel of e1 is equal to hs,u.

Suppose that the kernel of e1 is not equal to hs,u. Then this kernel must be one of the components
su(2) of hs,u since e1 can not be injective. Denote this kernel by su(2)2 and let su(2)1 be the other
component of hs,u. The isomorphism e1 : su(2)1 → su(2) lifts to an isomorphism denoted by ẽ1
from the corresponding component SU(2)1 of H̄s,u to the component SU(2) of Ḡs,u. Denote by ẽ2
the homomorphism from SU(2)1 × SU(2)2 to Spin(5). Since ẽ1(SU(2)2) = Id, the restriction of
ẽ2 to SU(2)2 is an embedding. We shall construct a map

I : Ḡs,u/H̄s,u → Spin(5)/ẽ2(SU(2)2)

and show that I is a homeomorphism. For each point (a · b) · {H̄s,u} ∈ Ḡs,u/H̄s,u, where a ∈ SU(2)
and b ∈ Spin(5) we set

(3.9) I((a, b) · {H̄s,u}) = (b · [ẽ2(ẽ−1
1 (a))]−1) · {ẽ2(SU(2)2)} ∈ Spin(5)/ẽ2(SU(2)2).

The map (3.9) is well-defined, since for any (θ1, θ2) ∈ SU(2)1 × SU(2)2 we have

I(a · ẽ1(θ1), b · ẽ2(θ1, θ2))) · {H̄s,u}) = (b · ẽ2(θ1, θ2) · [ẽ2(ẽ−1
1 (a · ẽ1(θ1))]−1) · {ẽ2(SU(2)2)}

= (b · ẽ2(θ1, θ2) · [ẽ2(ẽ−1
1 (a) · θ1)]−1) · {ẽ2(SU(2)2)}

= (b · ẽ2(θ1, θ2) · [ẽ2(θ1)]−1 · [ẽ2(ẽ−1
1 (a))]−1) · {ẽ2(SU(2)2)}

= (b · ẽ2(θ2) · [ẽ2(ẽ−1
1 (a))]−1) · {ẽ2(SU(2)2)}

= (b · [ẽ2(ẽ−1
1 (a))]−1 · ẽ2(θ2)) · {ẽ2(SU(2)2)} = I((a, b) · {H̄s,u}).

Substituting a = 1 into (3.9) we obtain that I is surjective. Now suppose that I((a; b) · {H̄s,u}) =
I((a′, b′) · {Hs,u}). Then

b′ · [ẽ2(ẽ−1
1 (a′))]−1 = b · [ẽ2(ẽ−1

1 (a))]−1 · ẽ2(θ2) = b · ẽ2(θ2) · [ẽ2(ẽ−1
1 (a))]−1,

for some θ2 ∈ SU(2)2. Hence

(3.10) b′ = b · ẽ2(θ2) · [ẽ2(ẽ−1
1 (a))]−1 · [ẽ2(ẽ−1

1 (a′))] = b · ẽ2(θ2) · ẽ2[(ẽ−1
1 (a−1)) · ẽ−1

1 (a′))].
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Set θ1 = ẽ−1(a−1 · a′). Then a′ = a · ẽ1(θ1), and we get from (3.10)

b′ = b · ẽ2(θ2) · ẽ2(θ1) = b · ẽ2(θ1) · ẽ2(θ2).

Hence I must be injective. Thus we have proved that I is a homeomorphism. Hence π4(Spin(5)/ẽ2(SU(2)2) =
Z. Now let us consider the homotopy exact sequence

π4(Spin(5))
j→ π4(Spin(5)/ẽ2(SU(2)2))→ π3(ẽ2(SU(2)2) i→ π3(Spin(5)).

Clearly i is injective. Hence j must be surjective. But π4(Spin(5)) is a finite group. Therefore
π4(Spin(5)/ẽ2(SU(2)2) is also a finite group. Thus we arrive at a contradiction, since π4(X7)
contains an infinite subgroup. This proves Lemma 3.8. 2

Completion of the proof of Proposition 3.2. From Lemma 3.8 it follows that the restriction of the
isotropy action of hs,u on each component su(2)i contains the sum of three trivial representations.
Now look at the table of the irreducible 7-dimensional representation π1 of g2 (see e.g. [13, table
1]) we know that the weights of this representation are ±εi, 0. Here i = 1, 3 and εi − εj ±εi are
the roots of g2. The complexification of the maximal compact algebra so(4) in g2 is the direct
sum so(4)⊗C =< hε1 , eε1 , e−ε1 >⊗C ⊕ < hε2−ε3 , eε2−ε3 , eε3−ε2 >⊗C. Hence the restriction of the
π1 to sl(2) =< hε1 , eε1 , e−ε1 >⊗C is the sume of two irreducible components of dimension 2 and
the adjoint representation of dimension 3. Thus it has no trivial component. We arrive at a
contradiction. This proves Proposition 3.2. 2

4 Appendix. A necessary and sufficient condition for a closed
7-manifold to admit a 3-form of G̃2-type.

A.1. Theorem. Suppose that M7 is a compact 7-manifold. Then M7 admits a 3-form of G̃2-type,
if and only if M7 is orientable and spinnable. Equivalently the first and the second Stiefel-Whitney
classes of M7 vanish.

Proof. If M7 admits a G̃2-structure, it admits also a G2-structure, since a maximal compact group
of G̃2 is also a compact subgroup of the group G2. Applying the Gray criterion for the existence
of a G2-structure [9] we obtain the “only if” statement. Now let us prove the “if ” part. By a
result of Dupont [4] any compact orientable 7-manifold admits three linearly independent vector
fields. Hence M7 admits an SO(4)-structure. In particular M7 admits an SO(3)×SO(4)-structure.
Denote by Spin(3, 4) the Lie subgroup in Spin(7,C) whose Lie algebra is so(3, 4). It is known (see
e.g. [2 Theorem5]) that π1(Spin(3, 4)) = Z2. Denote by (SO(3)×SO(4))∗ the connected subgroup
in Spin(3, 4) whose Lie algebra is so(3) × so(4). Clearly (SO(3)× SO(4))∗ is a maximal compact
Lie subgroup of Spin(3, 4). Taking into account the isomorphism Spin(7)/(SO(3) × SO(4))∗ =
SO(7)/(SO(3) × SO(4)) we conclude that M7 admits an (SO(3) × SO(4))∗-structure and hence
a Spin(3, 4)-structure. Now we shall prove that the Spin(3, 4)-structure on M7 is reduced to a
G̃2-structure. It is easy to see that the quotient Spin(3, 4)/G̃2 is the pseudo-sphere S7(4, 4) in
the space Re0 ×R7 of the spinor representation of Spin(3, 4). This pseudo-sphere bundle over M7

admits a section e0 . Hence M7 admits a G̃2-structure. 2
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Using Theorem A.1 and the Gromov h-principle (see e.g. [5]) for open 3-forms of G̃2-type we can
get a lot examples of open 7-manifolds admitting a closed 3-form of G̃2-type.
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