
RAMADANOV CONJECTURE AND LINE BUNDLES OVER
COMPACT HERMITIAN SYMMETRIC SPACES

MIROSLAV ENGLIŠ AND GENKAI ZHANG

Abstract. We compute the Szegö kernels of the unit circle bundles of ho-
mogeneous negative line bundles over a compact Hermitian symmetric space.
We prove that their logarithmic terms vanish in all cases and, further, that the
circle bundles are not diffeomorphic to the unit sphere in Cn for Grassman-
nian manifolds of higher ranks. In particular they provide an infinite family
of smoothly bounded strictly pseudo-convex domains on complex manifolds
for which the log terms in the Fefferman expansion of the Szegö kernel vanish
and which are not diffeomorphic to the sphere. The analogous results for the
Bergman kernel are also obtained.

1. Introduction

Let Ω be a strongly pseudo-convex bounded domain in Cn with smooth boundary.
The Bergman kernel has an expansion near the diagonal in terms of the defining
function of the domain, with the leading term behaving like that of the Bergman
kernel of the unit ball; see [3] and [8]. Similar result holds also for the Szegö
kernel. However, there is in general also a logarithmic term in the expansion of
the Bergman and Szegö kernel, and the study of the log term is of considerable
interest for analytic and geometric motivations. Among other things there is the
Ramadanov conjecture [25] which asserts that the answer to the following question
is affirmative.

Question 1. Let Ω be a strongly pseudo-convex bounded domain in Cn with
smooth boundary. Suppose that the Bergman kernel has no logarithmic term.
Is the domain biholomorphic to the unit ball in Cn?

For certain special cases, such as domains in C2, domains with transversal or
rotational symmetries, etc., this has been proved to be true; see [5], [12], [13], [7],
[24] and [17], and [1] for a real-variable version.

There is also an obvious analogue of the conjecture for the Szegö, instead of
Bergman, kernel, and one may also consider smoothly bounded strictly pseudocon-
vex domains in complex manifolds. In this setup, in particular, the following special
case of the Ramadanov conjecture was formulated in [22].

Question 2. Let S(L∗) be the disc bundle of a negative line bundle over a simply-
connected Kähler manifold M . Suppose that the Szegö kernel of S(L∗) has no log
term. Is the circle bundle diffeomorphic to the sphere?

In this paper, we will consider the generating positive line bundle over a com-
pact Hermitian symmetric space M and compute the corresponding Szegö kernel.
As a consequence we will see that the answer to the last question is negative. In fact,
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the simplest counterexamples are the powers L∗ = L∗m, m > 1, of the tautological
bundle L∗ over the complex projective space CPn: then the Szegö kernel of S(L∗m)
has no log term but S(L∗m) is the lens space S2n+1/Zm which is not diffeomor-
phic to S2n+1 for m > 1. For compact symmetric spaces of higher rank, we even
get counterexamples which are not diffeomorphic to S2n+1/Zm for any m ≥ 1.
Our results thus indicate that some topological conditions are probably needed to
have an affirmative answer to Question 2.1

The analogous assertions for the Bergman kernel are also established. Here the
simplest counterexample is the unit disc bundle D(L∗) of the above-mentioned
tautological bundle L∗ over CPn, n ≥ 1, whose Bergman kernel has no log term
but D(L∗) is not biholomorphic to the unit ball of Cn+1 (even though its boundary
S(L∗) is diffeomorphic to S2n+1).

We would like to thank Kengo Hirachi, Zhiqin Lu, Henrik Seppänen, Robert
Stanton and Jan-Alve Svensson for several helpful and illuminating discussions.

2. Compact Hermitian symmetric spaces

We briefly recall some necessary facts on compact Hermitian symmetric spaces;
see e.g. [15].

Let g be a real simple Lie algebra of Hermitian type and let g = k+p be a Cartan
decomposition of g, where k has one-dimensional center RZ. Let

(1) gC = p− + kC + p+,

where p± is the eigenspace of ad(Z) with eigenvalues ±i.
Let GC be the simply connected Lie group with Lie algebra gC, and let G, K,

P± be the analytic subgroups of GC with Lie algebras g, k, and p±. Now P+KCP−

is a dense subset of GC. For g ∈ GC, z ∈ p+ we let g · z and K(g : z) be the p+ and
KC components of g exp(z), respectively. Namely,

(2) g exp(z) = exp(g · z)K(g : z)p−

for some p− ∈ P−. Under the above action the G-orbit G · 0 = G/K of z = 0 ∈ p+

is a bounded domain in p+, which is the so-called Harish-Chandra realization of
G/K.

Let G∗ be the analytic subgroup of GC with Lie algebra g∗ = k + ip. Then M =
G∗/K is a compact Hermitian symmetric space. Furthermore M = GC/KCP−,
and under the identification of p+ with P+, the space p+ is imbedded in M as a
dense subset. (In fact, the complement of p+ in M is a complex submanifold of
smaller dimension.)

Denote K(g) = K(g : 0). From (2) we have

(3) g = p+K(g)p−,

for g ∈ P+KCP−.
For z, w ∈ p+ we let K(z, w̄) be the KC-part of exp(−w̄) exp(z) as in (3), namely

K(z, w̄) = K(exp(−w̄) exp(z)). The Bergman operator B(z, w) is defined by

B(z, w) = adp+ K(z, w̄).

There exists an irreducible polynomial h(z, w), called the Jordan canonical polyno-
mial, and an integer p, the genus of G/K (see (4) below), such that det B(z, w) =
h(z, w)p; see e.g. [21, §4.15–4.17 and §7.4].

1We remark that there exist unbounded pseudoconvex domains in C2 with smooth boundary,
as well as bounded pseudoconvex domains in C2 with rough boundary, for which the Ramadanov
conjecture for the Szegö kernel is known to fail; cf. Remark 1.2 in [16].
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We normalize the K-invariant inner product (·, ·) on p+ by

(z, w) = − 1
2p

tr
(
Adp+(z)Adp+(w̄)

)

where as before

(4) p = (r − 1)a + 2 + b

is the genus of M . Note that the complex dimension of M is n = r + r(r−1)
2 a + rb.

We let ω the G∗-invariant Kähler form on M normalized so that the volume of M
with respect to ωn is 1. In terms of the local coordinates z =

∑
j zjej ∈ p+ (where

{ej} is any orthonormal basis of p+), viewing ωn as a measure on p+, we have

(5) ω(z)n = C0
1

h(z,−z)p
dm(z),

where dm stands for the Lebesgue measure on Cn. Further, the complement of p+

in M has zero measure with respect to ωn.
Finally we recall the Gindikin Gamma function and a version of the generalized

Pochhammer symbol defined by

ΓM (c) =
r∏

j=1

Γ(c− a

2
(j − 1)),

((c))s =
ΓM (c + s)

ΓM (c)
,

where r is the rank of M .

3. Szegö and Bergman kernels for the disc bundle

Let L be the homogeneous line bundle over M = G∗/K induced by the rep-
resentation k 7→ (det(Adk))1/p, k ∈ K. (There exists a single-valued branch of
the root of the determinant function so that this indeed defines a one-dimensional
representation of K.) The bundle Lp is then the top exterior product ∧nT (1,0) of
the holomorphic tangent bundle over G∗/K. Using the local coordinates p+ 3 z →
exp(iz) ∈ G∗/K, we have that the fiber metric in Lp is given by

‖∂1 ∧ · · · ∧ ∂n‖2z = h(z,−z)−p.

Denoting by e(z) a local holomorphic section of L so that e(z)p = ∂1 ∧ · · · ∧ ∂n

we see that the metric on L is given by

‖e(z)‖2z = h(z,−z)−1.

Let D = D(L∗) = {ξ ∈ L∗; ‖ξ‖ < 1} and S(L∗) = ∂D be the unit disc and the
unit circle bundle of the dual bundle L∗ of L, respectively. A local defining function
for S(L∗) is given by

ρ(z, λe∗(z)) = |λ|2h(z,−z)− 1, λ ∈ C, z ∈ p+,

where e∗(z) is the local section of L∗ dual to e(z). The circle bundle S(L∗) is a
CR-manifold, with the CR-structure defined by ρ, and the disc bundle D is strictly
pseudoconvex, namely the Hessian ∂∂̄ρ is positive definite on the holomorphic tan-
gent space of S(L∗).

The manifold S(L∗) is actually a compact homogeneous space of G∗ × S1, with
S1 = {eiθ} acting on L∗ fiberwise. Let π be the projection S(L∗) → M . We let dσ
be the measure

(6) dσ = π∗(ωn) ∧ dθ

2π



4 MIROSLAV ENGLIŠ AND GENKAI ZHANG

which is also the unique G∗ × S1-invariant probability measure on S(L∗). Here ω
is the Kähler form given above.

Let ν be a non-negative integer and consider the space Hν of all holomorphic
functions φ on L∗ satisfying

φ(eiθξ) = eνiθφ(ξ), ξ ∈ L∗, θ ∈ R.

Note that owing to the holomorphy of f this implies that even

φ(λξ) = λνφ(ξ), ξ ∈ L∗, λ ∈ C.

As M is compact, any such function is, in particular, automatically square-integrable
over S(L∗) as well as over D.

Identifying p+ with a dense open subset of M of full measure as described in
the previous section, and using the local trivializing section e∗(z) as before, the
correspondence p+ × C 3 (z, λ) ←→ ξ = (z, λe∗(z)) ∈ L∗ sets up a bijection
between a dense open subset of D of full measure and the Hartogs domain

Ω = {(z, λ) ∈ p+ × C : |λ|2h(z,−z) < 1}.
The functions φ in Hν then correspond to square-integrable (with respect to (5)
and the Lebesgue measure in λ) holomorphic functions φ̃ on Ω satisfying φ̃(z, λ) =
λνf(z) for some entire function f on p+. 2 The norm of φ in L2(dσ) thus equals to

‖f‖2ν =
∫

p+
|f(z)|2h(z,−z)−νω(z)n.

The space A2
ν(p+) of all entire functions f on p+ for which this norm is finite carries

a representation of G∗:

g ∈ G∗ : f(z) 7→ f(g−1z)Jg−1(z)−ν/p,

where Jg−1 is the complex Jacobian and p is the genus defined in (4).
The function h(z,−z) on p+ thus transforms according to

h(g(z),−g(z))ν =
h(z,−z)νh(w,−w)ν

|h(z,−w)ν |2
= h(z,−z)ν |Jg−1(z)|2ν/p,

for g ∈ G∗ such that g(0) = w.

Lemma 3.1. The reproducing kernel for the space A2
ν(p+) is given by

((ν + p− n
r ))n

r

((p− n
r ))n

r

h(z,−w)ν .

Proof. It follows from the transformation rule of h(z,−w) under G∗ (see e.g. [26])
that the reproducing kernel is

cνh(z,−w)ν .

We evaluate the constant, which is given by the norm square of the function 1,

c−1
ν =

∫

M

‖eν‖2ωn = C0

∫

p+
h(z,−z)−νh(z,−z)−p dm(z).

2It is clear that any function inHν must be of this form when restricted to the above local chart.
Conversely, any square integrable holomorphic function on Ω as above automatically extends to a
holomorphic function on all of D. Indeed, since the complement of p+ in M is a proper complex
submanifold (see e.g. the discussion in §2 in Berezin [4]), making a suitable change of coordinates
it is enough to show that any square-integrable holomorphic function on the punctured polydisc
Dn−1 × (D \ {0}) extends to a holomorphic function on the whole Dn. This “L2-version of the
removable singularity theorem” is then easily proved by looking at the Laurent expansion in zn,
cf. the proof for n = 1 in [2].
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In terms of the polar coordinates (see [10]) we have

c−1
ν = C0C

∫

(R+)r

r∏

j=1

(1 + t2j )
−ν−p

r∏

j=1

t1+2b
j

r∏

1≤i<j≤r

|t2i − t2j |a dt1 . . . dtr,

with some constant C independent of ν. Changing variables to t2j = xj(1− xj)−1,
j = 1, . . . , r, we find that

c−1
ν =

C0C

2r

∫

(0,1)r

r∏

j=1

(1− xj)ν
r∏

j=1

xb
j

r∏

1≤i<j≤r

|xi − xj |a dx1 . . . dxr,

which in turn can be expressed in terms of the Gindikin Gamma function [10], viz.,

c−1
ν = C ′

ΓM (ν + p− n
r )

ΓM (ν + p)
=

C ′

((ν + p− n
r ))n

r

,

with some constant C ′ independent of ν. Taking ν = 0 and recalling that ωn was
normalized to have total mass one, i.e. c0 = 1, gives C ′ = ((p− n

r ))n
r
. This completes

the proof. ¤

Denote by
ρ(x, α; y, β) = αβ̄h(x,−y)− 1

the sesqui-holomorphic extension of the defining function ρ.

Theorem 3.2. The Szegö kernel of the disc bundle D is given, in local coordinates
αe∗(z) 7→ (z, α) ∈ p+ × C, |α|2h(z,−z) < 1, by

(7) K(x, α; y, β) =
∞∑

ν=0

((ν + p− n
r ))n

r

((p− n
r ))n

r

h(x,−y)ν(αβ̄)ν .

It has an expansion in terms of the defining function ρ as

(8) K(x, α; y, β) = c0ρ(x, α; y, β)−n−1 + c1ρ(x, α; y, β)−n + · · ·+ cnρ(x, α; y, β)−1

where c0 = (−1)n+1 n!
((p− n

r ))n
r

and cj are some real constants.

Proof. It is clear that the space Hν , ν = 0, 1, 2, . . . , are pairwise orthogonal sub-
spaces of L2(dσ), and that their closed span is the Hardy space H2(D). (In fact,
H2(D) = ⊕∞ν=0Hν is just the Fourier decomposition of H2(D) into irreducible com-
ponents with respect to the action of S1.) Consequently, the Szegö kernel — the re-
producing kernel of H2(D) — is the sum of the reproducing kernels of the spaces
Hν over all ν, which gives (7). Since ((ν+p− n

r ))n
r

is always a monic polynomial in ν

of degree n — hence, a linear combination of the expressions (ν+1)...(ν+k)
k! = (k+1)ν

ν! ,
k = 0, 1, 2, . . . , n — and

∞∑
ν=0

(k + 1)ν

ν!
h(x,−y)ν (αβ̄)ν = [−ρ(x, α; y, β)]−k−1,

the formula (8) follows. ¤

Recall that the Bergman space of a complex manifold of dimension n is in general
defined as the space of all holomorphic (n, 0)-forms f such that

(9) (−i)n

∫
f ∧ f̄ < +∞.

The Bergman kernel is then, by definition, the (n, n)-form
∑
m

fm ∧ f̄m,
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where {fm} is any orthonormal basis of the Bergman space, with respect to the
inner product 〈f, g〉 obtained by replacing f̄ in (9) by ḡ. The sum is independent
of the choice of the basis, etc.; see e.g. [19]. Of course, if the manifold is just a
domain in Cn, then by the identification

(10) f(z) dz1 ∧ · · · ∧ dzn ←→ f(z)

of (n, 0)-forms with functions one recovers the usual definition of the Bergman space
and Bergman kernel of domains in Cn.

We have now a complete analogue of Theorem 3.2 also for the Bergman kernel.

Theorem 3.3. The Bergman kernel of the disc bundle D is given, in local coordi-
nates αe∗(z) 7→ (z, α) ∈ p+ × C, |α|2h(z,−z) < 1, by

K(x, α; y, β) = K∗(x, α; y, β) dx1 ∧ · · · ∧ dxn ∧ dα ∧ dȳ1 ∧ · · · ∧ dȳn ∧ dβ̄,

where

(11) K∗(x, α; y, β) =
1
π

∞∑
ν=0

(ν + 1)
((ν + p− n

r ))n
r

((p− n
r ))n

r

h(x,−y)ν+1(αβ̄)ν .

It has an expansion in terms of the defining function ρ as

(12)
K∗(x, α; y, β)

h(x,−y)
= c0ρ(x, α; y, β)−n−2 + · · ·+ cn+1ρ(x, α; y, β)−1

where c0 = (−1)n+2 1
π

(n + 1)!
((p− n

r ))n
r

and cj are some real constants.

Proof. In the local coordinates, we can still identify the (n, 0)-forms with functions
via (10), and thus the Bergman space on D can be identified with the space of
all functions holomorphic and square-integrable on Ω, i.e. with the usual Bergman
space on the Hartogs domain Ω ⊂ Cn+1. 3 Using again the Fourier decomposition
with respect to the S1-action, together with the fact that now the norm of a function
from Hν , ν = 0, 1, 2, . . . , equals

‖φ‖2L2(Ω) =
∫

p+

∫

|λ|2<1/h(z,−z)

|λ|2ν |f(z)|2 dλ ∧ dλ̄ ∧ ω(z)n

=
π

ν + 1

∫

p+
|f(z)|2 h(z,−z)−ν−1 ω(z)n,

and, consequently, the reproducing kernel of Hν with respect to this norm equals

ν + 1
π

((ν + 1 + p− n
r ))n

r

((p− n
r ))n

r

h(z,−w)ν+1,

we get the first formula (11) in the theorem. The second formula (12) follows from
it in the same way as in Theorem 3.2. ¤

With trivial modifications, the last two theorems extend also to the unit circle
bundles S(L∗µ) and the corresponding unit disc bundles Dµ = D(L∗µ) of the higher
powers L∗µ of L∗, µ = 0, 1, 2, . . . (one just needs to replace ν by νµ everywhere in
the proofs.)

Theorem 3.4. The Szegö kernel of the disc bundle Dµ is given, in local coordinates
αe∗(z) 7→ (z, α) ∈ p+ × C, |α|2h(z,−z)µ < 1, by

K(x, α; y, β) =
∞∑

ν=0

((µν + p− n
r ))n

r

((p− n
r ))n

r

h(x,−y)µν(αβ̄)ν .

3Again, any such (n, 0)-form automatically extends to be holomorphic even on the whole D,
i.e. also on the complement of Ω in D; see the footnote before Lemma 3.1 on page 4.
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It has an expansion in terms of the sesqui-holomorphically extended defining func-
tion ρ(x, α; y, β) = αβ̄h(x,−y)µ − 1 as

K(x, α; y, β) = c0ρ(x, α; y, β)−n−1 + c1ρ(x, α; y, β)−n + · · ·+ cnρ(x, α; y, β)−1

where c0 = (−1)n+1 n!µn

((p− n
r ))n

r

and cj are some real constants.

Theorem 3.5. The Bergman kernel of the disc bundle Dµ is given, in local coor-
dinates αe∗(z) 7→ (z, α) ∈ p+ × C, |α|2h(z,−z)µ < 1, by

K(x, α; y, β) = K∗(x, α; y, β) dx1 ∧ · · · ∧ dxn ∧ dα ∧ dȳ1 ∧ · · · ∧ dȳn ∧ dβ̄,

where

K∗(x, α; y, β) =
1
π

∞∑
ν=0

(ν + 1)
((µν + p− n

r ))n
r

((p− n
r ))n

r

h(x,−y)µν+1(αβ̄)ν .

It has an expansion in terms of the sesqui-holomorphically extended defining func-
tion ρ(x, α; y, β) = αβ̄h(x,−y)µ − 1 as

(13)
K∗(x, α; y, β)

h(x,−y)
= c0ρ(x, α; y, β)−n−2 + · · ·+ cn+1ρ(x, α; y, β)−1

where c0 = (−1)n+2 1
π

(n + 1)!µn

((p− n
r ))n

r

and cj are some real constants.

The case of µ = p is of special interest, since in that case the G∗ × S1-invariant
probability measure (6) on S(L∗µ) coincides with the surface measure used to get
a holomorphically invariant Szegö kernel, namely

σ ∧ dρ = J [ρ]1/(n+2) dV,

where dV denotes the volume element in p+ × C and J [ρ] stands for the Monge-
Ampére determinant

J [ρ] = (−1)n+1 det
[

ρ ∂ρ
∂̄ρ ∂∂̄ρ

]
;

see e.g. [18]. Indeed, a short computation shows that σ ∧ dρ equals h(z,−z)µ−p dV
(up to an immaterial constant factor), while J [ρ] = µnh(z,−z)µ−p; so they coincide
when µ = p. Thus for µ = p Theorem 3.5 concerns the invariant Szegö kernel
occurring in the theory of holomorphic invariants.

The last four theorems yield abundant examples of smoothly bounded strictly
pseudoconvex domains in complex manifolds for which the Szegö kernel as well as
the Bergman kernel contain no log-term in their boundary singularity. From the
point of view of the Ramadanov conjecture, it remains to verify that these domains
are not biholomorphic to the ball. Since by Fefferman’s 1974 result [11] any such
biholomorphism extends smoothly to the boundaries, it is enough to show that the
circle bundle S(L∗µ) is not diffeomorphic to the unit sphere S2n+1.

Recall that the simplest examples of compact Hermitian symmetric spaces are
the Grassmann manifolds U(l)/U(k)×U(l−k), 1 ≤ k ≤ l−k. (They are the compact
duals to the Cartan domains Ik,l−k — the unit balls SU(k, l−k)/S(U(k)×U(l−k))
of complex k × (l− k) matrices.) For k = 1, the Grassmannians M = U(l)/U(1)×
U(l−1) are just the complex projective spaces M = CPn, n = l−1, and then the co-
sphere bundle S(L∗) actually is CR-equivalent to the sphere S2n+1 = U(l)/U(l−1):
the bundle L is the hyperplane bundle, L∗ is the tautological bundle, and the map-
ping from the sphere S2n+1 to S(L∗) is given by z 7→ (Cz, z). Similarly, the cosphere
bundle S(L∗m) is CR-equivalent to the lens space S2n+1/Zm, the isomorphism now
being given by the mapping z 7→ (Cz,⊗mz) from the sphere S2n+1 which induces
a diffeomorphism from S2n+1/Zm onto S(L∗m) (see e.g. [20, p. 542]).



8 MIROSLAV ENGLIŠ AND GENKAI ZHANG

From Theorems 3.2–3.5 we thus arrive at the following counterexamples to the
manifold version of the Ramadanov conjecture (Question 2).

Corollary 3.6. Let M = CPn be the complex projective n-space, n ≥ 1, and L the
positive line bundle as defined in the beginning of this section (namely, L is the hy-
perplane bundle, i.e. the dual of the tautological bundle). Then the log-term vanishes
in the Szegö kernel of the circle bundles S(L∗µ), and S(L∗µ) is not diffeomorphic
to the sphere S2n+1 if µ > 1.

Proof. The only thing we need to prove is that S(L∗µ) ∼= S2n+1/Zµ is not diffeomor-
phic to S2n+1 ≡ S2n+1/Z1 for µ > 1. However, this is immediate for instance from
the cohomology groups (see e.g. [6, Example 18.5] or [14, Example 2.43, p. 144])

(14) Hj(S2n+1/Zµ,Z) =





Z, j = 0, 2n + 1,

Zµ, j = 1, 3, . . . , 2n− 1,

0 otherwise,

since the cohomology rings are diffeomorphic invariants. ¤

It is not difficult to see that for Grassmannians of higher rank, we even get
counterexamples which are not diffeomorphic to any lens space S2n+1/Zm.

Corollary 3.7. Let M = U(l)/U(k)×U(l−k) (1 < k ≤ l−k) be the Grassmannian
of higher rank k > 1 and complex dimension n = k(l−k). Let L be the positive line
bundle as defined in the beginning of this section. (Namely, L is the determinant
bundle of the hyperplane bundle.) Then the log-term vanishes in the Szegö kernel
of the circle bundles S(L∗µ), µ ≥ 1, and S(L∗µ) is not diffeomorphic to any lens
space S2n+1/Zm.

Proof. We use the Gysin exact sequence [23, Theorem 12.2] [14, p. 437 ff.] of the
circle bundle E := S(L∗µ) over M (all cohomology groups are over R):

· · · → H2j−1(E) → H2j−2(M) → H2j(M) → H2j(E) → · · · .

If E were diffeomorphic to S2n+1/Zm, then by (14) we would have

Hj(E) =

{
R, j = 0, 2n + 1,

0 otherwise.

From the Gysin sequence it would thus follow that

(15) H2j−1(M) = 0, H2j−2(M) ∼= H2j(M), j = 1, . . . , n.

On the other hand, it is known that the Poincaré series of the cohomology ring
H∗(M) is given by (see e.g. [6, Chapter IV, Proposition 23.1])

(1− t2) · · · (1− t2l)
(1− t2) · · · (1− t2k)(1− t2) · · · (1− t2(l−k))

.

Thus (15) can happen only for k = 1. ¤

The lowest-dimensional counterexample to the Ramadanov conjecture for the
Szegö kernel of circle bundles, namely Question 2, supplied by Corollary 3.6 thus
occurs for the circle bundles S(L∗m), m > 1, of powers of the tautological bundle
over the Gauss sphere CP 1 (so that S(L∗m) has real dimension 3), while that
supplied by Corollary 3.7 — i.e. not diffeomorphic to the lens spaces — for the
Grassmannian with k = l − k = 2 (i.e. with S(L∗) of real dimension 9).

Finally, we also have the corresponding assertions for the Bergman, instead of
the Szegö, kernel.
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Corollary 3.8. Let M = U(l)/U(k)×U(l−k) (1 ≤ k ≤ l−k) be the Grassmannian
of rank k ≥ 1 and complex dimension n = k(l − k). Let L be the positive line
bundle as defined in the beginning of this section. Then the log-term vanishes in
the Bergman kernel of the corresponding disc bundles Dµ, µ ≥ 1, and Dµ is not
biholomorphic to the unit ball Bn+1 of Cn+1.

Proof. That Dµ is not biholomorphic to Bn+1 if k > 1 or µ > 1 follows from the
last two corollaries since its boundary ∂Dµ = S(L∗µ) is then not diffeomorphic to
∂Bn+1 = S2n+1. We claim that Dµ is still not biholomorphic to Bn+1 even if k =
µ = 1, i.e. for L∗ the tautological line bundle over M = CPn (even though S(L∗)
then is diffeomorphic to S2n+1). Indeed, a short computation using (13) shows
that the zero section of D(L∗) is then a totally geodesic submanifold with respect
to the Bergman metric; since any biholomorphism is automatically an isometry
with respect to Bergman metrics, it would follow that the image of the zero section
is a compact submanifold of the unit ball which is totally geodesic with respect to
the Bergman metric. However, no such submanifold can exist, since every geodesic
in the ball with respect to the Bergman metric reaches the boundary (the geodesics
through the origin are just straight lines, and the ball is homogeneous). Thus D(L∗)
cannot be biholomorphic to the ball. (This is in apparent contrast with the situation
for domains in Cn, where by the recent theorem of Chern and Ji [9], any smoothly-
bounded simply connected domain whose boundary is locally spherical must be
biholomorphic to the ball.) This completes the proof. ¤

In particular, for n = µ = 1 the disk bundle D over the Gauss sphere CP 1 pro-
vides a two-dimensional counterexample to the manifold version of the Ramadanov
conjecture for the Bergman kernel (Question 1).

In view of the above results, it seems somewhat natural to pose the following
modified version of the Ramadanov conjecture.

Question 3. Suppose that the Szegö or Bergman kernel of a domain in a complex
manifold has no log term in its boundary singularity. Is the domain then always
biholomorphic to the unit disc bundle D(L∗) for some positive line bundle L over
a compact Hermitian symmetric space M?

We conclude by remarking that there is a well-known intimate relationship be-
tween functions on the dual disc bundle D ⊂ L∗ and sections of the tensor powers
Lν of the original line bundle L. Namely, let Lν , ν = 0, 1, 2, . . . , stand for the space
of all functions f on L∗ satisfying

f(eiθξ) = eνiθf(ξ), ξ ∈ L∗, θ ∈ R.

Then the natural mapping s 7→ s̃,

s̃(ξ) := 〈s, ξ⊗ν〉, ξ ∈ L∗,

sets up a bijection between functions s̃ ∈ Lν and sections s of Lν ; further, s is
holomorphic if and only if s̃ is (i.e. if and only if s̃ belongs to the space Hν).
In this way, some of the results in this paper can be recast in the language of
reproducing kernels of Bergman spaces of sections of the powers Lν of the line
bundle L. We omit the details.
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