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Abstract

We assume thatΩt is a domain inR3, arbitrarily (but continuously) varying for0 ≤ t ≤
T . We impose no conditions on smoothness or shape ofΩt. We prove the global in time
existence of a weak solution of the Navier–Stokes equation with Dirichlet’s homogeneous or
inhomogeneous boundary condition inQ[0,T ) := {(x, t); 0 ≤ t ≤ T, x ∈ Ωt}. The solution
satisfies the energy inequality and is weakly continuous in dependence on time in a certain
sense. As particular examples, we consider flows around rotating bodies and around a body
striking to a rigid wall.

AMS Subject Classification: Primary: 35 Q 30; secondary: 76 D 03, 76 D 05
Keywords:Navier–Stokes equations

1 Motivation and introduction

The global (in time) existence of a weak solution to the Navier–Stokes equation in a fixed domain
Ω ⊂ R3 belongs to classical fundamental results of the qualitative theory of the Navier–Stokes
equation. (See e.g. J. Leray 1934 [18], E. Hopf 1952 [15], M. Shinbrot 1970 [20], O. A. La-
dyzhenskaya 1969 [17], J. L. Lions 1969 [19], R. Temam 1977 [27] and G. P. Galdi 2000 [9].)
The weak solution simulates a flow of a viscous incompressible fluid in domainΩ. Since the
fluid can also flow in a domain whose boundaries are not rigid, particularly around moving ob-
jects, a natural generalization is to study the weak solution in a time varying domain. The first
work on this theme was published in 1970 by H. Fujita and N. Sauer [7]. The authors consider
a variable domainΩt whose boundary consists of a finite number of simple closed surfaces of
the classC3 at each timet ∈ [0, T ]. The surfaces can smoothly vary in dependence on time so
that the distance of any two of the surfaces is never less thanδ0 > 0. H. Fujita and N. Sauer
proved the existence of a weak solution to the Navier–Stokes equation in the space–time cylinder
{(x, t); 0 < t < T, x ∈ Ωt}.

There have appeared a series of works studying flows in certain time–varying domains in the
last years in literature. The papers which we have in mind in this paragraph concern the motion
of one or more bodies, occupying a closed regionBt at timet, in a fluid filling a domainO. The
fluid and the bodies are treated as an interconnected system and the position of the bodies in the
fluid is thus not apriori known. While the motion of the fluid is governed by the Navier–Stokes
equation and the equation of continuity, the motion of the bodies is described by equations that
involve forces and torques with which the fluid acts on the bodies. The weak solvability of such
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a problem, provided the bodies do not touch each other or they do not strike to the boundary, was
proved by B. Desjardins and M. J. Esteban 1999 [4], 2000 [5], K. H. Hoffmann V. N. Starovoitov
1999 [13] (the 2D case), C. Conca, J. San Martı́n and M. Tucsnak 2000 [3] and M. D. Gunzburger,
H. C. Lee, G. Seregin 2000 [12]. The analogous result, without the assumption on the lack of
collisions, was proved by J. San Martı́n, V. N. Starovoitov and M. Tucsnak 2002 [21] (the 2D
case), K. H. Hoffmann, V. N. Starovoitov 2000 [14] (motion of a “small” ball in a fluid filling a
“large ball”) and E. Feireisl 2003 [6]. (The case of a 3D bounded domainΩ. The author explains
that there are more possibilities how the solution can be continued after an eventual collision and
he uses the simple contact condition which requires that once two bodies touch one another, they
remain stuck together forever.) The non–uniqueness of a weak solution in the case of a collision of
a body with the boundary was shown by V. N. Starovoitov in 2005 [23] (the 2D case). The strong
solvability of the problem was proved, on a time interval up to eventual collisions, by T. Takahashi
2003 [24] and T. Takahashi and M. Tucsnak in 2004 [26] (both papers treat the 2D case). The
local (in time) existence of a strong solution in the 3D case was shown by T. Takahashi in 2003
[25]. The author also proved the global existence of a strong solution, as well as an asymptotic
stability result, for small data and at the absence of collisions.

Other papers treat the motion of the system bodies–fluid under the assumption that the bodies
produce certain velocity profile on the surface and they consequently move in the fluid due to this
profile. (The bodies are therefore called the “self–propelled bodies”.) The survey of related results
is given by G. P. Galdi 2002 in [10].

In this paper, we assume thatΩt is a time–varying domain, whose changes and deformations
are prescribed, and we study the motion of the fluid inΩt in a given time interval(0, T ). Ωt can
have an arbitrary variable shape and smoothness, we only assume that its changes depend contin-
uously on time. The Dirichlet boundary condition (homogeneous or inhomogeneous) for velocity
is modelled by means of a given functiona, simulating the velocity on the boundary. Function
a is required to have certain properties (see conditions (i)–(iii) in Section 2). The conditions on
existence of appropriate functiona in fact represent the only restriction on the shape and motion
of domainΩt, nevertheless we show in Sections 6 and 7 that they are satisfied in two concrete ex-
amples: a flow around a family of rotating bodies or a flow around a body striking to a wall. Here
we also derive conditions on the shape of the body and on the speed of the strike which enable the
existence of a weak solution. The paper thus provides a generalization of the existence theorem
from [7]. The part concerned with the flow around the rotating bodies (Section 6) generalizes the
existence result of W. Borchers 1992 [1]. The sufficient conditions obtained in Section 7 (the col-
lision of the body with the wall) represent a complement to some deductions of V. N. Starovoitov
2003 [22], who derived a series of necessary (however not sufficient) conditions for the existence
of a divergence–free flow with properties of a weak solution to the Navier–Stokes equation, in
terms of the velocity and shape of a rigid body striking to a fixed boundary.

As to the techniques used in this paper, it is based on the construction of Rothe approxima-
tions. This method was already applied to the Navier–Stokes equation e.g. by J. L. Lions in [19]
and M. Shinbrot in [20], however in a fixed spatial domainΩ with a certain smoothness. The dif-
ficulties, arising from the fact that our domain is time–variable and of an arbitrary shape, appear
especially in the part where we treat the limit transition in a nonlinear term and we therefore need
a piece of information on a strong convergence of a sequence of approximations in an appropriate
norm. The standard compactness argument based on the Lions–Aubin lemma (see J. L. Lions [19],
R. Temam [27]) cannot be used in a usual fashion. A similar problem was solved by D. Bucur,
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E. Feireisl,Š. Něcasov́a and J. Wolf in [2] in connection with a limit of the Navier–Stokes system
in a domain with rough boundaries. Here the authors apply a relatively deep information on a
“local” pressure developed by J. Wolf in [28]. Our approach uses a different techniques: we prove
the strong convergence of local (in space and time) Helmholtz projections of the approximations,
which turns out to be sufficient for the limit transition. We show that the weak solution is in
some sense weakly continuous in dependence on time and it satisfies an energy–type inequality in
Section 5. We point some open problems.

We suppose thatT > 0 andΩt is a time–varying domain inR3 (for 0 ≤ t ≤ T ), satisfying the
following Assumptions 1 and 2:

Assumption 1 (on domainΩt). ∀ t ∈ [0, T ] : Ωt is a non–empty domain inR3 such thatR3 =
Ωt∪Γt∪Ωt

c whereΩt
c is a non–empty open set inR3, Ωt∩Ωt

c = ∅ and Γt is a common boundary
of Ωt and Ωt

c.

We shall also need an assumption on continuity ofΩt andΓt in dependence ont. Therefore we
define

d3

(
Ωt1 , Ωt2

)
:= sup

x∈Ωt1
dist3

(
x; Ωt2

)
, d3

(
Ωt2 , Ωt1

)
:= sup

x∈Ωt2
dist3

(
x; Ωt1

)
,

d̂3

(
Ωt1 , Ωt2

)
:= max

{
d
(
Ωt1 , Ωt2

)
; d
(
Ωt2 , Ωt1

)}
.

The subscript3 indicates that the distances are measured inR
3 and the arguments of̂d3 are also

sets inR3. If the arguments are sets inR3×[0, T ] then we use the subscript4. Now the assumption
on continuity reads:

Assumption 2 (on continuity ofΩt and Γt). We suppose that̂d3

(
Ωt1 , Ωt2

)
andd̂3

(
Γt1 , Γt2

)
(as

functions of the two variablest1 andt2) are continuous in[0, T ]2.

Space–time cylindersQI ,QcI and their boundary. If I is an interval in[0, T ] then we denote

QI :=
{

(x, t) ∈ R3 × I; x ∈ Ωt
}
, QcI :=

{
(x, t) ∈ R3 × I; x ∈ Ωt

c

}
,

ΓI :=
{

(x, t) ∈ R3 × I; x ∈ Γt
}
.

Using Assumptions 1 and 2, one can verify thatR3 × [0, T ) = Q[0,T ) ∪ Γ[0,T ) ∪ Qc[0,T ) where

Q[0,T ) andQc[0,T ) are open disjoint sets inR3 × [0, T ) andΓ[0,T ) is their common boundary in

R
3 × [0, T ).

The initial–boundary value problem and treatment of the boundary condition. The purpose
of this paper is to prove the existence of a weak solution of the problem

∂tv − ν∆v + (v · ∇)v +∇p = g in Q(0,T ), (1.1)

div v = 0 in Q(0,T ), (1.2)

v = a in Γ(0,T ), (1.3)

v(0) = v0 in Ω0. (1.4)

Herev is the velocity of the fluid,p is the pressure,g denotes the external specific body force,
v0 is the initial velocity andν is the kinematic coefficient of viscosity. The density of the fluid
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is supposed to be equal to one. The Navier–Stokes equation (1.1) expresses the conservation of
momentum in a moving fluid. Equation (1.2) is the condition of incompressibility. The boundary
condition (1.3) expresses the assumption that the velocityv takes a prescribed valuea on the
boundary ofΩt.

Usually, in papers on problems like (1.1)–(1.4) with a non–homogeneous boundary condition
of the type (1.3), the authors assume thata is at first given on the boundary, they extenda appro-
priately to the interior and they search for the solutionv in the formv = a+ u whereu is a new
unknown function. The advantage of this approach is thatu satisfies the homogeneous condition
u = 0 on the boundary. On the other hand, the disadvantage is that in order to construct the exten-
sion ofa, one needs some rate of smoothness of the boundary (for example that it is lipschitzian),
which we wish to avoid in this paper. This is why we prefer another approach: we assume from
the beginning thata is a given function inR3 × (0, T ) such that

a = a∞ + a0 (1.5)

wherea∞ is a constant vector field inR3 (playing the role of velocity in infinity) anda0 satisfies
certain conditions which will be formulated in Assumption 3 in the next section.

We further look for the velocityv in the formv = a+ u ≡ a∞ + a0 + u where

∂tu− ν∆u+ (u · ∇)a0 +
(
(a∞ + a0) · ∇

)
u+ (u · ∇)u+∇p = f in Q(0,T ), (1.6)

divu = 0 in Q(0,T ), (1.7)

u = 0 in Γ(0,T ), (1.8)

u(0) = u0 in Ω0, (1.9)

f := g − ∂ta0 + ν∆a0 −
(
(a∞ + a0) · ∇

)
a0. (1.10)

2 Basic notation and definitions

We shall use the following function spaces and notation:
◦ (. , .)2;R3 is the scalar product inL2(R3) or inL2(R3)3.

◦ ‖ . ‖q;R3 denotes the norm inLq(R3) or inLq(R3)3 or inLq(R3)9.

◦ ‖ . ‖k,2;R3 is the norm inW k,2(R3) or inW k,2(R3)3 (for k = 0, 1, . . . ).

◦ C∞0,σ(R3) is the linear space of infinitely differentiable divergence–free vector functions inR
3

that have a compact support.

◦ L2
σ(R3) denotes the completion ofC∞0,σ(R3) in the norm‖ . ‖2:R3 .

◦ W 1,2
0,σ (R3) (respectivelŷW 1,2

0,σ (R3)) denotes the completion ofC∞0,σ(R3) in the norm‖ . ‖1,2;R3

(respectively‖∇ . ‖2:R3).

◦ The spacesL2
σ(Ωt),W 1,2

0,σ (Ωt) or Ŵ 1,2
0,σ (Ωt) are defined by analogy, as completions ofC∞0,σ(Ωt)

in the norms‖ . ‖2: Ωt , ‖ . ‖1,2; Ωt or ‖∇ . ‖2: Ωt .

◦ W−1,2
0,σ (R3) denotes the dual to the spaceW 1,2

0,σ (R3). The duality betweenW−1,2
0,σ (R3) and

W 1,2
0,σ (R3) is denoted by〈 . , . 〉R3 . The norm inW−1,2

0,σ (R3) is denoted by‖ . ‖−1,2;R3 .
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◦ If a function is defined in a setD ⊂ R3 then the superscript “+” denotes the same function,
extended by zero toR3

rD so that its domain becomesR3.

Now we can formulate conditions that we impose on functiona0:

Assumption 3 (on functiona0). We suppose that

(i) a0 ∈ L2(0, T ; Ŵ 1,2
0,σ (R3)),

(ii) ∂ta
0 ∈ L1(0, T ; L2

σ(R3))⊕ L2(0, T ; W−1,2
0,σ (R3)),

(iii) a0 ∈ Lr(0, T ; Ls(R3)3) for somer, s such that3 < s ≤ r ≤ +∞,
2
r

+
3
s
≤ 1.

More on function f . Let us now return to functionf defined by (1.10). It is natural to assume
thatg ∈ L1(0, T ; L2

σ(R3)) ⊕ L2(0, T ; W−1,2
0,σ (R3)). It means thatg = gI + gII , wheregI ∈

L1(0, T ; L2
σ(R3)) andgII ∈ L2(0, T ; W−1,2

0,σ (R3)). Thus, ifz ∈W 1,2
0,σ (R3) then∣∣〈g, z〉R3

∣∣ ≤ ∣∣(gI , z)2:R3

∣∣+
∣∣〈gII , z〉R3

∣∣
≤ ‖gI‖2:R3 ‖z‖2:R3 + ‖gII‖−1,2;R3

(
‖z‖22:R3 + ‖∇z‖22:R3

)1/2
≤

(
‖gI‖2:R3 + ‖gII‖−1,2;R3

)
‖z‖2:R3 + ‖gII‖−1,2;R3 ‖∇z‖2:R3 .

Furthermore, conditions (i) and (ii) guarantee that∂ta
0 and∆a0 belong to the direct sumL1(0, T ;

L2
σ(R3))⊕ L2(0, T ; W−1,2

0,σ (R3)) as well. The term(a∞ · ∇)a0 satisfies∣∣((a∞ · ∇)a0, z
)

2:R3

∣∣ ≤ |a∞| ‖∇a0‖2:R3 ‖z‖2:R3

for z ∈ L2(R3)3. Finally, the term(a0 · ∇)a0 satisfies

∣∣((a0 · ∇)a0, z
)

2:R3

∣∣ =
∣∣∣∣∫
R3

(a0 · ∇)a0 · z dx
∣∣∣∣ ≤ ‖a0‖s;R3 ‖∇a0‖2:R3 ‖z‖ 2s

s−2
;R3

≤ ‖a0‖s;R3 ‖∇a0‖2:R3 ‖z‖
3
s

6;R3 ‖z‖
s−3
s

2:R3

≤
( 2√

3

) 3
s ‖a0‖s;R3 ‖∇a0‖2:R3 ‖∇z‖

3
s

2:R3 ‖z‖
s−3
s

2:R3

≤
( 2√

3

) 3
s 3
s
‖∇a0‖2:R3 ‖∇z‖2:R3 +

( 2√
3

) 3
s s− 3

s
‖∇a0‖2:R3 ‖a0‖

s
s−3

s;R3 ‖z‖2:R3

for z ∈ W 1,2
0 (R3)3. (We have used the Sobolev inequality – see e.g. [8], p. 31 – and the Young

inequality – see e.g. [17], p. 10.) While‖∇a0‖2:R3 ∈ L2(0, T ) due to condition (i) of Assump-

tion 3, the product‖∇a0‖2:R3 ‖a0‖s/(s−3)
s;R3 belongs toL1(0, T ) due to conditions (i) and (iii).

Summarizing these results, we observe that

(iv) f(t) ∈W−1,2
0,σ (R3) for a.a.t ∈ (0, T ) and∣∣〈f(t), z

〉
R3

∣∣ ≤ ζ0(t) ‖z‖2:R3 + ζ1(t) ‖∇z‖2:R3

whereζ1 ∈ L2(0, T ) andζ0 ∈ L1(0, T ).
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Definition 1 (the weak solution of (1.6)–(1.9)).Given functionsu0 ∈ L2
σ(Ω0) andf satisfying

condition (iv). Functionu ∈ L2(0, T ; Ŵ 1,2
0,σ (R3)) ∩ L∞(0, T ; L2

σ(R3)) is called a weak solution
of the problem (1.6)–(1.9) if

u = 0 a.e. inQc[0,T ) and (2.1)∫ T

0

∫
R3

[
−u · ∂tφ+ ν∇u : ∇φ+ (u · ∇)a0 · φ+

(
(a∞ + a0) · ∇

)
u · φ

+ (u · ∇)u · φ
]

dxdt =
∫ T

0
〈f ,φ〉R3 dt−

∫
Ω0

u0 · φ( . , 0) dx (2.2)

for all φ ∈ C∞(R3 × [0, T ))3 such thatdivφ = 0 in R3 × [0, T ) andφ has a compact support
in Q[0,T ).

Identity (2.1) simulates the boundary condition (1.8). Indeed, if the common boundaryΓ[0,T )

of Q[0,T ) andQc[0,T ) is so smooth that it enables the existence of a trace then the trace is, due to
(2.1), equal to zero.

The weak solution of (1.1)–(1.4). If u is a weak solution defined above then the functionv =
u + a ≡ u + a∞ + a0 is a weak solution of the problem (1.1)–(1.4) in the sense thatv ∈
L2(0, T ; Ŵ 1,2

0,σ (R3)) and∫ T

0

∫
R3

[
−v · ∂tφ+ ν∇v : ∇φ+ (v · ∇)v · φ

]
dxdt =

∫ T

0
〈g,φ〉R3 dt−

∫
Ω0

v0 · φ( . , 0) dx

for all φ ∈ C∞(R3 × [0, T ))3 such thatdivφ = 0 in R3 × [0, T ) andφ has a compact support in
Q[0,T ). The functionv0 ≡ u0 + a(0) represents the initial value ofv at timet = 0.

3 Approximations, their estimates and weak convergence

The time discretization. We apply Rothe’s method. Letn ∈ N. Put

h :=
T

n
, tk := kh, Ωk := Ωtk , U0 := u0, a0

k :=
1
h

∫ tk

tk−1

a0(t) dt,

F k :=
1
h

∫ tk

tk−1

f(t) dt, ζ0
k :=

1
h

∫ tk

tk−1

ζ0(t) dt, ζ1
k :=

1
h

∫ tk

tk−1

ζ1(t) dt

and we successively solve, fork = 1, . . . , n, a series of stationary BVP’s

Uk −U+
k−1 − νh∆Uk + h (Uk · ∇)a0

k + h
(
(a∞ + a0

k) · ∇
)
Uk

+ h (U+
k−1 · ∇)Uk + h∇Pk = hF k in Ωk, (3.1)

divUk = 0 in Ωk, (3.2)

Uk = 0 in ∂Ωk. (3.3)

Definition 2 (the weak solution of the stationary BVP). GivenU+
k−1 ∈ L

2
σ(R3) and F k ∈

W−1,2
0,σ (R3). A functionUk ∈W 1,2

0,σ (Ωk) is called a weak solution of the problem (3.1)–(3.3) if

6



∫
Ωk

[
Uk · φk −U+

k−1 · φk + νh∇Uk : ∇φk + h (Uk · ∇)a0
k · φk + h (a∞ · ∇)Uk · φk

+ h (a0
k · ∇)Uk · φk + h (U+

k−1 · ∇)Uk · φk
]

dx = h 〈F k,φ
+
k 〉R3 (3.4)

for all φk ∈W
1,2
0,σ (Ωk).

Lemma 1 (the unique weak solvability of the stationary BVP’s).There existsn0 ∈ N such
that if n ≥ n0 then the problems (3.1)–(3.3) (fork = 1, . . . , n) have unique weak solutionsUk

which satisfy

‖Uk‖22: Ωk
+

k∑
j=1

‖U j −U+
j−1‖

2
2: Ωj + 2νh

k∑
j=1

‖∇U j‖22: Ωj

≤ ‖U+
0 ‖

2
2:R3 + 2h

k∑
j=1

∫
Ωj

(U+
j · ∇)U+

j · a
0
j dx+ 2h

k∑
j=1

〈F j ,U
+
j 〉R3 . (3.5)

Proof. 1) We shall need the estimate of the norm of functiona0
k in Ls(Ωk)3:

‖a0
k‖

2s
s−3

s; Ωk
=
[∫

Ωk

∣∣∣∣1h
∫ tk

tk−1

a0(t) dt
∣∣∣∣s dx

] 2
s−3

≤
[

1
h

∫ tk

tk−1

∫
Ωk

|a0|s dxdt
] 2
s−3

≤ 1
h

∫ tk

tk−1

(∫
Ωk

|a0|s dx
) 2
s−3

dt =
1
h

∫ tk

tk−1

‖a0(t)‖
2s
s−3

s; Ωk
dt. (3.6)

2) Let us show that ifn is sufficiently large then the bilinear form

A(u,v) :=
∫

Ωk

[
u · v + νh∇u : ∇v + h (u · ∇)a0

k · v + h (a∞ · ∇)u · v

+h (a0
k · ∇)u · v + h (U+

k−1 · ∇)u · v
]

dx

isW 1,2
0,σ (Ωk)–elliptic. We have

A(u,u) = ‖u‖22: Ωk
+ νh ‖∇u‖22: Ωk

+ h

∫
Ωk

(u · ∇)a0
k · udx. (3.7)

The last term on the right hand side equals−h
∫

Ωk
(u · ∇)u · a0

k dx and it can be therefore
estimated as follows:∣∣∣∣h ∫

Ωk

(u · ∇)u · a0
k dx

∣∣∣∣ ≤ δ1νh ‖∇u‖22: Ωk
+

h

4δ1ν

∫
Ωk

|u|2 |ak|2 dx

≤ δ1νh ‖∇u‖22: Ωk
+

h

4δ1ν
‖ak‖2s; Ωk

‖u‖22s
s−2

; Ωk

≤ δ1νh ‖∇u‖22: Ωk
+

h

4δ1ν
‖a0

k‖2s; Ωk
‖u‖2(s−3)/s

2: Ωk
‖u‖6/s6; Ωk

≤ δ1νh ‖∇u‖22: Ωk
+

h

4δ1ν
‖a0

k‖2s; Ωk
‖u‖2(s−3)/s

2: Ωk

( 2√
3

)6/s
‖∇u‖6/s2: Ωk

≤ δ1νh ‖∇u‖22: Ωk
+ δ2νh ‖∇u‖22: Ωk

+ c1 h ‖a0
k‖

2s/(s−3)
s; Ωk

‖u‖22: Ωk
(3.8)

7



whereδ1, δ2 > 0 and

c1 = c1(δ1, δ2, s, ν) =
s− 3
s

( 4
νδ2s

) 3
s−3
( 1

4δ1ν

) s
s−3

. (3.9)

(We have used the Sobolev inequality and the Young inequality, see e.g. [8], pp. 22, 31. Numbers
is the exponent from Assumption 3.) Thus,

A(u,u) ≥
[
1− c1 h ‖a0

k‖
2s/(s−3)
s; Ωk

]
‖u‖22: Ωk

+ νh [1− (δ1 + δ2)] ‖∇u‖22: Ωk
.

The numbersδ1 and δ2 can be chosen so small thatδ1 + δ2 = 1
2 . Due to estimate (3.6) and

the inequality2s/(s − 3) ≤ r, h ‖a0
k‖

2s/(s−3)
s; Ωk

can be made arbitrarily small (uniformly fork =
1, . . . , n) by choosingh sufficiently small (which corresponds ton sufficiently large). Thus, ifn
is sufficiently large, we have

A(u,u) ≥ 1
2
‖u‖22 Ωk

+
νh

2
‖∇u‖22: Ωk

. (3.10)

3) F k is an element ofW−1,2
0,σ (R3). We can also considerF k to a bounded linear functional

acting onW 1,2
0,σ (Ωk), putting 〈F k,φk〉Ωk := 〈F k,φ

+
k 〉R3 for all φk ∈ W 1,2

0,σ (Ωk). Due to the

Lax–Millgram lemma, there exists a uniqueUk ∈W 1,2
0,σ (Ωk) such that the identity

A(Uk,φk) = h
〈
F k, φk

〉
Ωk

(3.11)

holds for allφk ∈W
1,2
0,σ (Ωk). Consequently,Uk satisfies (3.4) for allφk ∈W

1,2
0,σ (Ωk).

4) Let us derive (3.5). Substitutingφk = Uk to (3.4), we obtain(
Uk −U+

k−1,Uk

)
2: Ωk

+ νh ‖∇Uk‖22: Ωk

= −h
∫

Ωk

(Uk · ∇)a0
k ·Uk dx+ h 〈F k,U

+
k 〉R3 , (3.12)

‖Uk −U+
k−1‖

2
2: Ωk

+ νh ‖∇Uk‖22: Ωk

= −
(
Uk −U+

k−1,U
+
k−1

)
2: Ωk
− h

∫
Ωk

(Uk · ∇)a0
k ·Uk dx+ h 〈F k,U

+
k 〉R3

= ‖U+
k−1‖

2
2: Ωk
− h

∫
Ωk

(Uk · ∇)ak ·Uk dx− (Uk,U
+
k−1)2: Ωk + h 〈F k,U

+
k 〉R3 .

Substituting here for(Uk,U
+
k−1)2: Ωk again from (3.12), we obtain

‖Uk‖22: Ωk
+ ‖Uk −U+

k−1‖
2
2: Ωk

+ νh ‖∇Uk‖22: Ωk
= ‖U+

k−1‖
2
2: Ωk

− 2h
∫

Ωk

(Uk · ∇)a0
k ·Uk dx− νh ‖∇Uk‖22: Ωk

+ 2h 〈F k,U
+
k 〉R3 ,

‖U+
k ‖

2
2:R3 + ‖U+

k −U
+
k−1‖

2
2: Ωk

+ 2νh ‖∇U+
k ‖

2
2: Ωk

≤ ‖U+
k−1‖

2
2:R3

− 2h
∫

Ωk

(U+
k · ∇)a0

k ·U+
k dx− νh ‖∇Uk‖22: Ωk

+ 2h 〈F k,U
+
k 〉R3 .
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Integrating by parts in the term which containsa0
k, writing the inequality withj instead ofk and

summing forj = 1, . . . , k, we arrive at (3.5). �

Approximate solutions and their estimates.Now we define

un(t) := U+
k for tk−1 < t ≤ tk; k = 1, . . . , n.

Inequality (3.5) enables us to estimateun. If tk−1 < t ≤ tk then

‖un(t)‖22:R3 + 2ν
∫ tk

0
‖∇un(τ)‖22:R3 dτ ≤ ‖u0‖22: Ω0

+ 2
k∑
j=1

∫ tj

tj−1

∫
Ωj

(
un(τ) · ∇

)
un(τ) · a0(τ) dxdτ + 2

∫ tk

0
〈f(τ),un(τ)〉R3 dτ. (3.13)

Applying (3.8) and estimating the norm ofa0
j by means of (3.6), we obtain

‖un(t)‖22:R3 + 2ν
[
1− (δ1 + δ2)

] ∫ tk

0
‖∇un(τ)‖22:R3 dτ ≤ ‖u0‖22: Ω0

+ 2c1

∫ tk

0
‖a0(τ)‖

2s
s−3

s;R3 , ‖un(τ)‖22:R3 dτ + 2
∫ tk

0
〈f(τ),un(τ)〉R3 dτ. (3.14)

The integrals on the right hand side can be split to the integrals from0 to t and fromt to tk. The
integrals fromt to tk can be estimated:

2c1

∫ tk

t
‖a0(τ)‖

2s
s−3

s;R3 ‖un(τ)‖22:R3 dτ + 2
∫ tk

t
〈f(τ),un(τ)〉R3 dτ

≤ c2(h) ‖un(t)‖22:R3 + 2
∫ tk

t

[
ζ1(τ) ‖∇u(τ)‖2:R3 + ζ0(τ) ‖un(τ)‖2:R3

]
dτ

≤ c2(h) ‖un(t)‖22:R3 +
∫ tk

t

[
2ν (1− δ1 − δ2) ‖∇un(τ)‖22:R3

+
ζ1(τ)2

2ν (1− δ1 − δ2)
+ ζ0(τ) + ζ0(τ) ‖un(τ)‖22:R3

]
dτ

≤ [c2(h) + c3(h)] ‖un(t)‖22:R3 + 2ν (1− δ1 − δ2)
∫ tk

t
‖∇un(τ)‖22:R3 dτ + c4(h)

wherec2(h) → 0, c3(h) → 0 andc4(h) → 0 ash → 0+. If we further apply the estimate from
condition (iv) to the integral from0 to t of 〈f(τ),un(τ)〉R3 in (3.14), we obtain

[
1− c2(h)− c3(h)

]
‖un(t)‖22:R3 + 2ν

[
1− (δ1 + δ2)

] ∫ t

0
‖∇un(τ)‖22:R3 dτ

≤ ‖u0‖22: Ω0
+ 2c1

∫ t

0
‖a0(τ)‖

2s
s−3

s;R3 ‖un(τ)‖22:R3 dτ

+ 2
∫ t

0

[
ζ1(τ) ‖∇un(τ)‖2:R3 + ζ0(τ) ‖un(τ)‖2:R3

]
dτ + c4(h)

≤ ‖u0‖22: Ω0
+ 2c1

∫ t

0
‖a0(τ)‖

2s
s−3

s;R3 ‖un(τ)‖22:R3 dτ + 2νδ3

∫ t

0
‖∇un(τ)‖22:R3 dτ
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+
∫ t

0

[
2c1 ‖a0(τ)‖

2s
s−3

s;R3 + ζ0(τ)
]
‖un(τ)‖22:R3 dτ +

∫ t

0

[ζ1(τ)2

2νδ3
+ ζ0(τ)

]
dτ

+ c4(h). (3.15)

Estimate (3.15) holds for allt ∈ (0, T ). Suppose further thath andδ3 are so small thatc2(h) +
c3(h) < 1 andδ1 + δ2 + δ3 < 1. Denote

yh(t) :=
[
1− c2(h)− c3(h)

]
‖un(t)‖22:R3 ,

ψh(t) := ‖u0‖22: Ω0
+
∫ t

0

[ζ1(τ)2

4νδ3
+
ζ0(τ)

4

]
dτ + c4(h),

ϑh(t) :=
2c1 ‖a0(t)‖

2s
s−3

s;R3 + ζ0(t)

1− c2(h)− c3(h)
, zh(t) :=

∫ t

0
ϑh(τ) yh(τ) dτ.

The inequality (3.15) can now be shortly written as

yh(t) + 2ν
[
1− (δ1 + δ2 + δ3)

] ∫ t

0
‖∇un(τ)‖22:R3 dτ ≤ ψh(t) + zh(t). (3.16)

Elementary calculations show thatz′(t)− ϑ(t) z(t) ≤ ϑ(t)ψ(t) and therefore

zh(t) ≤
∫ t

0
ψh(τ)ϑh(τ) exp

(∫ t

τ
ϑh(σ) dσ

)
dτ.

Using this estimate on the right hand side of (3.16) and expressing the functionsyh(t), ψh(t), ϑh
from of their definition, we obtain[

1− c2(h)− c3(h)
]
‖un(t)‖22:R3 + 2ν

[
1− (δ1 + δ2 + δ3)

] ∫ t

0
‖∇un(τ)‖22:R3 dτ

≤ ψh(t) +
∫ t

0
ψh(τ)ϑh(τ) exp

(∫ t

τ
ϑh(σ) dσ

)
dτ. (3.17)

We observe that there exist upper boundsc5 = c5(δ1, δ2, δ3, r, s,a, ζ
1, ζ0, ν) and

c6 = c6(δ1, δ2, δ3, r, s,a, ζ
1, ζ0, ν), independent ofn such that

‖un(t)‖2:R3 ≤ c5 for a.a.t ∈ (0, T ), (3.18)∫ T

0
‖∇un(τ)‖22:R3 dτ ≤ c6 (3.19)

for n sufficiently large. Obviously, due to the relation betweenU+
k andun, the same inequalities

also hold forU+
k and∇Uk:

‖U+
k ‖2:R3 ≤ c5 for k = 1, . . . , n, (3.20)

h

n∑
k=1

‖∇U+
k ‖

2
2:R3 ≤ c6. (3.21)

Weak convergence of the approximate solutions. Inequalities (3.18) and (3.19) provide the
estimates of the sequence{un} in the spacesL∞(0, T ; L2

σ(R3)) andL2(0, T ; W 1,2
0,σ (R3)). Thus,
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there existsu ∈ L∞(0, T ; L2
σ(R3)) ∩ L2(0, T ; W 1,2

0,σ (R3)) and a subsequence of{un} (denoted
again by{un}) such that

un −→ u as n→ +∞ weakly inL2(0, T ; W 1,2
0,σ (R3)), (3.22)

un −→ u as n→ +∞ weakly–∗ in L∞(0, T ; L2
σ(R3)). (3.23)

4 Verification that the limit function u is a weak solution

We will show thatu is a weak solution of (1.5)–(1.8) in this section.

Supports ofun. Let us denote

Qn :=
n⋃
k=1

Ωk × [tk−1, tk), Γn :=
n⋃
k=1

∂Ωk × [tk−1, tk).

The support ofun is a subset ofQn.

Lemma 2. lim
n→+∞

d̂(Qn, Q[0,T )) = 0 and lim
n→+∞

d̂(Γn, Γ[0,T )) = 0.

Proof. Let ε > 0 be given. Then due to Assumption 2, there existsδ > 0 such that ift1, t2 ∈
[0, T ], |t1 − t2| < δ thend̂(Ωt1 ,Ωt2) < ε. (The symbold̂ was defined in Section 1.)

Let us choosen ∈ N so large thath = T/n < δ. Each point(x, t) ∈ Qn belongs to
Ωk × [tk−1, tk] for somek ∈ {1; . . . ;n}. Then

dist4

(
(x, t); Q[0,T )

)
≤ dist3

(
x,Ωt

)
≤ d̂(Ωk,Ωt) < ε

because|t − tk| < δ. Henced(Qn, Q[0,T )) < ε. The inequalityd(Q[0,T ), Qn) < ε (for n
sufficiently large) can be proved similarly. This implies the the first equality in Lemma 2. The
second equality can be proved in the same way, we only use the continuity ofd̂(Γt1 ,Γt2) instead
of d̂(Ωt1 ,Ωt2). �

Lemma 3 (on condition (2.1)). The identityu = 0 holds a.e. inQc[0,T ).

Proof. Let m ∈ N. Denote byUm(Q[0,T )) the 1
m–neighborhood ofQ(0,T ) in R3 × [0, T ). The

setQc[0,T ) can be expressed in the formQc[0,T ) = K1m ∪K2m whereK1m = Qc[0,T ) ∩Um(Q[0,T ))
andK2m = Qc[0,T ) rK1m. PutK1 := ∩m∈NK1m andK2 := Qc[0,T ) rK1 = ∪m∈NK2m. SetK1

contains only points whose distance fromQ[0,T ) is zero. HenceK1 ⊂ Q[0,T ) ∪ Γ[0,T ). However,
K1 ⊂ Qc[0,T ). Thus,K1 = ∅ andQc[0,T ) = K2.

Consider a fixedm ∈ N for a while. Due to Lemma 2, the support ofun is disjoint withK2m

for n large enough. We claim that the weak limitu of the sequence{un} is equal to zero a.e. in
K2m. Due to (3.22), we have

0 =
∫
K2m

un · u dxdt −→
∫
K2m

u · udxdt =
∫
K2m

|u|2 dxdt.

This shows thatu equals zero a.e. inK2m. SinceQc[0,T ) is the union ofK2m for m ∈ N, u equals
zero a.e. inQc[0,T ). �
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Integral identity (2.2). We will further show thatu satisfies (2.2) for each infinitely differentiable
and divergence–free test functionφ in R3 × [0, T ) that has a compact support inQ[0,T ). Thus, let
φ be such a function. We shall consider functionφ to be fixed from now. As it is usual, we denote
byφ(t) the function of spatial variables, which arises fromφ if t ∈ [0, T ] is fixed.

We denote byIn the left–hand side of (2.2) withun instead ofu. It can be expressed as
follows:

In :=
∫ T

0

∫
R3

[
−un · ∂tφ+ ν∇un : ∇φ+ (un · ∇)a0 · φ+

(
(a∞ + a0) · ∇

)
un · φ

+ (un · ∇)un · φ
]

dxdt

=
n∑
k=1

∫ tk

tk−1

∫
Ωk

[
−Uk · ∂tφ+ ν∇Uk : ∇φ+ (Uk · ∇)a0 · φ

+
(
(a∞ + a0) · ∇

)
Uk · φ+ (Uk · ∇)Uk · φ

]
dxdt

=
∫

Ω1

U0 · φ(t0) dx+
n∑
k=1

∫
Ωk

[
Uk −Uk−1

]
· φ(tk−1) dx

+
n∑
k=1

∫
Ωk

[
νh∇Uk : ∇φ(tk−1) + h (Uk · ∇)a0

k · φ(tk−1)

+h
(
(a∞ + a0

k) · ∇)Uk · φ(tk−1) + h (Uk · ∇)Uk · φ(tk−1)
]

dx

+ In1 + In2 + In3 + In4 + In5 (4.1)

where

In1 =
n∑
k=1

∫ tk

tk−1

∫
Ωk

ν∇Uk : ∇[φ(t)− φ(tk−1)] dxdt,

In2 =
n∑
k=1

∫ tk

tk−1

∫
Ωk

[
(Uk · ∇)a0(t) · φ(t)− (Uk · ∇)a0(t) · φ(tk−1)

]
dxdt,

In3 =
n∑
k=1

∫ tk

tk−1

∫
Ωk

[
(Uk · ∇)a0(t) · φ(tk−1)− (Uk · ∇)a0

k · φ(tk−1)
]

dxdt,

In4 =
n∑
k=1

∫ tk

tk−1

∫
Ωk

[
(a0(t) · ∇)Uk · φ(t)− (a0

k · ∇)Uk · φ(tk−1)
]

dxdt,

In5 =
n∑
k=1

∫ tk

tk−1

∫
Ωk

[
(Uk · ∇)Uk · φ(t)− (Uk · ∇)Uk · φ(tk−1)

]
dxdt.

Due to the smoothness of functionφ and Assumption 2,suppφ(tk−1) is a subset ofΩk ∩ Ωk−1

for n large enough. Hence we can replaceUk−1 byU+
k−1 in the integral overΩk on the right hand

side of (4.1) and we can use (3.4) withφk = φ(tk−1). We get

In =
∫

Ω0

u0 · φ(0) dx+
∫ T

0
〈f ,φ〉R3 dt+ In1 + In2 + In3 + In4 + In5 + In6 (4.2)
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where

In6 :=
n∑
k=1

〈
F k, φ(tk−1)+

〉
R3 −

∫ T

0
〈f ,φ〉R3 dt.

Let us denoteΩ′k := Ωk ∩
[
∪0≤t<T suppφ(t)

]
. Then the 3D Lebesgue measure ofΩ′k is bounded

above by a constant, depending onφ, but independent ofk. Now we can estimateIn1 andIn2 by
means of (3.20) and (3.21):

|In1| ≤ ν
n∑
k=1

∣∣∣∣∫
Ωk

∇Uk :
(∫ tk

tk−1

[
∇φ(t)−∇φ(tk−1)

]
dt
)

dx
∣∣∣∣

≤ ν

n∑
k=1

∫
Ωk

|∇Uk|
∣∣∣∣∫ tk

tk−1

∫ t

tk−1

∇∂τφ(τ) dτ dt
∣∣∣∣ dx

≤ ν C(φ)h2
n∑
k=1

‖∇Uk‖2: Ωk ≤
√
ν C(φ)

√
h3
√
n

(
νh

n∑
k=1

‖∇Uk‖22: Ωk

)1/2

≤
√
ν C(φ)h

√
T c

1/2
6 ,

|In2| ≤ C(φ)h
n∑
k=1

‖U+
k ‖2; Ωk

∫ tk

tk−1

‖∇a0(t)‖2; Ωk dt

≤ C(φ)h
(
h

n∑
k=1

‖U+
k ‖

2
2; Ωk

)1/2( n∑
k=1

∫ tk

tk−1

‖∇a0(t)‖22; Ωk
dt
)1/2

≤ C(φ)h c1/2
5

(∫ T

0
‖∇a0(t)‖22; Ωk

dt
)1/2

.

These estimates and identities show thatIn1 → 0 andIn2 → 0 if n → +∞ (and soh → 0).
Similar estimates ofIn4–In6 show that all these terms also tend to zero ifn→ +∞. The integral
In3 equals zero:

In3 =
n∑
k=1

∫ tk

tk−1

∫
Ωk

(U+
k · ∇)φ(tk−1) ·

[
a0(t)− a0

k

]
dxdt

=
n∑
k=1

∫
Ωk

(U+
k · ∇)φ(tk−1) ·

(∫ tk

tk−1

a0(t) dt−
∫ tk

tk−1

a0(τ) dτ
)

dxdt = 0.

Thus, we have proved that

lim
n→+∞

In =
∫

Ω0

u0 · φ(0) dx+
∫ T

0
〈f ,φ〉R3 dt. (4.3)

In order to verify thatu is a weak solution of the problem (1.5)–(1.8), we still need to show that

lim
n→+∞

In =
∫ T

0

∫
R3

[
−u · ∂tφ+ ν∇u : ∇φ+ (u · ∇)a0 · φ

+
(
(a∞ + a0) · ∇

)
u · φ+ (u · ∇)u · φ

]
dxdt. (4.4)
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The identity

lim
n→+∞

∫ T

0

∫
R3

[
−un · ∂tφ+ ν∇un : ∇φ+ (un · ∇)a0 · φ+

(
(a∞ + a0) · ∇

)
un · φ

]
dxdt

=
∫ T

0

∫
R3

[
−u · ∂tφ+ ν∇u : ∇φ+ (u · ∇)a0 · φ+

(
(a∞ + a0) · ∇

)
u · φ

]
dxdt (4.5)

follows from (3.22) and (3.23). Thus, it remains to show that

lim
n→+∞

∫ T

0

∫
R3

(un · ∇)un · φ dxdt =
∫ T

0

∫
R3

(u · ∇)u · φ dxdt. (4.6)

It follows from the definition ofIn, (4.3) and (4.5) that the limit on the left hand side exists. Thus,
to show that it equals the right hand side of (4.6), it is sufficient to check the value of the limit for
an arbitrary subsequence of{un}. It is an objective of next paragraphs.

Let us denote byd the positive distancedist4(suppφ,Γ[0,T ]). Due to Assumption 2, there

existsm ∈ N such that ift1, t2 ∈ [0, T ], |t1 − t2| ≤ 2T/m thend̂3(Γt1 ,Γt2) < 1
10d.

Further, we denoteτj = jT/m (for j = 1, . . . ,m). There existm+ 1 infinitely differentiable
functionsθ0, . . . , θm on [0, T ] such that0 ≤ θj ≤ 1 and

supp θ0 ⊂ J0 := (τ0, τ1),

supp θj ⊂ Jj := (τj−1, τj+1) for j = 1, . . . ,m− 1,

supp θm ⊂ Jm := (τm−1, τm),
m∑
j=0

θj(t) = 1 for 0 ≤ t ≤ T.

Now we putφj := θjφ. LetKj be the orthogonal projection ofsuppφj ontoR3. If t, s ∈ Jj
then

dist3(suppφ(t),Γs) ≥ dist3(suppφ(t),Γt)− d̂3(Γt,Γs) > d− 1
10d = 9

10d.

Hence∀ s ∈ Jj : dist3(Kj ,Γs) > 9
10d. There exists a bounded open setΩ′j in R3 with the

boundary of the classC1,1 that has a finite number of components andKj ⊂ Ω′j ⊂ Ω′j ⊂ Ωs (for

all s ∈ Jj).
In order to prove (4.6), it is sufficient to show that

lim
n→+∞

∫
Jj

∫
Ω′j

(un · ∇)un · φj dxdt =
∫
Jj

∫
Ω′j

(u · ∇)u · φj dxdt. (4.7)

for all j = 0, 1, . . . ,m. We denote byP jσ the Helmholtz projection inL2(Ω′j)
3. Putwj

n := P jσun.

The function[I − P jσ ]un has the form∇ϕjn for an appropriate scalar functionϕjn. (4.7) can now
be written as

lim
n→+∞

∫
Jj

∫
Ω′j

[
(wj

n · ∇)wj
n · φj + (wj

n · ∇)∇ϕjn · φj + (∇ϕjn · ∇)wj
n · φj
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+ (∇ϕjn · ∇)∇ϕjn · φj
]

dxdt =
∫
Jj

∫
Ω′j

(u · ∇)u · φj dxdt. (4.8)

Since(∇ϕjn · ∇)∇ϕjn = ∇
(

1
2 |∇ϕ

j
n|2
)

andφ(t) ∈ L2
σ(Ω′j), the integral of(∇ϕjn · ∇)∇ϕjn ·φj on

Ω′j equals zero.

The convergence (3.22) and (3.23) and the boundedness of operatorP jσ in L2(Ω′j)
3 and in

W 1,2(Ω′j)
3 imply that

wj
n −→ wj = P jσu, and ∇ϕjn −→ ∇ϕj = [I − P jσ ]u for n→ +∞ (4.9)

weakly inL2(Jj ; W 1,2(Ω′j)
3) and weakly–∗ in L∞(Jj ; L2

σ(Ω′j)).

Strong convergence of a subsequence of{wj
n}. We are going to show that there exists a sub-

sequence of{wj
n} that tends towj strongly inL2(Jj ; L2

σ(Ω′j)) asn → +∞. We shall therefore
use the next lemma, see Theorem 5.2 in J. L. Lions [19].

Lemma 4. Let0 < γ < 1
2 and letH0,H andH1 be Hilbert spaces such thatH0 ↪→↪→ H ↪→ H1.

LetHγ(R; H0, H1) denote the Banach space
{
w ∈ L2(R; H0); |ϑ|γ ŵ(ϑ) ∈ L2(R; H1)

}
with

the norm

‖w‖Hγ(R;H0, H1) :=
(
‖w‖2L2(R;H0) + ‖ |ϑ|γ ŵ(ϑ)‖2L2(R;H1)

)1/2
.

(Here ŵ(ϑ) is the Fourier transform ofw(t).) LetHγ(a, b; H0, H1) further denote the Banach
space of restrictions of functions fromHγ(R; H0, H1) onto the interval(a, b), with the norm

‖w‖Hγ(a,b;H0, H1) := inf ‖z‖Hγ(R;H0, H1)

where the infimum is taken over allz ∈ Hγ(R; H0, H1) such thatz = w a.e. in(a, b). Then
Hγ(0, T ; H0, H1) ↪→↪→ L2(a, b; H).

Considerj ∈ {1; . . . ; m} fixed. We shall use Lemma 4 with(a, b) = Jj , H0 = W 1,2(Ω′j)
3 ∩

L2
σ(Ω′j), H = L2

σ(Ω′j) and H1 = W−1,2
0,σ (Ω′j). We claim that{wj

n} is bounded in the space

Hγ(Jj ; H0, H1). The boundedness of{wj
n} in L2(Jj ; H0) follows from (3.18), (3.19) and from

the boundedness of operatorP jσ in L2(Ω′j)
3 and inW 1,2(Ω′j)

3. Thus, we only need to verify

that {|ϑ|γ ŵj
n} is bounded in the spaceL2(Jj ; H1), i.e. inL2(Jj ; W

−1,2
0,σ (Ω′j)). Let zjn be an

extension by zero ofwj
n from the time intervalJj ontoR. Then

ẑjn(ϑ) =
∫
Jj

e−2πitϑwj
n(t) dt =

∑
k∈Λnj

∫ tk

tk−1

e−2πitϑ P jσUk dt (4.10)

whereΛnj is the set of such indicesk ∈ {1; . . . ;n} that [R3 × (tk−1, tk)] ∩ suppφj 6= ∅. Λnj has
the formΛnj = {l; l + 1; . . . ; q} where1 ≤ l ≤ q ≤ n. Calculating the integrals in (4.10), we
obtain

ẑjn(ϑ) =
q∑
k=l

1
2πiϑ

[
e−2πi tk−1ϑ − e−2πi tkϑ

]
P jσUk
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=
1

2πiϑ
[
e−2πi tl−1 P jσU l − e−2πi tq P jσU q

]
+

1
2πiϑ

q∑
k=l+1

e−2πi tk−1ϑ [P jσUk − P jσUk−1]. (4.11)

SinceΩ′j ⊂ Ωs for all s ∈ Jj , we also haveΩ′j ⊂ Ωk for all k ∈ Λnj (if n is large enough). If

|ϑ| ≤ 1 then, using (4.10) and (3.20), we can estimate‖ |ϑ|γ ẑjn(ϑ)‖−1,2; Ω′j
as follows:

‖ |ϑ|γ ẑjn(ϑ)‖−1,2; Ω′j
≤ C(Ω′j) |ϑ|γ

q∑
k=l

h ‖Uk‖2: Ω′j
≤ C(Ω′j)

√
c5 |ϑ|γ . (4.12)

If |ϑ| > 1 then, using (4.11), we get

‖ |ϑ|γ ẑn(ϑ)‖−1,2; Ω′j
≤ |ϑ|

γ−1

2π
(
‖P jσU l‖−1,2; Ω′j

+ ‖P jσU q‖−1,2; Ω′j

)
+
|ϑ|γ−1

2π

q∑
k=l+1

‖P jσUk − P jσUk−1‖−1,2; Ω′j

≤ C(Ω′j) |ϑ|γ−1
(
‖U l‖2: Ω′j

+ ‖U q‖2: Ω′j

)
+
|ϑ|γ−1

2π

q∑
k=l+1

sup
ψ

1
‖ψ‖1,2; Ω′j

∣∣∣∣∫
Ω′j

(Uk −Uk−1) ·ψ dx
∣∣∣∣.

The supremum is taken over allψ ∈W 1,2
0,σ (Ω′j) such that‖ψ‖1,2; Ω′j

> 0. The functionψ+ (i.e.ψ

extended by zero toR3
rΩ′j) belongs toW 1,2

0,σ (Ωk) for all k = l, . . . , q. Moreover,Uk−1 coincides
with U+

k−1 in Ω′j . Hence the integral of(Uk − Uk−1) · ψ on Ω′j equals the integral of the same
function onΩk and it can be therefore expressed by means of (3.4). Thus, using also (3.20), (3.21),
(3.6) and condition (ii), we obtain

‖ |ϑ|γ ẑn(ϑ)‖−1,2; Ω′j
≤ C(Ω′j) |ϑ|γ−1√c5

+
|ϑ|γ−1

2π

q∑
k=l+1

sup
ψ

1
‖ψ‖1,2; Ω′j

∣∣∣∣∫
Ω′j

[
−νh∇Uk : ∇ψ + h (Uk · ∇)ψ · a0

k

− h (a∞ · ∇)Uk ·ψ + (a0
k · ∇)ψ ·Uk − h (Uk · ∇)Uk ·ψ

]
dx+ h 〈F k,ψ

+〉R3

∣∣∣∣
≤ C

√
c5 |ϑ|γ−1 +

|ϑ|γ−1

2π

q∑
k=l+1

sup
ψ

1
‖ψ‖1,2; Ω′j

{
νh ‖∇Uk‖2: Ω′j

‖∇ψ‖2: Ω′j

+ 2h ‖Uk‖ 2s
s−2

; Ω′j
‖∇ψ‖2: Ω′j

‖a0
k‖s; Ω′j

+ h |a∞| ‖∇Uk‖2: Ω′j
‖ψ‖2; Ω′j

+ h ‖Uk‖
1/2
2: Ω′j
‖∇Uk‖

3/2
2: Ω′j
‖ψ‖6; Ω′j

+
∫ tk

tk−1

[
ζ0(t) ‖ψ‖2: Ω′j

+ ζ1(t) ‖∇ψ‖2: Ω′j

]
dt
}

≤ C |ϑ|γ−1 + hC |ϑ|γ−1
n∑
k=2

{
ν ‖∇Uk‖2: Ωk

+ ‖Uk‖
s−3
s

2: Ω′j
‖Uk‖

3
s

6; Ω′j
‖a0

k‖s; Ω′j
+ ‖∇Uk‖2: Ωk + ‖Uk‖

1/2
2: Ωk
‖∇Uk‖

3/2
2: Ωk

}
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≤ C |ϑ|γ−1 + C |ϑ|γ−1 (ν + 1)
( n∑
k=2

h ‖∇Uk‖22: Ωk

)1/2

+ C |ϑ|γ−1

( n∑
k=2

h ‖Uk‖
2 s−3

s
2: Ωk

)1
2
( n∑
k=2

h ‖∇Uk‖22: Ωk

) 3
2s
( n∑
k=2

h ‖∇a0
k‖rs;R3

)1
r

+ C |ϑ|γ−1

( n∑
k=2

h ‖∇Uk‖22: Ωk

)3/4

≤ C |ϑ|γ−1 + C |ϑ|γ−1

( n∑
k=2

h ‖a0
k‖rs;R3

)1/r

≤ C |ϑ|γ−1. (4.13)

(We have used the interpolation inequality

‖Uk‖ 2s
s−2

; Ω′j
≤ ‖Uk‖

(s−3)/s
2: Ω′j

‖Uk‖
3/s
6; Ω′j

≤ ‖Uk‖
(s−3)/s
2: Ωk

‖Uk‖
3/s
6; Ωk

and the Sobolev inequality; see [8], p. 31. The generic constantC may depend onΩ′j , a
∞,

T , ν, c5 and c6.) These estimates hold for|ϑ| > 1 and the constantC is independent ofn.
Since0 < γ < 1

2 , we observe that the sequence{|ϑ|γ ẑjn(ϑ)} is bounded inL2(R; W−1,2
0,σ (Ω′j)).

Consequently, the sequence{wj
n} is bounded inHγ(Jj ; W 1,2(Ω′j)

3, W−1,2
0,σ (Ω′j)). This space is

reflexive, hence there exists a subsequence (we denote it again by{wj
n}) which converges weakly

in Hγ(Jj ; W 1,2(Ω′j)
3, W−1,2

0,σ (Ω′j)). Due to (4.9), the limit must bewj . Applying now Lemma

4, we have:wj
n −→ wj = P jσu strongly inL2(Jj ; L2(Ω′j)

3). This strong convergence, together
with the weak convergence (4.9), enables us to pass to the limit in the first three terms on the
left hand side of (4.7). This procedure is standard (see e.g. J. L. Lions [19] or R. Temam [27]),
therefore we omit the details. Using also the equality∫

Ω′j

(∇ϕ · ∇)∇ϕ · φj dx = 0,

following from the inclusionφj ∈ L2
σ(Ω′j) and from the identity(∇ϕ · ∇)∇ϕ = ∇

(
1
2 |∇ϕ|

2
)
, we

can prove the validity of (4.8). We have thus completed the proof of the theorem:

Theorem 1 (existence of a weak solution).Suppose that Assumptions 1 and 2 hold. Then the
problem (1.5)–(1.8) has a weak solution that coincides with functionu from (3.22) and (3.23).

5 The local weak continuity of the weak solution and the energy–type inequality

Theorem 2 (the local weak continuity). Suppose that Assumptions 1 and 2 hold. The weak solu-
tionu of the problem (1.5)–(1.8), given by (3.22) and (3.23), can be modified on a set of measure
zero so that ift0 ∈ [0, T ) andψ ∈ L2

σ(Ωt0) then

lim
t→t0, 0≤t<T

(
u(t),ψ

)
2: Ωt0

=
(
u(t0),ψ

)
2: Ωt0

. (5.1)

We call this type of weak continuity ofu the “local weak continuity” because the space from
which we can choose functionψ (i.e.L2

σ(Ωt0)) depends ont0.
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Proof. Suppose for simplicity thatt0 > 0. There exists a sequence{ψn} in C∞0,σ(Ωt0) such that
ψn → ψ in L2

σ(Ωt0). Due to Assumptions 1 and 2, there existξn > 0 such thatsuppψn ⊂ Ωt

for t0 − ξn < t < t0 + ξn. Since∣∣(u(t)− u(t0),ψ
)

2: Ωt0

∣∣ ≤ ∣∣(u(t)− u(t0),ψ −ψn
)

2: Ωt0

∣∣+
∣∣(u(t)− u(t0),ψn

)
2: Ωt0

∣∣
and the first term on the right hand side can be made arbitrarily small by choosingn sufficiently
large, it is sufficient to prove (5.1) with a fixed functionψn instead ofψ. Denote byΩ′ a bounded
sub–domain ofΩt (for all t ∈ (t0 − ξn, t0 + ξn)), containingsuppψn.

Let us now return to the integral identity (2.2) in Definition 1. Consideringφ with a compact
support inΩ′ × (t0 − ξn, t0 + ξn), we have∣∣∣∣∫ T

0

∫
R3

(u · ∇)u · φ dxdt
∣∣∣∣ =

∣∣∣∣∫ t0+ξn

t0−ξn

∫
Ω′

(u · ∇)u · φ dxdt
∣∣∣∣

≤
∫ t0+ξn

t0−ξn
‖∇u‖2: Ω′ ‖u‖3; Ω′ ‖φ‖6; Ω′ dt ≤

∫ t0+ξn

t0−ξn
‖∇u‖3/22: Ω′ ‖u‖

1/2
2: Ω′ ‖φ‖6; Ω′ dt

≤
√
c5C

(∫ t0+ξn

t0−ξn
‖∇u‖22: Ω′ dt

)3/4(∫ t0+ξn

t0−ξn
‖∇φ‖42: Ω′ dt

)1/4

,

∣∣∣∣∫ T

0
〈f ,φ〉R3 dt

∣∣∣∣ =
∣∣∣∣∫ t0+ξn

t0−ξn

[
ζ1(t) ‖∇φ(t)‖2: Ω′ + ζ0(t) ‖φ(t)‖2: Ω′

]
dt
∣∣∣∣

≤ C sup
t0−ξn<t<t0+ξn

ess‖φ(t)‖1,2; Ω′ .

We can similarly estimate all other terms in (2.2), except for the first term which equals the integral∫ t0+ξn
t0−ξn

∫
Ω′ u·∂tφ dxdt. Thus, we can deduce that the time derivative (in the sense of distributions)

of u belongs toL1(t0 − ξn, t0 + ξn; W−1,2
0,σ (Ω′)). Henceu can be modified on a set of measure

zero so that it becomes an element ofW−1,2
0,σ (Ω′), continuously depending ont in (t0−ξn, t0+ξn).

This property ofu implies that∣∣(u(t)− u(t0),ψn
)

2: Ωt0

∣∣ =
∣∣(u(t)− u(t0), ψn

)
2: Ω′

∣∣
≤

∥∥u(t)− u(t0)
∥∥
−1,2; Ω′

‖ψn‖1,2; Ω′ −→ 0 for t→ t0.

Thus, (5.1) holds withψ = ψn ∈ C∞0,σ(Ωt0). Hence it also holds withψ ∈ L2
σ(Ωt0).

SinceQ[0,T ) can be expressed as a countable union of cylinders of the typeΩ′ × (t− ξ, t+ ξ)
(or Ω′ × [0, ξ)), whereΩ′ is a bounded domain inR3, ξ > 0 and the closure of each cylinder is
a subset ofQ[0,T ), the modification of functionu on a set of measure zero inQ(0,T ) can be made
independently of a concrete choice oft0 ∈ [0, T ) and functionψ. �

The energy–type inequality. Let t ∈ (0, T ). Inequality (3.18) provides the uniform estimate
of un(t) in L2

σ(R3). Thus, there exists a subsequence{utn} of {un} andut ∈ L2
σ(R3) such that

utn(t)→ ut weakly inL2
σ(R3). The norm ofut satisfies

‖ut‖2:R3 ≤ lim
n→+∞

inf ‖utn(t)‖2:R3 .

Due to (3.23),ut = u(t), with a possible exception of a set oft ∈ (0, T ) of measure zero. We
can obviously modifyu(t) at these exceptional timest so that‖u(t)‖2:R3 = ‖ut‖2:R3 for all
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t ∈ (0, T ). The modification can be made only in the complementary setΩt
c to Ωt, so that it does

not disturb the modification ofu inQ(0,T ), considered in the proof of the Theorem 2. Passing now
to the limit (forn→ +∞) in the inequality (3.17) (where we considerutn instead ofun), and also
using the weak convergence (3.22) and the limitsc2(h)→ 0, c3(h)→ 0, c4(h)→ 0 ash→ 0+,
we obtain the inequality

‖u(t)‖22:R3 + 2ν
[
1− (δ1 + δ2 + δ3)

] ∫ t

0
‖∇u(τ)‖22:R3 dτ

≤ ψ0(t) +
∫ t

0
ψ0(τ)ϑ0(τ) exp

(∫ t

τ
ϑ0(σ) dσ

)
dτ. (5.2)

Recall thatδ1, δ2 andδ3 are arbitrary positive numbers (the interesting case isδ1 + δ2 + δ3 < 1)
andc1 = c1(δ1, δ2, r, s, ν) is given by (3.9). This inequality provides the upper bound for the
kinetic energy, associated with the flow fieldu, at timet and for the dissipation of mechanical
energy in the time interval(0, t). We can thus formulate the following theorem:

Theorem 3 (the energy–type inequality).Suppose that Assumptions 1 and 2 hold. The weak
solutionu of the problem (1.5)–(1.8), given by (3.22) and (3.23), can be modified on a set of
measure zero so that it satisfies the inequality (5.2) for allt ∈ (0, T ). The modification does not
influence the local weak continuity ofu, stated in Theorem 2.

We call the inequality (5.2) the ”energy–type inequality” and not merely the ”energy inequal-
ity”, because it contains artificial parametersδ1, δ2 andδ3, constantc1 and functionsζ1 andζ0,
which rather overshadow the affect of the viscosity, the boundary conditions and the specific body
force on the development of the kinetic energy associated with the velocity fieldu and its dissipa-
tion. We discuss the validity of another form of the energy inequality, which seems to be in some
sense more natural than (5.2), in the next paragraph.

An open question. Sinceun(τ) (for tj−1 < τ < tj) equals zero a.e. inR3 − Ωj , we can write
the inequality (3.13) in the form

‖un(t)‖22:R3 + 2ν
∫ t

0
‖∇un(τ)‖22:R3 dτ ≤ ‖u0‖22: Ω0

+ 2
∫ t

0

∫
R3

(
un(τ) · ∇

)
un(τ) · a0(τ) dxdτ + 2

∫ t

0
〈f(τ),un(τ)〉R3 dτ + c7(h) (5.3)

for 0 < t < T , wherec7(h) → 0 ash → 0. There arises a question whether we can also pass to
the limit in this inequality (with the sequence{un} or at least with a subsequence of{un}) and
derive the inequality

‖u(t)‖22:R3 + 2ν
∫ t

0
‖∇un(τ)‖22:R3 dτ ≤ ‖u0‖22: Ω0

+ 2
∫ t

0

∫
R3

(
u(τ) · ∇

)
u(τ) · a0(τ) dxdτ + 2

∫ t

0
〈f(τ),u(τ)〉R3 dτ. (5.4)

Using similar arguments as in the previous paragraph, one can show that the limit inferior of the
left hand side of (5.3) is greater than or equal to the left hand side of (5.4). However, it is an open
question if we can also pass to the limit on the right hand side of (5.3), namely, whether

lim
n→+∞

∫ t

0

∫
R3

(
un(τ) · ∇

)
un(τ) · a0(τ) dxdτ ≤

∫ t

0

∫
R3

(
u(τ) · ∇

)
u(τ) · a0(τ) dxdτ (5.5)
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holds. The limit on the left hand side is of the same type as the limit in (4.6). However, the test
functionφ in (4.6) had a compact support inQ[0,T ), which strongly helped us to calculate the
limit. Now, (5.5) contains the functiona0 instead ofφ anda0 does not generally have a compact
support inQ[0,T ). (Interesting applications even requirea0 to be non–zero on the boundary of
Q[0,T ).) Thus, the procedure used in Section 4 in the evaluation of the limit in (4.6), cannot be
applied to the limit in (5.5). We therefore leave the question whether (5.5) is true (at least for some
subsequence of{un}) as open.

6 Example 1: The flow around rotating bodies

Definition of function a. Let us considerN compact bodies, rotating around the axes given
by the parametric equationsx = qi + s ei; s ∈ R with constant angular velocitiesω1, . . . , ωN
(i = 1, . . . , N ). We putωi := ωi ei. We suppose that the distance between any of the bodies at an
arbitrary timet ∈ [0, T ] does nor exceedd > 0. We denote byKt

i the closed region occupied by
thei–th body at timet. The domain, filled by the fluid at timet, is Ωt := R

3
r

(
∪Ni=1K

t
i ).

The assumption on adherence of the fluid to the body on its surface leads to the boundary
condition for velocity:

v(x, t) = ωi × (x− qi) ≡ − curl
(

1
2 |x− qi|

2ωi
)

for x ∈ ∂Kt
i ; i = 1, . . . , N. (6.1)

Let ηi be aC∞ cut–off function inR3 × [0, T ] such that

ηi(x, t)


= 1 if dist(x,Kt

i ) <
1
4 d,

∈ (0, 1) if 1
4 d ≤ dist(x,Kt

i ) <
1
2 d,

= 0 if dist(x,Kt
i ) ≥ 1

2 d.

Now we puta := a∞ + a0 wherea∞ = 1
2 curl

(
a∞ × x

)
represents the constant velocity in

infinity and

a0(x, t) := − 1
2

curl
( N∑
i=1

ηi(x, t)
[
|x− qi|2ωi + (a∞ × x)

])
.

Functiona now satisfies the boundary condition (6.1) anda0 also satisfies other conditions named
in Assumption 3. Consequently, Theorems 1, 2 and 3 are applicable and they provide the exis-
tence of a weak solution of the problem (1.5)–(1.8), as well as the information on its local weak
continuity and the energy–type inequality.

7 Example 2: The flow around a body perpendicularly striking
to a plane

The geometry of the flow field. We consider a flow of a viscous incompressible fluid in the
half–spaceR3

+ := {x = (x1, x2, x3) ∈ R3; x3 > 0}, around the body which occupies the closed
regionB0 at timet = 0. The body moves perpendicularly towards thex1, x2–plane in the time
interval [0, T ] so that its motion is purely translational and its distanceδt (at time t) from the
x1, x2–plane satisfies the condition
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(vi) δt is a differentiable non–increasing function oft on the interval[0, T ] such thatδ0 > 0 and
δT = 0.

Hence the body takes the region

Bt =
{

(x1, x2, x3) ∈ R3; (x1, x2, x3 + δ0 − δt) ∈ B0
}

at a general timet and it strikes to thex1, x2–plane at timeT . The domain, filled by the fluid, is
Ωt = R

3
+ rB

t.
The system of coordinates can be chosen so that the nearest pointSt of the to thex1, x2–

plane has the coordinatesSt = (0, 0, δt) and the body thus strikes to thex1, x2–plane at the point
O = (0, 0, 0). (See Fig. 1.)

It will be further advantageous to work in the cylindrical coordinatesρ, ϕ, x3, whose origin is
pointO. We denote the corresponding unit vectors byeρ, eϕ ande3.

We choose sufficiently large numbersl andh such thatBt is a subset of the cylinder{ρ <
l, 0 < x3 < h} for all t ∈ (0, T ). We assume that there existsρ0 ∈ (0, l) and positive numbersa,
b such that

∀ (ρ, ϕ, x3) ∈ Bt : ρ ≤ ρ0 =⇒ x3 ≥ δt + aρb. (7.1)
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Bt

Str

x3 = δt + aρb

6x3

x1, x2-

Ωt
0Ωt

1 Ωt
1

Ωt
2Ωt

3Ωt
4

Ωt
4

δt
δt + aρb0

h

h+ ∆h

6

?

δt

?6aρb0

ρ = ρ0 l l + ∆l
r

O

Fig. 1

Definition of function a. In this geometrical configuration, we will construct functiona of the
form (1.4) inR3 × (0, T ), satisfying all the conditions from Assumption 3. We puta∞ = 0.

The crucial part ofΩt, where the stroke occurs, is

Ωt
0 :=

{
x = (ρ, ϕ, x3; 0 ≤ ρ < ρ0, 0 < x3 < δt + aρb

}
.

We also denote

Ωt
1 :=

{
(ρ, ϕ, x3) ∈ R3; ρ0 ≤ ρ < l, 0 < x3 < δt + aρb0

}
,
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Ωt
2 :=

{
(ρ, ϕ, x3) ∈ R3; ρ < l, 0 < x3 < h

}
r (Ωt

0 ∪ Ωt
1),

Ωt
3 :=

{
(ρ, ϕ, x3) ∈ R3; ρ < l + ∆l, 0 < x3 < h+ ∆h

}
r

(
Ωt

0 ∪ Ωt
1 ∪ Ωt

2

)
,

Ωt
4 := R

3
r

(
Ωt

0 ∪ Ωt
1 ∪ Ωt

2 ∪ Ωt
3

)
where∆l and∆h are chosen positive numbers. The setsΩt

0–Ωt
4 are mutually disjoint and their

union isΩt. SetΩt
2 containsBt. (See Fig. 1.)

Let η be an infinitely differentiable cut–off function of one variable such thatη(s) = 0 for
s ≤ 0, 0 ≤ η(s) ≤ 1 for 0 < s < 1 and η(s) = 1 for s ≥ 1. We put

a0(ρ, x3, t) := curl w(ρ, x3, t) δ̇t (7.2)

where

w(ρ, x3, t) :=



1
2ρ η

( x3

δt + aρb

)
eϕ for (x, ϕ, x3) ∈ Ωt

0,

1
2ρ η

( x3

δt + aρb0

)
eϕ for (x, ϕ, x3) ∈ Ωt

1,

1
2ρ eϕ for (x, ϕ, x3) ∈ Ωt

2,

0 for (x, ϕ, x3) ∈ Ωt
4.

In order to avoid complicated formulas, we simply assume that functionw in setΩt
3 is a smooth

extension ofw from Ωt
1 ∪ Ωt

2, which is zero near the boundary withΩt
4. Obviously,

a0 = a0
ρ eρ + a0

3 e3 (7.3)

wherea0
ρ = a0

3 = 0 in R3
− ∪ Ωt

4 anda0
ρ = 0, a0

3 = δ̇t in Ωt
2.

We shall further examine what properties ofδt imply that the functiona0 satisfies conditions
(i)–(iii) from Assumption 3. We will naturally focus on the behavior ofa0 in the most interesting
partΩt

0 of Ωt. We can calculate thata0
ϕ = 0 and

a0
ρ(ρ, x3, t) = −ρ

2
∂3η
( x3

δt + aρb

)
δ̇t = −ρ

2
η′
( x3

δt + aρb

) δ̇t

δt + aρb
, (7.4)

a0
3(ρ, x3, t) =

1
ρ
∂ρ

[ρ2

2
η
( x3

δt + aρb

)]
δ̇t

=
[
η
( x3

δt + aρb

)
− ρ

2
η′
( x3

δt + aρb

) x3 abρ
b−1

[δt + aρb]2
]
δ̇t (7.5)

in domainΩt
0. In order to verify the conditions (i)–(iii), we shall estimate‖∇a0‖2

2: Ωt0
, ‖∂ta0‖2: Ωt0

and‖a0‖r
s; Ωt0

(for s andr satisfying the assumptions from condition (iii)).

The estimate of‖∇a0‖2
2: Ωt0

. The component∂ρa0
ρ of∇a0 can be estimated onΩt

0 as follows:∫
Ωt0

|∂ρa0
ρ|2 dx = 2π

∫ ρ0

0
ρdρ

[∫ δt+aρb

0
|∂ρa0

ρ|2 dx3

]

=
∫ ρ0

0
ρdρ

∫ δt+aρb

0

[
−η′
( x3

δt + aρb

) δ̇t

2 [δt + aρb]
+ η′′

( x3

δt + aρb

) abρb x3 δ̇
t

2 [δt + aρb]3
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+ η′
( x3

δt + aρb

) abρb δ̇t

2 [δt + aρb]2

]2

dx3

≤ C

∫ ρ0

0
ρdρ

∫ δt+aρb

0

[
(δ̇t)2

[δt + aρb]2
+
ρ2b x2

3 (δ̇t)2

[δt + aρb]6
+

ρ2b (δ̇t)2

[δt + aρb]4

]
dx3

≤ C

∫ ρ0

0

[
ρ (δ̇t)2

δt + aρb
+
ρ2b+1 (δ̇t)2

[δt + aρb]3

]
dρ ≤ C

∫ ρ0

0

ρ (δ̇t)2

δt + aρb
dρ

= C

∫ σ0

0

σ
2−b
b

δt + σ
dσ (δ̇t)2 ≤


C (δ̇t)2 for 0 < b < 2,

C ln
(

1 +
σ0

δt

)
(δ̇t)2 for b = 2,

C (δt)
2−b
b (δ̇t)2 for 2 < b.

 (7.6)

(We have used the substitutionaρb = σ, i.e. abρb−1 dρ = dσ, and the notationσ0 = aρb0.) The
generic constantC may depend on the numbersρ0, l, h, ∆l, ∆h, a, b and on functionη in this
section.

The estimate of∂3a
0
ρ yields:∫

Ωt0

|∂3a
0
ρ|2 dx = 2π

∫ ρ0

0
ρdρ

[∫ δt+aρb

0
|∂3a

0
ρ|2 dx3

]

=
∫ ρ0

0
ρdρ

(∫ δt+aρb

0

ρ2

4
η′′
( x3

δt + aρb

)2 (δ̇t)2

[δt + aρb]4
dx3

)
≤ C

∫ ρ0

0

ρ3 (δ̇t)2

[δt + aρb]3
dρ

= C

∫ σ0

0

σ
4−b
b

[δt + σ]3
dσ (δ̇t)2 ≤


C (δ̇t)2 for 0 < b < 4

3 ,

C ln
(

1 +
σ0

δt

)
(δ̇t)2 for b = 4

3 ,

C (δt)
4−3b
b (δ̇t)2 for 4

3 < b.

 (7.7)

We can similarly derive that∫
Ωt0

|∂ρa0
3|2 dx ≤ C (δ̇t)2.

The estimate of∂3a
0
3 is the same as (7.6). Hence we arrive at the inequality

‖∇a0‖22: Ωt0
≤


C (δ̇t)2 for 0 < b < 4

3 ,

C ln
(

1 +
σ0

δt

)
(δ̇t)2 for b = 4

3 ,

C (δt)
4−3b
b (δ̇t)2 for 4

3 < b.

 (7.8)

The estimate of‖∂ta0‖2: Ωt0
. Calculating the derivative∂ta0 from (7.4) and (7.5), we obtain

‖∂ta0‖22: Ωt0
= 2π

∫ ρ0

0
ρdρ

∫ δt+aρb

0

{[
ρ

2
η′′
( x3

δt + aρb

) x3 (δ̇t)2

[δt + aρb]3

− ρ
2
η′
( x3

δt + aρb

) δ̈t

δt + aρb
+
ρ

2
η′
( x3

δt + aρb

) (δ̇t)2

[δt + aρb]2

]2
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+
[
−η′
( x3

δt + aρb

) x3 (δ̇t)2

[δt + aρb]2
+
ρ

2
η′′
( x3

δt + aρb

) x2
3 abρ

b−1 (δ̇t)2

[δt + aρb]4

+
ρ

2
η′
( x3

δt + aρb

) x3 abρ
b−1 (δ̇t)2

[δt + aρb]3
+ η
( x3

δt + aρb

)
δ̈t

− ρ
2
η′
( x3

δt + aρb

) x3 abρ
b−1

[δt + aρb]2
δ̈t
]2}

dx3

≤ C

∫ ρ0

0

[
ρ3 (δ̇t)4

[δt + aρb]3
+
ρ3 (δ̈t)2

δt + aρb
+

ρ (δ̇t)4

δt + aρb
+
ρ2b+1 (δ̇t)4

[δt + aρb]3
+ (δ̈t)2 +

ρ2b+1 (δ̈t)2

δt + aρb

]
dρ

= C

∫ σ0

0

[
σ

4−b
b (δ̇t)4

[δt + σ]3
+
σ

4−b
b (δ̈t)2

δt + σ
+
σ

2−b
b (δ̇t)4

δt + σ
+
σ

2+b
b (δ̇t)4

[δt + σ]3
+ (δ̈t)2

]
dσ. (7.9)

Applying the integration by parts to the integral of the first term on the right hand side, we obtain∫ σ0

0

σ
4−b
b (δ̇t)4

[δt + σ]3
dσ =

[
b

4
σ

4
b (δ̇t)4

[δt + σ]3

]σ0

σ=0

+
∫ σ0

0

3b
4
σ

4
b (δ̇t)4

[δt + σ]4
dσ

≤ C (δ̇t)4 + C

∫ σ0

0
[δt + σ]

4−4b
b (δ̇t)4 dσ ≤


C (δ̇t)4 for b < 4

3 ,

C ln
(

1 +
σ0

δt

)
(δ̇t)4 for b = 4

3 ,

C (δt)
4−3b
b (δ̇t)4 for 4

3 < b.

The integrals of the third and the fourth term on the right hand side of (7.9) satisfy the same
estimates. The integral of the second term can be estimated as follows:∫ σ0

0

σ
4−b
b (δ̈t)2

δt + σ
dσ =

[
b

4
σ

4
b (δ̈t)2

(δt + σ)

]σ0

σ=0

+
∫ σ0

0

b

4
σ

4
b (δ̈t)2

[δt + σ]2
dσ

≤ C (δ̈t)2 + C

∫ σ0

0
[δt + σ]

4−2b
b (δ̈t)2 dσ ≤


C (δ̈t)2 for b < 4,

C ln
(

1 +
σ0

δt

)
(δ̈t)2 for b = 4,

C (δt)
4−b
b (δ̇t)4 for 4 < b.

Thus, we obtain the inequality

‖∂ta0‖2: Ωt0
≤



C (δ̇t)2 + C δ̈t for b < 4
3 ,

C
[
ln
(

1 +
σ0

δt

)]1/2
(δ̇t)2 + C δ̈t for b = 4

3 ,

C (δt)
4−3b

2b (δ̇t)2 + C δ̈t for 4
3 < b < 4,

C (δt)
4−3b

2b (δ̇t)2 + C
[
ln
(

1 +
σ0

δt

)]1/2
δ̈t for b = 4,

C (δt)
4−3b

2b (δ̇t)2 + C (δt)
4−b
2b δ̈t for b > 4.


(7.10)

The estimate of‖a0‖r
s; Ωt0

. Let s > 3 andr = 2s/(s− 3). Then we have

‖a0‖rs; Ωt0
=
{∫

Ωt0

|a0|s dx
}r/s

≤ C

{∫ ρ0

0
ρdρ

∫ δt+aρb

0

(
|a0
ρ|s + |a0

3|s
)

dx3

} 2
s−3
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≤ C

{∫ ρ0

0
ρdρ

∫ δt+aρb

0

[
ρs

[δt + aρb]s
+ 1 +

ρs xs3 ρ
sb−s

[δt + aρb]2s

]
dx3

} 2
s−3

(δ̇t)
2s
s−3

≤ C

{∫ ρ0

0

[
ρs+1

[δt + aρb]s−1
+ 1 +

ρsb+1

[δt + aρb]s−1

]
dρ
} 2
s−3

(δ̇t)
2s
s−3

= C

{∫ σ0

0

[
σ
s+2
b
−1

[δt + σ]s−1
+ 1 +

σs−1+ 2
b

[δt + σ]s−1

]
dσ
} 2
s−3

(δ̇t)
2s
s−3

≤ C

{∫ σ0

0

σ
s+2
b
−1

[δt + σ]s−1
dσ
} 2
s−3

(δ̇t)
2s
s−3

= C

{[
b

s+ 2
σ
s+2
b

[δt + σ]s−1

]σ0

σ=0

+
(s+ 2)(s− 1)

b

∫ σ0

0

σ
s+2
b

[δt + σ]s
dσ
} 2
s−3

(δ̇t)
2s
s−3

≤ C

{∫ σ0

0

σ
s+2
b

[δt + σ]s
dσ
} 2
s−3

(δ̇t)
2s
s−3

≤


C (δ̇t)

2s
s−3 for b < 1 + 3

s−1 ,

C
[
ln
(

1 +
σ0

δt

)] 2
s−3 (δ̇t)

2s
s−3 for b = 1 + 3

s−1 ,

C (δt)( s+2
b
−s+1) 2

s−3 (δ̇t)
2s
s−3 for b > 1 + 3

s−1 .

Now, if 0 < b ≤ 1 thenb < 1 + 3
s−1 and we have

‖a0‖rs; Ωt0
≤ C (δ̇t)

2s
s−3 (7.11)

for all s > 3. If 1 < b < 5
2 then we can chooses = (b+ 2)/(b− 1), which implies thats > 3 and

b = 1 + 3
s−1 . Hence

‖a0‖rs; Ωt0
≤ C

[
ln
(

1 +
σ0

δt

)] 2
s−3 (δ̇t)

2s
s−3 . (7.12)

Finally, if 5
2 ≤ b thenb > 1 + 3

s−1 for all s > 3 and therefore we have

‖a0‖rs; Ωt0
≤ C (δt)( s+2

b
−s+1) 2

s−3 (δ̇t)
2s
s−3 . (7.13)

Integrability of the right hand sides of (7.8), (7.10)–(7.13).It can be easily checked that the
same estimates as (7.8), (7.10)–(7.13) hold not only onΩt

0, but also on all other parts ofR3.
The conditions (i)–(iii) of Assumption 3 are satisfied if the right hand sides of (7.8), (7.10)–

(7.13) are integrable functions oft on the interval(0, T ). This requirement represents five addi-
tional conditions on functionδt (following from the five inequalities (7.8), (7.10)–(7.13)). Suppose
further, for simplicity, thatδt is a power function of the form

δt = c8 (T − t)γ (7.14)

wherec8 > 0 andγ > 0. Thenδ̇t = −γc8(T − t)γ−1.
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The right hand sides in (7.8) have the forms

C (T − t)2γ−2 for 0 < b < 4
3 ,

C ln
(

1 +
σ0

c8(T − t)γ
)

(T − t)2γ−2 for b = 4
3 ,

C (T − t)
4−3b
b

γ+2γ−2 for 4
3 < b.

The condition of integrability on the interval(0, T ) requires thatγ > 1
2 for b ≤ 4

3 andγ > b
4−b

for 4
3 < b < 4. If b ≥ 4 then 4−3b

b γ + 2γ − 2 ≤ −1 independently ofγ > 0 and the function

C (T − t)
4−3b
b

γ+2γ−2 can therefore not be integrable on(0, T ).
The analysis of the right hand sides in (7.10) shows that we needγ ≥ 1 for 0 < b < 4.
Finally, we can verify that the right hand sides of (7.12)–(7.13) are integrable on(0, T ) if

γ > 1 − s−3
2s for 0 < b < 5

2 andγ > g(b, s) := (s + 3)b/(2s + 4 + 2b) for b ≥ 5
2 . Sinceg(b, .)

is an increasing function ofs on [3,+∞) for eachb ≥ 5
2 , one can always finds > 3 such that

γ > g(b, s) if γ > g(b, 3) = 3b
5+b . However, this condition need not be taken into account because

we already have the conditionγ > b
4−b from the previous paragraph and sinceb4−b >

3b
5+b for

b ≥ 5
2 , we do not need to take the conditionγ > 3b

5+b into account.
The next theorem summarizes the results of this section and it also directly applies Theorems

1, 2 and 3.

Theorem 4. Suppose that domainΩt has the form described at the beginning of this section. (See
also Fig. 1.) Suppose thata∞ = 0 and functiona0 has the form (7.2). Suppose thatδt has the
form (7.14), where

γ ≥ 1 for 0 < b < 2,

γ > b
4−b for 2 ≤ b < 4.

}
(7.15)

Thena0 satisfies all the conditions (i)–(iii) of Assumption 3.

Consequently, Theorems 1 and 2 are applicable. It means that givenu0 ∈ L2
σ(Ω0) and f

satisfying condition (iv), there exists a solutionu of the problem (1.6)–(1.9). The solution is,
after a possible modification on a set of measure zero, locally weakly continuous as an element
of L2

σ(Ωt) in dependence ont (which means that it satisfies (5.1)) and it satisfies the energy–type
inequality (5.2) for allt ∈ (0, T ).
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Dunod, Gauthier–Villars, Paris 1969.

27



[20] M. SHINBROT: Fractional derivatives of solutions of the Navier–Stokes equations.Arch.
Rat. Mech. Anal.40, 1970–1971 139–154.
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