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Existence of a Weak Solution to the Navier—Stokes
Equation in a General Time—Varying Domain
by the Rothe Method

Jifi Neustupa

Abstract

We assume thdt! is a domain inR3, arbitrarily (but continuously) varying f@ < ¢ <
T. We impose no conditions on smoothness or shap@!ofWe prove the global in time
existence of a weak solution of the Navier—Stokes equation with Dirichlet's homogeneous or
inhomogeneous boundary condition@, 7y := {(z,t); 0 <t < T, « € Q'}. The solution
satisfies the energy inequality and is weakly continuous in dependence on time in a certain
sense. As particular examples, we consider flows around rotating bodies and around a body
striking to a rigid wall.
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1 Motivation and introduction

The global (in time) existence of a weak solution to the Navier—Stokes equation in a fixed domain
Q C R3 belongs to classical fundamental results of the qualitative theory of the Navier—Stokes
equation. (See e.g. J. Leray 1934 [18], E. Hopf 1952 [15], M. Shinbrot 1970 [20], O. A. La-
dyzhenskaya 1969 [17], J. L. Lions 1969 [19], R. Temam 1977 [27] and G. P. Galdi 2000 [9].)
The weak solution simulates a flow of a viscous incompressible fluid in dofdaiSince the

fluid can also flow in a domain whose boundaries are not rigid, particularly around moving ob-
jects, a natural generalization is to study the weak solution in a time varying domain. The first
work on this theme was published in 1970 by H. Fujita and N. Sauer [7]. The authors consider
a variable domain)’ whose boundary consists of a finite number of simple closed surfaces of
the classC? at each time € [0,7]. The surfaces can smoothly vary in dependence on time so
that the distance of any two of the surfaces is never lessdhan 0. H. Fujita and N. Sauer
proved the existence of a weak solution to the Navier—Stokes equation in the space—time cylinder
{(z,t); 0<t < T, e}

There have appeared a series of works studying flows in certain time—varying domains in the
last years in literature. The papers which we have in mind in this paragraph concern the motion
of one or more bodies, occupying a closed regiinat timet, in a fluid filling a domainO. The
fluid and the bodies are treated as an interconnected system and the position of the bodies in the
fluid is thus not apriori known. While the motion of the fluid is governed by the Navier—Stokes
equation and the equation of continuity, the motion of the bodies is described by equations that
involve forces and torques with which the fluid acts on the bodies. The weak solvability of such



a problem, provided the bodies do not touch each other or they do not strike to the boundary, was
proved by B. Desjardins and M. J. Esteban 1999 [4], 2000 [5], K. H. Hoffmann V. N. Starovoitov
1999 [13] (the 2D case), C. Conca, J. San lifeand M. Tucsnak 2000 [3] and M. D. Gunzburger,

H. C. Lee, G. Seregin 2000 [12]. The analogous result, without the assumption on the lack of
collisions, was proved by J. San Mart V. N. Starovoitov and M. Tucsnak 2002 [21] (the 2D
case), K. H. Hoffmann, V. N. Starovoitov 2000 [14] (motion of a “small” ball in a fluid filling a
“large ball”) and E. Feireisl 2003 [6]. (The case of a 3D bounded doflaifihe author explains

that there are more possibilities how the solution can be continued after an eventual collision and
he uses the simple contact condition which requires that once two bodies touch one another, they
remain stuck together forever.) The non—uniqueness of a weak solution in the case of a collision of
a body with the boundary was shown by V. N. Starovoitov in 2005 [23] (the 2D case). The strong
solvability of the problem was proved, on a time interval up to eventual collisions, by T. Takahashi
2003 [24] and T. Takahashi and M. Tucsnak in 2004 [26] (both papers treat the 2D case). The
local (in time) existence of a strong solution in the 3D case was shown by T. Takahashi in 2003
[25]. The author also proved the global existence of a strong solution, as well as an asymptotic
stability result, for small data and at the absence of collisions.

Other papers treat the motion of the system bodies—fluid under the assumption that the bodies
produce certain velocity profile on the surface and they consequently move in the fluid due to this
profile. (The bodies are therefore called the “self-propelled bodies”.) The survey of related results
is given by G. P. Galdi 2002 in [10].

In this paper, we assume that is a time—varying domain, whose changes and deformations
are prescribed, and we study the motion of the flui@irin a given time interva(0, 7). Q! can
have an arbitrary variable shape and smoothness, we only assume that its changes depend contin-
uously on time. The Dirichlet boundary condition (homogeneous or inhomogeneous) for velocity
is modelled by means of a given functian simulating the velocity on the boundary. Function
a is required to have certain properties (see conditions (i)—(iii) in Section 2). The conditions on
existence of appropriate functienin fact represent the only restriction on the shape and motion
of domainQ?, nevertheless we show in Sections 6 and 7 that they are satisfied in two concrete ex-
amples: a flow around a family of rotating bodies or a flow around a body striking to a wall. Here
we also derive conditions on the shape of the body and on the speed of the strike which enable the
existence of a weak solution. The paper thus provides a generalization of the existence theorem
from [7]. The part concerned with the flow around the rotating bodies (Section 6) generalizes the
existence result of W. Borchers 1992 [1]. The sufficient conditions obtained in Section 7 (the col-
lision of the body with the wall) represent a complement to some deductions of V. N. Starovoitov
2003 [22], who derived a series of necessary (however not sufficient) conditions for the existence
of a divergence—free flow with properties of a weak solution to the Navier—Stokes equation, in
terms of the velocity and shape of a rigid body striking to a fixed boundary.

As to the techniques used in this paper, it is based on the construction of Rothe approxima-
tions. This method was already applied to the Navier—Stokes equation e.g. by J. L. Lions in [19]
and M. Shinbrot in [20], however in a fixed spatial dom&invith a certain smoothness. The dif-
ficulties, arising from the fact that our domain is time—variable and of an arbitrary shape, appear
especially in the part where we treat the limit transition in a nonlinear term and we therefore need
a piece of information on a strong convergence of a sequence of approximations in an appropriate
norm. The standard compactness argument based on the Lions—Aubin lemma (see J. L. Lions [19],
R. Temam [27]) cannot be used in a usual fashion. A similar problem was solved by D. Bucur,



E. Feireisl,S. Ne&tasowa and J. Wolf in [2] in connection with a limit of the Navier—Stokes system
in a domain with rough boundaries. Here the authors apply a relatively deep information on a
“local” pressure developed by J. Wolf in [28]. Our approach uses a different techniques: we prove
the strong convergence of local (in space and time) Helmholtz projections of the approximations,
which turns out to be sufficient for the limit transition. We show that the weak solution is in
some sense weakly continuous in dependence on time and it satisfies an energy—type inequality in
Section 5. We point some open problems.

We suppose thaf > 0 andQ! is a time—varying domain i3 (for 0 < ¢ < T), satisfying the
following Assumptions 1 and 2:

Assumption 1 (on domainQ?). ¥t € [0,7] : Q! is a non—empty domain iR> such thatR? =
QLUTTUNL whereQ is a non—empty open setiR¥, Q' NQY = () and I'* is a common boundary
of Q' and QL.

We shall also need an assumption on continuitf2bfindI™ in dependence oh Therefore we
define

dg(Qtl, QtQ) = sup distg(a:; Qt2), dg(QtQ, Qtl) = sup distg(a:; Qtl),
z€eQ! zeNt2
dz (1, Q) = max{d(Q1, Q); d(Qf2, O1)}.

The subscrips indicates that the distances are measureimnd the arguments af; are also
sets inR3. If the arguments are setslit? x [0, 7'] then we use the subscrippt Now the assumption
on continuity reads:

Assumption 2 (on continuity of Qf and I'Y). We suppose than;(Qtl, Of2) andcfg(l“tl, I'2) (as
functions of the two variables andt,) are continuous if0, T2

Space—time cylinders));, Q¢ and their boundary. If I is an interval in0, 7'] then we denote
Qr = {(z,t)eR*xI; z€Q'}, Qf = {(z,t) eR* x I, z € OL},
Iy = {(z,t) eR*x I; z eT"}.

Using Assumptions 1 and 2, one can verify tiat x [0,7) = Qo) Ul U Q(fo,:r) where
Q1) and Qfo 7) are open disjoint sets iR® x [0,7) andT'p 1 is their common boundary in
R3 x [0,7).

The initial-boundary value problem and treatment of the boundary condition. The purpose
of this paper is to prove the existence of a weak solution of the problem

ov—vAv+ (v-V)v+Vp =g in Q0,7 1.1
dive = 0 in Q.1), (1.2)
v=a in I 7, (1.3)
v(0) = vo in Q°. (1.4)

Herew is the velocity of the fluidp is the pressureg denotes the external specific body force,
vy is the initial velocity andv is the kinematic coefficient of viscosity. The density of the fluid
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is supposed to be equal to one. The Navier—Stokes equation (1.1) expresses the conservation of
momentum in a moving fluid. Equation (1.2) is the condition of incompressibility. The boundary
condition (1.3) expresses the assumption that the velaciigkes a prescribed value on the
boundary of?.

Usually, in papers on problems like (1.1)—(1.4) with a non—homogeneous boundary condition
of the type (1.3), the authors assume thas at first given on the boundary, they extamndppro-
priately to the interior and they search for the solutioim the formv = a + u wherew is a new
unknown function. The advantage of this approach is thaatisfies the homogeneous condition
u = 0 on the boundary. On the other hand, the disadvantage is that in order to construct the exten-
sion ofa, one needs some rate of smoothness of the boundary (for example that it is lipschitzian),
which we wish to avoid in this paper. This is why we prefer another approach: we assume from
the beginning thad is a given function irR? x (0, 7") such that

a = a00+a0 (15)

wherea™ is a constant vector field iR? (playing the role of velocity in infinity) and” satisfies
certain conditions which will be formulated in Assumption 3 in the next section.
We further look for the velocity in the formv = a 4+ u = a® + a® + u where

du—vAu+ (u-V)a® + (@ +a’) - V)u+ (u-V)u+Vp = f inQur). (1.6)
diva = 0 in Qo) (1.7)
u=20 in I 1), (1.8)
u(0) = ug in Qq, (1.9)
f=g-0a"+vAad® - ((a® +a’)-V)a’. (1.10)

2 Basic notation and definitions

We shall use the following function spaces and notation:
o (., .)a.re is the scalar product ih?(R?) or in L?(R3)3.
| I|4: rs denotes the norm ih?(IR?) or in L9(R*)? or in L7(R?)°.
|| I.2. 3 is the norm inW*2(R3) or in W*2(R3)3 (for k = 0,1,...).

o g% (R3) is the linear space of infinitely differentiable divergence—free vector functioRs in
that have a compact support.

o

(¢]

o LZ(R?) denotes the completion 6155, (R?) in the normy| . |5, gs.

o Wy2(R) (respectivelyW, > (R?)) denotes the completion 6152, (R?) in the norm|. || 5. gs
(respectively||V . ||2. r3)-

o The spaces?2(Q2'), Wy 2 (Q) or Wy 2 (Q) are defined by analogy, as completion€gt, (€2')
inthe norms| . [|2. ot | - [|1,2;0¢ OF |V . [[2: ¢

o Wy, (R?) denotes the dual to the spatié *(R?). The duality betweenV, ;"*(R?) and
Wy Z(R%) is denoted by, ., . )gs. The norm ini, (R?) is denoted by . || _; 5. gs.

(o}
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o If a function is defined in a séb C R3 then the superscript£” denotes the same function,
extended by zero t&3 \. D so that its domain becom&s'.

Now we can formulate conditions that we impose on functifn
Assumption 3 (on functiona'). We suppose that
() a® € L2(0,T; Wy 2(R?)),
(i) da® € LY(0,T; LA(R?)) & L2(0, T; Wy, *(R?)),
2 3
(i) a® € L7(0,T; L*(R3)3) for somer, ssuchthat3 < s <r < 400, -+ - < 1.
T S
More on function f. Let us now return to functiorf defined by (1.10). It is natural to assume
thatg € L'(0,T; L2(R%)) & L*(0,T; Wy, *(R%)). It means thay = g’ + g'!, whereg’ €
LY(0,T; L2(R%) andg’! € L*(0,T; W, »*(R%)). Thus, ifz € Wy 2(R?) then
g, z)rs| < ‘(Qla z)a.re| + |<QH, z)rs|
< ||QI||2;R3 |]|2: 2 + ||9H||71,2;R3 (HZHg:R?’ + HVZH%;RS

< (HQIHQ: R3 + ”9””—1,2;R3) 2|2 r8 + HQHH—LQ;R3 1V z]2:rs-

)1/2

Furthermore, conditions (i) and (i) guarantee that’ andAa" belong to the direct surh! (0, T';
L2(R%) & L2(0,T; W, ,*(R?)) as well. The ternfa™ - V)a? satisfies
[((@® - V)a’, 2)

2:R3‘ < |a’OO’ HVCI’OHQ:R3 HzHQ:R?’

for z € L2(R3)3. Finally, the terma® - V)a" satisfies

((0°- V)a®, 2), o] = < Nla®lsre V0 s 121 2 s

/ (@®-V)a® - zdx
R3

s—27
0 0 = =3
< la ||s; rs [|Va©|la. rs ||z||(;7 R3 ||z”2:SR3
2\2 0 3 53
< (5) 10%lame 190 e 1921500 1210
2 % 3 0 2 % s—3 0 0 ﬁ
< ()5 IValor IV2lare + ()" 57 190 oo 0l 5 Nellocre

for z € W&’Q(R?’)?’. (We have used the Sobolev inequality — see e.g. [8], p. 31 — and the Young
inequality — see e.g. [17], p. 10.) Whil&Va®||5.rs € L?(0,T) due to condition (i) of Assump-
tion 3, the product|Val||y.gs [|a®||*/ ™) belongs toL!(0, T) due to conditions (i) and (iii).

s;R3
Summarizing these results, we observe that

(iv) f(t) € Wy, *(R?) fora.at € (0,T) and

(), 2)gs| < OO lI2lla:rs + ¢ (1) IV 2] s

where¢! € L2(0,T) and¢® € L1(0,T).



Definition 1 (the weak solution of (1.6)—(1.9)).Given functionsug € L2(Q") and f satisfying
condition (iv). Functionu € L2(0, T; Wy 7 (R?)) N L=(0, T; L2(R?)) is called a weak solution
of the problem (1.6)—(1.9) if

u =20 a.e. inQf 7 and (2.1)
T
/ / [~u-0p+vVu:Vo+ (u-V)a" ¢+ (@@ +a") V)u-¢
R3
" T
+ (u-V)u-¢|dedt = / (f,P)rs dt —/ uo - @(.,0)dx (2.2)
0 Qo
for all ¢ € C°(R? x [0,7))3 such thatdiv¢ = 0in R3 x [0,7) and ¢ has a compact support

in Qo,7)-

Identity (2.1) simulates the boundary condition (1.8). Indeed, if the common bouRgary
of Q1) and Q‘[fo ) is so smooth that it enables the existence of a trace then the trace is, due to
(2.1), equal to zero.

The weak solution of (1.1)—(1.4). If u is a weak solution defined above then the functioa:
uta=u+a>+ a’ is a weak solution of the problem (1.1)—(1.4) in the sense that
L*(0,T; Wy (R?)) and

T T
/ / [—v-@t(ﬁ—i—VVv:ng—i—('v'V)'v'qf)]dccdt:/(g,¢>R3dt—/ vo - ¢(.,0)dx
0o JR3 0 Q

0

for all ¢ € C°°(R? x [0, T))? such thatliv ¢ = 0in R3 x [0,7) and¢ has a compact support in
Qo,1)- The functionvy = ug + a(0) represents the initial value efat timet = 0.

3 Approximations, their estimates and weak convergence

The time discretization. We apply Rothe’s method. Let € N. Put

T t 0 L[t
h:=—, ty = kh, Qp = Q% Uj = uy, a, = — a’(t)dt,
n h th—1
1 [t o1 [" 1 1oty
Fj = — f(t)dt, (= — ¢ (¢)dt, G = — ¢ (t)dt
h te—1 h te—1 h l—1
and we successively solve, fbr= 1, ..., n, a series of stationary BVP’s
Ur— U | —vhAUg + h (Ui - V)ai + h((a® +aj) - V)Ug
+ h(U;_1 VYU +hVP, = hFy in Qy, (3.1)
divU, = 0 in Q, (3.2)
U, =0 in 0. (3.3)

Definition 2 (the weak solution of the stationary BVP). Given U} | € L2(R3) and Fy, €
Wy (R?). AfunctionU ), € W2 (%) is called a weak solution of the problem (3.1)(3.3) if
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/Q Uk, — U ¢ +vh VU : Ve + h(Uy - V)ap - ¢, + h(a™ - V)Uy - by,
+h(a)-V)Ug- ¢, +h (UL - VUi - @] dz = h(Fy, ¢) )rs (3.4)

for all ¢, € Wy 7 ().

Lemma 1 (the unique weak solvability of the stationary BVP's). There exists € N such
that if n > ng then the problems (3.1)—(3.3) (fér= 1,...,n) have unique weak solutiodg;
which satisfy

k k
Uk, + D IU; U [0, +2vh > VU5,
Jj=1 j=1
< U3 gs + 2R Z/ Uy -v)US - af dac—|—2hz (Fj, U )rs (3.5)

7=1

Proof. 1) We shall need the estimate of the norm of funceégnin L* (€)%
2s 1 tk _3 tk; 33
||a2|];,};’k = [/ —/ a’(t)dt dx] [ / / |a0|sdwdt}
7 Qf h th—1
1 [t 0 323 1 [tk 0 25
< —/ </ la ]sdm> dt = —/ la® ()], dt. (3.6)
h te—1 \JQp h th_1 ok

2) Let us show that if: is sufficiently large then the bilinear form

A(u,v) = /[u~’u+uhVu:VU+h(u~V)a2-v+h(a°°-V)u~v
Qp
+hial -Vu-v+h(U; | - Vu-v]de

is Wol’f(Qk)—eIIiptic. We have

Alu,w) = [lu]3.0, +vh||Vul3q, +h/ (u-V)ay - ude. 3.7)

Qp

The last term on the right hand side equaish ka( - V)u - alde and it can be therefore
estimated as follows:

h
h/ (u-V)u-addx| < 6vh|Vul3 g +/ |ul? |ag|? da
Qi k 4517/ Qp

h
< 51Vh||vu||§;ﬂk+ﬁ s H“HQ% o
h
2 s—3)/s 6/s
< owh||Vulia, + 5 o, el s,
h 2 \6/s 6/s
< owhVulo, + g5 lablZa, lul3s” (72) " Ivulg,
2s/(s—3
< wh|Vul3q, + 0wk |[Vul3o, +erhaf| X6 [ulo, (3.8)

7



wheredq, 2 > 0 and

c1 = ¢1(01,02,8,v) = 8;3 (%28>553 (45111/)553. (3.9)

(We have used the Sobolev inequality and the Young inequality, see e.qg. [8], pp. 22, 31. Number
is the exponent from Assumption 3.) Thus,

2s/(s—3)
Alw,u) > [1— e hl|af| 2552 ulq, + vh 1 — (01 +8)] [Vul3.q,

The numbers); andd, can be chosen so small th&t + 6, = % Due to estimate (3.6) and

the inequality2s/(s — 3) < r, h|la k||25/(8 %) can be made arbitrarily small (uniformly fér=
1,...,n) by choosingh sufficiently small (which corresponds tosufficiently large). Thus, if:
is sufficiently large, we have

1 vh
A(u,u) > 3 ul3q, + -5 V3. q, - (3.10)

3) Fj is an element OW&;’Q(R%. We can also consideF';, to a bounded linear functional
acting onWy'> (), putting (Fy., ¢p)a, = (Fr, ¢ )gs for all ¢, € Wy 7 (). Due to the
Lax—Millgram lemma, there exists a uniqlg, < W&f((zk) such that the identity

AUk, o) = h{Fr, dp)g (3.11)

holds for allgy, € Wy'2(%). Consequenthyl/;; satisfies (3.4) for allp;, € Wy 7 ().
4) Letus derive (3.5). Substituting, = U, to (3.4), we obtain

(U, — U}, Uy) + vh ||VU|3.q,

2: Qp

= —h [ (Uy-V)a) -Urdz + h(F, U] )gs, (3.12)
Qf
Uk = U}l 0, + VR IVUR]3.0,

= —(Ur—=U{_ .U} 1)y —h g Uk -V)al -Updz + h (Fi,U; gs
k

= U B, h/ﬂ(Uk-vm Upde — (U U s, +h (Fi, Ugs.
k

Substituting here fotU ., U;_, )2: o, again from (3.12), we obtain
U3 0, + 1UL = U_ 3.0, + vE VU0, = U150,
- 2h/ Uy - V)a) - Uy dz — vh | VU3, + 20 (F),, Uj s
Q,
U5 rs + U5 = U130, + 200 VU 3.0, < UG I3 pe

~2h [ (U} V)a}- U de— vh [VUL g, + 20 (FL U e
Qp
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Integrating by parts in the term which contaia$, writing the inequality withj instead ofi and
summing forj = 1,..., k, we arrive at (3.5). O

Approximate solutions and their estimates. Now we define
un(t) == Uy forty_1 <t<ty k=1,...,n.

Inequality (3.5) enables us to estimaig. If ¢;,_1 <t < t; then
2 b 2 2
Ol +20 [ IV B dr < ol
k tj 173
+ 2 Z/ / (un(T) . V)un(T) . aO(T) dedr + 2/ (f(7),upn(7))gs dr. (3.13)
j=1 tj—1 Qj 0
Applying (3.8) and estimating the norm af by means of (3.6), we obtain

tr
[ (8)13. 5e + 2v [1 = (81 + 62)] /0 [V (r)|5.ps dr < [luol3.0,

tr 25 tr
+2er [ 1R ) e dr 42 [0, (3.14)

The integrals on the right hand side can be split to the integrals @rami and fromt¢ to ¢;. The
integrals from¢ to ¢;, can be estimated:

tr 25 tr
21 [ 108 un () e dr 42 [ (70), ()

IN
Q
[\
—~
>
~—
g
S
—~
~
~—
[\
Y
w
+
[\)

/t k [ IVu(T)lla:rs + CO(7) [[wn(7) 2. 5] d7

< co(h) lun(t)|l5.ps + /t ' [21/ (1= 61 — 8) | Ven (7) |12 s
¢H(r)? T ,
taraog gy T+ CE) () s dr

< lea(h) + es(W)] [[un(B)]13, ps + 20 (1 = 61 — 52)/t k IV (7)13: s A7 + ca(h)

wherecy(h) — 0, c3(h) — 0 andcy(h) — 0 ash — 0+. If we further apply the estimate from
condition (iv) to the integral frond to ¢ of (f(7), w,(7))grs in (3.14), we obtain

t
[1 = ea(h) — es(h)] lfun(®)] 2 + 20 [1 — (61 + 6)] / |Vt (1) |2, o d
t 2s_
< JuolZ g, + 20 / ()13t () 2, s 7
0
t
+2/0 [Cl(T) [V (7)|l2:re + ¢°(7) | (7)|2: R3] d7 + ca(h)

t 2s t
< Juollz.q +201/0 la® (7)1 57Rs llwn ()13, re dT+2V53/0 IV (7)1I5, s A
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t t Cl(T)Z
+/0 (261 ()17 g + )] ln (7). d¢+/0 [ g, + )] dr

+ ces(h). (3.15)

Estimate (3.15) holds for ail € (0,7"). Suppose further thadt andés are so small thatz(h) +
c3(h) < 1andd; + d2 + d3 < 1. Denote

yn(t) = [1—=ca(h) = c3(h)] [|un(t)]3, gs:
t 1 T 2 0 T
onlt) = ol + [ [+ 7] dr et
2c1 ||la 3Ot t
Ip(t) = 11H_c(2()ll|§f03(h)(), zp(t) = /0 Un(7) yn(T) dr

The inequality (3.15) can now be shortly written as

t
yn(t) + 20 [L— (81 + 62 + 83)] /O IVen ()2 qa dr < n() + 2(2). (3.16)

Elementary calculations show that(t) — ¥(t) z(t) < ¥(¢) ¢ (t) and therefore

/% ) On(T exp(/ In(o da> dr.

Using this estimate on the right hand side of (3.16) and expressing the fungti@nsy, (t), 95,
from of their definition, we obtain

[1 = ca(h) = e3(M)] lun(®)[13, ps + 20 [1 = (81 + 02 + 03)] /O IVen ()13, gs d7

+ /0 () D () exp < /T n(0) d0> dr. (3.17)

We observe that there exist upper boungs= c5 (1, 62,3, 7, 5, a, ¢, (%, v) and
c6 = cg(01,02,03,7,5,a,(, (0 v), independent of, such that

lwn(t)|2:r3 < 5 fora.a.t € (0,7), (3.18)
T

| 19w g dr < o (3.19)
0

for n sufficiently large. Obviously, due to the relation betwd&ép andw,,, the same inequalities
also hold forU;; andVU :

U ars < e5 fork=1,...,m, (3.20)
hY VUL 5rs < oo (3.21)
k=1

Weak convergence of the approximate solutions. Inequalities (3.18) and (3.19) provide the
estimates of the sequenge,, } in the space€(0,7; L2(R?)) andL*(0, T; W, 2(R?)). Thus,
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there existas € L>(0,T; L2(R?)) N L2(0, T; Wy Z(R%)) and a subsequence fii,,} (denoted
again by{u, }) such that

Uy — U as n — 400 weakly inL?(0, T’; W&f(Rg)), (3.22)
Uy, — U as n — +0o weakly— in L°°(0,T; L2(R3)). (3.23)

4 \ferification that the limit function w is a weak solution

We will show thatu is a weak solution of (1.5)—(1.8) in this section.
Supports ofu,,. Let us denote

= U Qk X [tk_l,tk), Fn = U 8Qk X [tk—17tk)'
k=1 k=1

The support olu,, is a subset of),,.
Lemma2. lim d(Qn. Qory) =0 and  lim d(Ty, Ty = O.

n—-+00
Proof. Lete > 0 be given. Then due to Assumption 2, there exésts 0 such that ift;, t5 €
0,7, [t1 — t2| < 6 thend(Q1, Q'2) < ¢. (The symbok was defined in Section 1.)
Let us choose: € N so large thath = T'/n < 6. Each point(xz,t) € @, belongs to
Qf X [tp—1, 1] for somek € {1;...;n}. Then

dist4((w,t); Q[O,T)) < diSt3($,Qt) < C/I\(Qk,Qt) < €

becausdt — tx| < . Henced(Qn,Qpr)) < e The inequalityd(Q 1y, Qn) < € (for n
sufficiently large) can be proved similarly. This implies the the first equality in Lemma 2. The
second equality can be proved in the same way, we only use the contmdl([yteﬂ“t? instead
of d(Qt1 0f2), O

Lemma 3 (on condition (2.1)). The identityu = 0 holds a.e. |rQ[0 )"

Proof. Letm € N. Denote bwm(Q[O 7)) the 1 _neighborhood oo,y iNR* x [0,T). The
setQ[0 ) €an be expressed in the fo = Ky,, U Ky, whereK,, = Q[O ) NU, (Q[O,T))
anngm = Qf 0,7) N K. PUtK; = mmeNKlm andKs := Qf 0,7) NKp = UmeNKQm Setk;
contains onIy pomts whose distance frépy, 1) is zero. HenceK1 C Qpo,1) Y I'jo,1)- However,
K1 C Qf 7y Thus, K1 = ) andQf ) = K.

Consider a fixedn € N for a while. Due to Lemma 2, the support®f, is disjoint with Ks,,
for n large enough. We claim that the weak linaitof the sequencéu,, } is equal to zero a.e. in
K>,,. Due to (3.22), we have

O:/ U, - uwdedt — u-uda:dt:/ lu|? de dt.
Kom Kom Kom

This shows that: equals zero a.e. iK5,,. SinceQ[C0 ) is the union ofK,,, for m € N, u equals
zero a.e. irQ[C0 )" O

11



Integral identity (2.2). We will further show that: satisfies (2.2) for each infinitely differentiable

and divergence—free test functignin R3 x

[0, T') that has a compact support@), 1. Thus, let

¢ be such a function. We shall consider functipto be fixed from now. As itis usual, we denote
by ¢(t) the function of spatial variables, which arises frgnif ¢ € [0, T is fixed.

We denote byZ,, the left-hand side of (2.2) with,, instead ofu.

follows:

Iy

In5

= Z_:/tkl/ _(Uk'

It can be expressed as

/OT/RS[—un-atcanVVun:V¢+(un.v)ao.¢+((aw+a0).v)un.¢
+ (up - V)u, - ¢] dedt

[* [ oo v, s @i
+ ((aoo+a0)-

VUL - ¢+ Uy - V)Uy - ¢] dadt

U0 é(to) dm—i—Z/ Uy —Uj_1] - ¢(ty—1) dz

+Z/Q [Vh VU : V(tp—1) + h (U - V)ag - ¢(tp—1)

+h (@ +ap) - V)Ug - ¢(tx—1) + h (U - V)Uy - ¢(ty—1)] da

+ an + In2 + In3 + In4 + In5 (41)

vVUy : V[§(t) — @(tp—1)] de dt,

>
Il
—_

Il
M:
T~
5)\

(U} V)a'(t) - $(t) — (Uy - V)a'(t) - $(t-1) | da dt,

e
Il
—

I
M:
S~
53\

:(Uk V)a’(t) - d(tp_1) — (Uy - V)al - ¢(tk,1)} d dt,

>
Il
—_

I
M:
T~
3{‘3\

(@) VU~ () — (a) - V)Up - (1) | dadt,

-1

—_

I
M:
> T2
g\

ol

3l

VIUy - 6(t) = (Up - V)Up - $lty1)] davt

Due to the smoothness of functignand Assumption 25upp ¢(tx—1) is a subset of2, N Qg1

for n large enough. Hence we can repl@fg ; by U

_, inthe integral ovef2;, on the right hand

side of (4.1) and we can use (3.4) with = (¢ 1) We get

T
In:/ u0-¢(0)daz+/ (fs ®)rs At + Tt + Tno + Zng + Tna + Loz + Lug
Qo 0

(4.2)
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where
n T
Too = 3" (i $lt1)") g - /O (f, D)o .

k=1

Let us denotéY) := ;N [Uogt<T sSupp ¢(t)]. Then the 3D Lebesgue measurgXfis bounded
above by a constant, dependinggnbut independent of. Now we can estimaté,,; andZ,,» by
means of (3.20) and (3.21):

Tl < v vu ([ Ve - Vet dt) de

te—1

Qp

n tr t
< I/Z/ \VUky/ Vo, ¢(r)dr dt| de
=1 Y % te—1 Jtg—1
n n 1/2
< vC(@)h? ) |[VUk|20, < Vv C(¢) V3 ﬁ(uhZvakH%Qk)
k=1 k=1
< VrC()hVT e,
n tr
Tl < C&)h S IUF a0, / IVa(t) 0,
k=1 k—1
n 1/2 n t 1/2
< c<¢>h<h2nvzuigk) (Z / ||Va°<t>||%;ﬂkdt>
k=1 k=1"tk—1
T 1/2
< Cl@)hc” (/0 HVaU(t)!%;deQ .

These estimates and identities show that — 0 andZ,,; — 0 if n — +oo (and soh — 0).
Similar estimates af,,4,—7,,¢ show that all these terms also tend to zero # +o0. The integral
7I,3 equals zero:

In3 = ; /tkk1 /Qk(U; . V)¢(tk_1). [GO(t) _ag] de dt

_ é/ﬁk(vg.vm(%_l). </tk ao(t)dt—/tk aO(T)dT> dzdt = 0.

te—1 te—1

Thus, we have proved that

n—-4o0o

T
lim 7, — /Q wo - B(0) d + /0 (F, dVro d. (4.3)

In order to verify thatu is a weak solution of the problem (1.5)—(1.8), we still need to show that

n—-+4o0o

T
lim Z, = / / [—u-8t¢+VVu:V¢+(u-V)a0~d)
0o JRr3
+ (@@ +a’ Vu-¢+ (u-V)u-¢|dzdt. (4.4)
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The identity

T
lim //[—un-atq‘)—i—uVun:Vq‘)—i—(un-V)ao-(b—i—((a°°+a0)-V)un-¢]da:dt
0 JR3

n—-400
T
://[_"'at¢+VVU3V¢’+(U'V)ao'¢+((a°°+a0)-V)u‘¢]dazdt (4.5)
0 R3

follows from (3.22) and (3.23). Thus, it remains to show that

lim /OT/RS(un'V)qubda:dt:/OT/R3(u~V)u-¢dacdt. (4.6)

n—-—+o00o

It follows from the definition ofZ,,, (4.3) and (4.5) that the limit on the left hand side exists. Thus,
to show that it equals the right hand side of (4.6), it is sufficient to check the value of the limit for
an arbitrary subsequence i, }. It is an objective of next paragraphs.

Let us denote byl the positive distancéisty(supp ¢, g 77). Due to Assumption 2, there
existsm € N such that ift,, t2 € [0, 7], |t1 — t2| < 2T/m thenC/Z\g(Ftl,FtQ) < liod.

Further, we denote; = j7'/m (for j = 1,...,m). There existn + 1 infinitely differentiable
functionst, ..., 6, on[0, 7] such thab < #; < 1 and

supp by C Jo := (70,71),
suppb; C Jj := (Tj-1,Tj41) forj=1,...,m—1,

Supp b, C Jum i = (Tin—1,Tm,)»
d 0;t)=1 foro<t<T.
7=0
Now we putg; := 6;¢. Let K; be the orthogonal projection efipp ¢, ontoR3. If t, s € J;
then
dists(supp ¢(t), I'*) > dists(supp ¢(t), I'*) — d3(T*,T%) > d — &d = 2d.

Hencevs € J; : dist3(K;,I'*) > {d. There exists a bounded open §&tin R* with the
boundary of the class™! that has a finite number of components didc ©; C Q_; c QF (for

all s € Jj).
In order to prove (4.6), it is sufficient to show that
lim / / (un - V)uy - ¢; dedt = / / (u-V)u- ¢; dzdt. (4.7)
note Jg; Jay Jj I8

forall j =0,1,...,m. We denote by?/ the Helmholtz projection itL?(2})?. Putwy, := Pu,.
The function[I — P]u,, has the fornivy, for an appropriate scalar functias,. (4.7) can now
be written as

n—-+00

lim //[('w%~V)'w2;-¢j+(w¥;~V)W$;-¢j+(wg;-V)ng-¢j
7 ey
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+(W£~V)W¥;‘¢j} dedt = /J.//(U-V)u-qu da dt. (4.8)

Since(Veh, - V)Vl = V(3IVeh|?) ande(t) € L2(£), the integral of Vil - V) Vigh, - ¢, on
Q) equals zero.

The convergence (3.22) and (3.23) and the boundedness of opE’piaxtan%QQ)3 and in
W2(€2;)? imply that

w% — ’u}j = Pgu, and VQO% — VSOJ = [I— Pg]u for n — +00 (49)
weakly in L?(.J;; W12(})%) and weakly= in L>(J;; L2 (52)).

Strong convergence of a subsequence {}tu%}. We are going to show that there exists a sub-
sequence ofw,} that tends taw’ strongly inL?(.J;; LZ(€})) asn — +oo. We shall therefore
use the next lemma, see Theorem 5.2 in J. L. Lions [19].

Lemmad4. Let0 < v < % and letH,, H and H, be Hilbert spaces such thafy —~— H — H;.
LetH?(R; Ho, Hy) denote the Banach spadev € L*(R; Hy); |97 w(0) € L*(R; Hy)} with
the norm

N 1/2
|l o 1) = (0] 2ge ) + 1O D2 11,)) >

(Here w(¥) is the Fourier transform ofv(t).) LetH"(a,b; Hy, Hy) further denote the Banach
space of restrictions of functions frohi” (R; Hy, H;) onto the intervala, b), with the norm

HwHH’Y(a,b;HO,Hl) = inf HZHH’Y(R;HO,Hl)

where the infimum is taken over alle HY(R; Hy, H;) such thatz = w a.e. in(a,b). Then
HY(0,T; Hy, Hy) —< L?(a,b; H).

Considerj € {1; ...; m} fixed. We shall use Lemma 4 witfu, b) = J;, Hy = W'?(})* N
L2(Q), H = L2(Y) and Hy = W, (). We claim that{w?,} is bounded in the space
H(Jj; Ho, Hy). The boundedness §iv7,} in L?(.J;; Hy) follows from (3.18), (3.19) and from
the boundedness of operatBy in L*(Q2;)* and inW!2(©2;)?. Thus, we only need to verify
that {|9|” wi,,} is bounded in the spack?(J;; Hy), i.e. in L*(J;; Wy ~(€2))). Let 2}, be an
extension by zero ofv}, from the time interval/; ontoRR. Then

N ) . 23 ) .
2in(0) = / e Ml (1) dt = ) / e~ 2 pigy, dt (4.10)
J

g keAr Yte—1
J

whereA is the set of such indicgs € {1;...;n} that [R3 X (t)_1,t,)] Nsupp ¢; # 0. A} has
the formA” = {l;14+1;...;9} wherel <[ < ¢q < n. Calculating the integrals in (4.10), we
obtain

Gy _ L v om0 —2rityd] pj
Z%(ﬂ)—kz:zﬂ_ng [e MtV _ o Wlk]POJ_Uk

q
=l
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_ 1
= S |

q
Ze—2witk,1ﬁ [PgUk: _ PgUk—l}' (4.11)
k=I+1

e—27Tit171 Pg—UZ o e—27ritq Pb]—Uq] + 53
1

SinceQ;. c @ forall s € J;, we also have); C Qy forall k € A7 (if n is large enough). If
[9] < 1then, using (4.10) and (3.20), we can estimpie|” 2%(19)”_172; o as follows:

q
1O 2,1 2,00 < COG O D hIURl2cr < C()) Ves [9]- (4.12)
k=l

If |9] > 1then, using (4.11), we get

) o1 ,
119D 20 sy, < 0 (LB 1 s + 1PV 1)

I A ,

t > IPUL - PJUk-ll =12,

k=l+1
< O Pt (HU1”2~Q’ +|Uq H2;Q;.)
|19|V_ /
sup Uk —Up-1) - de|.
2 ,;;Ll H"M|12 o |Jay

The supremum is taken over all € W(}’f(Qg) such that||1,b|]172;93_ > (. The functiom)™ (i.e.

extended by zero t&3 \Q;) belongs td/Vol,f(Qk) forallk =1,...,q. MoreoverU_ coincides

with U;_l in Q; Hence the integral ofU;, — Uy_1) - 1 on Q; equals the integral of the same
function on(2;. and it can be therefore expressed by means of (3.4). Thus, using also (3.20), (3.21),
(3.6) and condition (ii), we obtain

9] 20 ()]l -1,2,0, < C() \W‘l Ves
L et -

sup
27 Z HT/’||12 Q

k=Il+1

—h(@™- VUi +(a} - V)9 -Up = h (Ui - V)Uy -] d@ + h (Fy,, 9" )gs

//[ vhVU} : Vi +h Uy -V - a)

IR

S C\/—‘ﬁ”y 1 Z Sup |’¢”129 {VhHVUkHQQ; ”v"pHQQ;
k=l+1 Rk
+ 20 Uk 2 g [Vl @Rl + B 1a™ [ VU0 ]l2: 0
1/2
RT3 6 VU5 5, 14l
tk
[ IO Wl o + ¢ O 1V ey
k—1
< Ot +hC Pt Z{VHVU,CHQM

k=2

1/2

+ [Tkl 10,0 1080y + IV Okl + 102, VU, )
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n 1/2
CPrt + 1t (v 4 1) (Z h vak\%m)

<
k=2
" ys=3\2 [ e -
L opp! (Zhuvkuﬂfk)( huvvku%ﬂk) (Zhr\Va2\|;R3)
k=2 k=2 k=2
n 3/4
L opp (Z h ||vuk||%zgk>
k=2
n 1/r
< Ccppt+cpp (Z h\\a2\|;R3) < P (4.13)
k=2

(We have used the interpolation inequality

-3 3 -3 3
1O 250, < 10l UGS, < IUISG)" 10,

and the Sobolev inequality; see [8], p. 31. The generic congtantay depend o, a,

T, v, c5 andcg.) These estimates hold fgf| > 1 and the constant’ is independent of.

Since0 < v < 3, we observe that the sequengé|” J,(1)} is bounded inL?(R; Wy ,2(€})).
Consequently, the sequenga, } is bounded ik (.J;; W2(Q))%, Wy *(2))). This space is
reflexive, hence there exists a subsequence (we denote it agﬁivﬁbt}y which converges weakly

in 1 (s WEHAH(Q)%, Wy 2(22))). Due to (4.9), the limit must bev?. Applying now Lemma

4, we have:w?, — w’ = Plu strongly inL?(.J;; L*(9})*). This strong convergence, together
with the weak convergence (4.9), enables us to pass to the limit in the first three terms on the
left hand side of (4.7). This procedure is standard (see e.g. J. L. Lions [19] or R. Temam [27]),
therefore we omit the details. Using also the equality

/ (Vo -V)Vp-¢;dx = 0,
Q'
J

following from the inclusionp; € L2(€2}) and from the identity Vo - V)V = V(3|Vy|?), we
can prove the validity of (4.8). We have thus completed the proof of the theorem:

Theorem 1 (existence of a weak solution)Suppose that Assumptions 1 and 2 hold. Then the
problem (1.5)—(1.8) has a weak solution that coincides with funaiifnom (3.22) and (3.23).

5 The local weak continuity of the weak solution and the energy—type inequality

Theorem 2 (the local weak continuity). Suppose that Assumptions 1 and 2 hold. The weak solu-
tion u of the problem (1.5)—(1.8), given by (3.22) and (3.23), can be modified on a set of measure
zero so that ity € [0, 7) andwyp € L2(Qf) then

lim (“’(t)>¢)2: Qto = (u(t0)7¢)2;9to' (5.1)

t—tg, 0<t<T

We call this type of weak continuity ofi the “local weak continuity” because the space from
which we can choose functiap (i.e. L2 (Q%)) depends oft.
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Proof. Suppose for simplicity tha, > 0. There exists a sequen¢e,, } in ng,(QtO) such that
¥, — v in LZ(Q%). Due to Assumptions 1 and 2, there exjst> 0 such thatupp v,, C Q!
fortg — &, <t <tg+ &,. Since

[ (u(®) = ulto), ¥) 5.0 | < [((t) = ulto), P = %)y gu | + | (w(t) = ulto): $n) 5. 00 |

and the first term on the right hand side can be made arbitrarily small by choosiificiently
large, it is sufficient to prove (5.1) with a fixed functign, instead ofiy. Denote by’ a bounded
sub—domain of)! (for all t € (tg — &u, to + &,)), containingsupp 44,,.

Let us now return to the integral identity (2.2) in Definition 1. Considegingith a compact
support inQ’ x (tg — &, to + &,), We have

T
/ / (u~V)u-¢dmdt’ =
0 R3 to—&n

t0+§n t0+§n 3/2 1/2
< / V2o lulls o @60 dt S/ IVaull3: o lully g 1@lle; o

to—&n tO_gn

to+&n ) 3/4 to+&n . 1/4
< fc(/ ||VUH2:Q/dt) (/ \|V¢H2:Q/dt) |

O_En to ﬁn

to +§n

/ (u-V)u- qbda:dt‘

to+én
[ 01900 + O 100w o

tofé.n

T
/O (F, Brs dt’ —

< C sup ess||o(t) Hl,2; -
to—En<t<to+én

We can similarly estimate all other terms in (2.2), except for the first term which equals the integral

fttofg"’ fQ, u-0y¢p d dt. Thus, we can deduce that the time derivative (in the sense of distributions)
of u belongs toL! (ty — &, to + &n; W(;;’Q(Q’)). Henceu can be modified on a set of measure

zero so that it becomes an elemenﬂqﬁ’Q(Q’), continuously depending ann (to—&,, to+&x).
This property ofu implies that

{("(t) - u(t0)7¢n)2:9t0‘ = ‘(“(t) — u(to), ’vbn)zzgf

< HU(t) - u(tO)H_LQ;Q/ ||¢7LH1,2§ o — 0 fort — to.

Thus, (5.1) holds withy = 1, € C§%,(2"). Hence it also holds withp € L2 (/).

SinceQ)o,r) can be expressed as a countable union of cylinders of the(type(t — £, ¢ + §)
(or Q' x [0,€)), whereQ?' is a bounded domain iR?, ¢ > 0 and the closure of each cylinder is
a subset of)|, 1), the modification of function: on a set of measure zero@, 1) can be made
independently of a concrete choicetgfe [0,7) and function.

The energy-type inequality. Lett € (0,7). Inequality (3.18) provides the uniform estimate
of u,(t) in L2(R3). Thus, there exists a subsequetied } of {u,} andu’ € L2(R3) such that
ul (t) — u! weakly in L2(R3). The norm ofu’ satisfies

n

[u'(|g.rs < nl{rfoo inf ||uf, (t)]l2.rs-

Due to (3.23)u! = u(t), with a possible exception of a setof (0,T) of measure zero. We
can obviously modifyu(t) at these exceptional timesso that||u(t)|/s.rs = [Ju']|2.rs for all
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t € (0,T). The modification can be made only in the complementarf2éeb ¢, so that it does
not disturb the modification af in o 7y, considered in the proof of the Theorem 2. Passing now
to the limit (forn — +oc0) in the inequality (3.17) (where we consider instead ofu,,), and also
using the weak convergence (3.22) and the limi{$) — 0, c3(h) — 0, ca(h) — 0 ash — 0+,

we obtain the inequality

t
) g+ 20 [1 = G182+ 30)] [ V() g dr
0

< volt)+ | o) o(r) oo [ " do(o) o) ar (5.2)

Recall thaty, o andds are arbitrary positive numbers (the interesting case is 2 + 03 < 1)
andc; = c¢1(61,09,7,s,v) is given by (3.9). This inequality provides the upper bound for the
kinetic energy, associated with the flow field at timet and for the dissipation of mechanical
energy in the time intervel, t). We can thus formulate the following theorem:

Theorem 3 (the energy—type inequality).Suppose that Assumptions 1 and 2 hold. The weak
solution u of the problem (1.5)—(1.8), given by (3.22) and (3.23), can be modified on a set of
measure zero so that it satisfies the inequality (5.2) for @l (0,7'). The modification does not
influence the local weak continuity af stated in Theorem 2.

We call the inequality (5.2) the "energy—type inequality” and not merely the "energy inequal-
ity”, because it contains artificial parametéis 6, andds, constant; and functions;! and¢?,
which rather overshadow the affect of the viscosity, the boundary conditions and the specific body
force on the development of the kinetic energy associated with the velocityfighdl its dissipa-
tion. We discuss the validity of another form of the energy inequality, which seems to be in some
sense more natural than (5.2), in the next paragraph.

An open question. Sinceu, () (for t;_; < 7 < t;) equals zero a.e. iR® — ;, we can write
the inequality (3.13) in the form

t
i ()2, s + 20 /0 IVt (P2 dr < [luolZ.

t - V)un(7) - a’(7) de dr t7"u,7'37'C
+2/0/Rg(un(r) V)u, (1) - a’(7) ded +2/0<f( ), (7))gs d7 + c7(h)  (5.3)

for0 < t < T, wherec;(h) — 0 ash — 0. There arises a question whether we can also pass to
the limit in this inequality (with the sequende,, } or at least with a subsequencef{af,, }) and
derive the inequality

t
()2, + 20 /0 [Vt (7) 2 s A < [l 0

t . .
+ 2/0 /R:S(U(T)-V)U(T)-a (1) d:vdT—l—Q/O (f(7),u(7))rs dT. (5.4)

Using similar arguments as in the previous paragraph, one can show that the limit inferior of the
left hand side of (5.3) is greater than or equal to the left hand side of (5.4). However, it is an open
question if we can also pass to the limit on the right hand side of (5.3), namely, whether

lim /Ot /R3 (un(7) - V)un(7) - a’(t)dxdr < /Ot /RS (u(r) - V)u(r) - a’(t)dzdr (5.5)

n—-+o00
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holds. The limit on the left hand side is of the same type as the limit in (4.6). However, the test
function ¢ in (4.6) had a compact support @ 1), which strongly helped us to calculate the
limit. Now, (5.5) contains the functioa® instead of¢ anda does not generally have a compact
support inQp 1. (Interesting applications even requid to be non—zero on the boundary of
Qo,r)-) Thus, the procedure used in Section 4 in the evaluation of the limit in (4.6), cannot be
applied to the limitin (5.5). We therefore leave the question whether (5.5) is true (at least for some
subsequence dfu,, }) as open.

6 Example 1: The flow around rotating bodies

Definition of function a. Let us considefN compact bodies, rotating around the axes given
by the parametric equations= g, + se;; s € R with constant angular velocities;, ..., wy
(t=1,...,N). We putw; := w; e;. We suppose that the distance between any of the bodies at an
arbitrary timet € [0,7] does nor exceed > 0. We denote byK! the closed region occupied by
thei—th body at time. The domain, filled by the fluid at timg is Q' := R . (UN, K}).

The assumption on adherence of the fluid to the body on its surface leads to the boundary
condition for velocity:

v(z,t) = w; x (x —g;) = —curl (1 |az—qi\2wi) forx € 0K}; i=1,...,N. (6.1)

Let7; be aC> cut—off function inR? x [0, 7] such that

1 if dist(z, K!) < 14,
ni(x,t) ¢ €(0,1) if 1d<dist(z, K!) < 1d,
0 if dist(z, K}) > $d.

Now we puta := a™ + a wherea™ = 1 curl (a® x ) represents the constant velocity in
infinity and

N
a’(x,t) = —% curl <Z ni(x,t) [l — q;[Pwi + (@™ x a:)})
i=1

Functiona now satisfies the boundary condition (6.1) arfcalso satisfies other conditions named

in Assumption 3. Consequently, Theorems 1, 2 and 3 are applicable and they provide the exis-
tence of a weak solution of the problem (1.5)—(1.8), as well as the information on its local weak
continuity and the energy—-type inequality.

7 Example 2: The flow around a body perpendicularly striking
to a plane

The geometry of the flow field. We consider a flow of a viscous incompressible fluid in the
half-spac&3 := {z = (21,22, 23) € R3; z3 > 0}, around the body which occupies the closed
regionBY at timet = 0. The body moves perpendicularly towards the zo,—plane in the time
interval [0, 7] so that its motion is purely translational and its distafcéat timet) from the
x1, zo—plane satisfies the condition
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(vi) & is a differentiable non—increasing functiontadn the interval0, 7] such that® > 0 and
§T =0.

Hence the body takes the region
B' = {(z1,72,23) € R% (21, 20, 23+ 8° — §') € B'}

at a general time and it strikes to the:;, xzo—plane at timél’. The domain, filled by the fluid, is
Q' =R3 \ B

The system of coordinates can be chosen so that the nearestSpaifithe to thex;, xo—
plane has the coordinat&é = (0,0, §*) and the body thus strikes to the, zo—plane at the point
O = (0,0,0). (See Fig. 1.)

It will be further advantageous to work in the cylindrical coordinateg, x3, whose origin is
pointO. We denote the corresponding unit vectorsehye,, andes.

We choose sufficiently large numbdrand h such thatB! is a subset of the cylindeip <
[, 0 <x3 < h}forallt e (0,7). We assume that there exigis < (0,[) and positive numbers,
b such that

V(p,p,23) € Bt : p<pg = 13> 6"+ ap’. (7.1)
s
: -- h+ Ah
Fig. 1 Loy
o |0l o g
I w3 = 0" + ap
5t ap
ap} ] N St___ ______ st Po
p o Y
: L1, L2
O p=p0 1 1+Al
Qf : *

Definition of function a. In this geometrical configuration, we will construct functiarof the
form (1.4) inR3 x (0, T), satisfying all the conditions from Assumption 3. We jpdt = 0.
The crucial part of2!, where the stroke occurs, is

Q= {z=(p,p,x3 0< p < po, 0<a3<d +ap’}.
We also denote

Qﬁ = {(p,tp,xg)GRS; POSP<Z, 0<x3<5t+ap8}7
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Q) = {(pp,x3) €R® p<l, 0<a3<h}~(QHUQL,
Q= {(p,p,23) ER’ p<I+AlL 0<a3<h+Ah}~ (QUOLUQY),
QF = RPN (QQuUQiUuuQl)

whereAl and Ah are chosen positive numbers. The $etsQ are mutually disjoint and their
union isQ’. Set} containsB?. (See Fig. 1.)

Let » be an infinitely differentiable cut—off function of one variable such that) = 0 for
s<0,0<n(s)<1for0<s<1andn(s)=1 for s> 1. We put

a’(p,z3,t) := curl w(p,zs,t) bt (7.2)
where €3
2pn(6t—|—a,0 ) e, for (z,¢,x3) € Qf,
1 3 ¢
—pn( )e for (z,p,z3) € O,
w(p,s,t) = § N\ tapf/ T 1
%p €y for ($7 907563) € Qéa
0 for (z,¢,13) € Q.

In order to avoid complicated formulas, we simply assume that funetiom set(2} is a smooth
extension ofw from Q} U QF, which is zero near the boundary wil{. Obviously,

a’ = ag e, + ag es (7.3)

wherea = a3 = 0in R3 U Q4 andal = 0, a3 = o in Q5.

We shall further examine what propertiessbfimply that the functioa? satisfies conditions
(i)—(iii) from Assumption 3. We will naturally focus on the behaviordf in the most interesting
partQf, of Q. We can calculate thaf), = 0 and

ap(p,xs,t) = —g 3377(ﬁ3apb> o' = —g 77/(5t _T_Zpb) 5t _itapb’ (7.4)
Spast) = 1 0p[2 n(5 )] o
B [n<%3apb) B g 77,((575 —iaj?)apb) [ﬁf j—bs,bob]z} o (7:5)

in domain(2). In order to verify the conditions (i)—(iii), we shall estimat€a’ |3, oy 10’2
andHaOHQ o (for s andr satisfying the assumptions from condition (iii)).

The estimate of|[Va®||?, oy The componend,a) of Va’ can be estimated dnj, as follows:

tiq b
10,a%)? de = 27 " d e 10,a%)? dz:
t P%p - 0 pap 0 P%p 3

/po oy /5t+ap / T3 ) 5t N n”( T3 ) abpb T3 5t
5t +apt/ 2[6 + ap) 5t +apb/ 2[6t + ap?]3

22




€T abpt &t 2
+77’( 3 ) i p ]2] dzs

8t + apb 8t + ap?
0 §t+ap® 5t 2b 2(5t) ,02b (51&)2
<
. C/ ”dp/ [(mam o+ gl [6t+apb14]d“’”3
P0 2b+1 (St £0 NAY
L) / p(d°)
< dp < d
- C/ [5t+ap [5t+apb]3} p=c o o tapt”
C (612 for0 < b < 2,
B ago o b ; 0‘_ " .
_ c/ T do (87 cm(i b ) (@12 forb =2, (7.6)
C (6575 (8%)? for2 < b.

(We have used the substitutiap® = o, i.e. abp’~! dp = do, and the notatiowy = ap.) The
generic constant’ may depend on the numbess, [, h, Al, Ah, a, b and on functior, in this
section.

The estimate of;a) yields:

02 ro ' ap? 02
/Qt |03a,|” dz = 27r/0 pdp [/0 |03a,| d$3}
0

po Sttap® 2 2 §t)2 PO t
_ P L3 (6 ) / 5
N /0 pdp (/0 4" ((V—i-apb) [6t + apb]* da:3> ¢ 5t+ap

—b C(St)g for0 < b < §’
gQ == )
= C/O [5t+03d0(5t)2 < C’ln<1—|— 5t>(5t> forb = 3, (7.7)
C (85" (842 for & < b.

We can similarly derive that
/ 0,a3]% dz < C (812
2

The estimate of;a) is the same as (7.6). Hence we arrive at the inequality

C (0%)? for0<b< 4,
HVQOH;% < C ln(l + 51&) ((';t)Q forb = é’ (7.8)
4— db
C (07 (07 for & <b.

The estimate of||9;a||,. ;. Calculating the derivativé;a® from (7.4) and (7.5), we obtain

00 5t4-apb $t\2
012 P n T3 3 (0")
19kl W/o ’ p/o {[277 ot +ap®/ [6" + ap’]?

o T3 o' P T3 () 2
n <6t + apb> ot + apb + 9! (5t + a,ob> [6t + ap?]?
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+ 777/( T3 ) r3 (St)Q p //< 3 ) $§ abpb_l (St)Q
8t +apt/ [6t +apb]? 2 8t +apt/ [0t + apb]?

p ( 3 >903abpb1(5t)2+< x3 )5,5

+5 77 5t+ap [515 +apb]3 U 5t_|_apb
_ B T3 T3 abpb_1 - 2
g (5t + apb ) [6t + apP]? ) dzs
- C/Po 5t 3 (5’15)2 N p((;t)4 N p2b+1 (51&)4 N (5t)2 N p2b+1 (('5't)2 q
- [6t + ap?] 5’5 +apt 6t +apd  [6F + apb]? 5t + ap® P
7 S G A G S
_ . 7.
0/ [5t+a 6t+a R + [0f + o (6)](10 (7.9)

Applying the integration by parts to the integral of the first term on the right hand side, we obtain

/00 P (St)4d B Qg% (6t)4 770 +/003_b o (64 d
o B ol T AT P Sy Ao

C (0H)* forb < 3,
< C (6 +C/ [6F + (H*do < C ln(l ?) (614 forb = %,
C (55" (6 for 3 <b.

The integrals of the third and the fourth term on the right hand side of (7.9) satisfy the same
estimates. The integral of the second term can be estimated as follows:

/oo o5 (57&) 90% (542770 +/cro b ob (51)2 "
0 o +o 4(0t+o0)],_g Jo 4[0t+0]?

C ()2 forb < 4,
< C(5h)? +C/ 5t+a] a2 (5'5) do < Cln(1+ ) (812 forb = 4,
C(5H5 (61 for 4 < b.
Thus, we obtain the inequality
C (64 + O forb < 4,
1/2 . ..
c[ln 1+%)} (612 + C 5 forb =4,
10009 < { C (5T (842 + C'5t for 4 < b < 4, (7.10)
_ . 1/2 ..
C (35" (82 + C [1n(1+ %)} P5 torb— a4,
C (5H)%5" (812 + C (64) 5" &t for b > 4.

i 0
The estimate of||a HZ; ay°

0 0 e P et o 0 =
ey = { [ 1aaa} <o [“pan [ (il + ) an |
o 0 0
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Lets > 3 andr = 2s/(s — 3). Then we have



Po §'4ap® s S .8 sb—s 533
P p x3p t 2s
< s—3
< C{/O Pd,O/O [[(V—i—apb]s [5t+apb]28} daig} (6%)
Po s+1 sb+1 2
P P 1y 22
< -
- C{/o [W e R P +apb]51] dp} (07)57
s+2 2
ol g% 1 oS5~ 1+% Py S
= 1 53
C{/o [WH]H AR 1} d"} @)
s+2 2
o g b -1 s—3 2s
< t\ 5=
< C{/O FEE 1da} (6")5=3
Y A R i ®+%@—D/“ AP L
B s+2 [0 o5t _, b y P top
70 O’S}tQ 333 + 2s
< o
< C{/ 3+ o] do} (6")5=3
0
Sty 22 3
C (&%) forb <1+ 2,
2
< C[ln(lJr%)]H’ (593273 forb=1+ 2,
C(&t)(s'g?_s-i-l)ﬁ (615) 32_53 forb > 1+ s—il
Now, if 0 < b < 1thenb < 1+ -2 and we have
la®l5, < C (813 (7.11)

forall s > 3. If 1 < b < 2 then we can choose= (b+ 2)/(b — 1), which implies that > 3 and
b=1+ 2. Hence

2
oyr 00\ 58 ;22
Finally, if 3 < bthenb > 1 + 2 forall s > 3 and therefore we have

S—

2 2s

la’ll7, o < O () F s+ (5155, (7.13)

Integrability of the right hand sides of (7.8), (7.10)—(7.13).It can be easily checked that the
same estimates as (7.8), (7.10)—(7.13) hold not oni2@rbut also on all other parts &.

The conditions (i)—(iii) of Assumption 3 are satisfied if the right hand sides of (7.8), (7.10)—
(7.13) are integrable functions oéfon the interval(0,7"). This requirement represents five addi-
tional conditions on functiot’ (following from the five inequalities (7.8), (7.10)—(7.13)). Suppose
further, for simplicity, tha? is a power function of the form

5t = cg (T — 1)) (7.14)

wherecg > 0 andy > 0. Thend! = —vyeg(T —t)7 1.
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The right hand sides in (7.8) have the forms
C(T —t)>—2 foro <b< %,

__9%0 5272 _4
01n(1+68(T7m)(T ) forb =4,

C (T —t)" 5" 1272 for 3 <b.

The condition of integrability on the intervé, T') requires thaty > 1 for b < 4 andy > ;%

for 3 <b < 4. If b > 4then®522y + 2y — 2 < —1 independently ofy > 0 and the function
3b

C(T —t)"5 7+27=2 can therefore not be integrable (h 7).

The analysis of the right hand sides in (7.10) shows that we fieed for 0 < b < 4.

Finally, we can verify that the right hand sides of (7.12)—(7.13) are integrabl@,ah) if
v>1-23for0<b< 3andy > g(b,s) := (s +3)b/(2s + 4 + 2b) for b > 3. Sinceg(b, .)
is an increasing function of on [3, +oc) for eachb > g one can always find > 3 such that
v > g(b,s)if v > g(b,3) = 53—& However, this condition need not be taken into account because
we already have the condition > 4%17 from the previous paragraph and singgu > 3b for

540
b > 5, we do not need to take the condition> :2; into account.
The next theorem summarizes the results of this section and it also directly applies Theorems

1,2 and 3.

Theorem 4. Suppose that domain’ has the form described at the beginning of this section. (See
also Fig. 1.) Suppose that™ = 0 and functiona® has the form (7.2). Suppose th#thas the
form (7.14), where

>1 for 0 <b<2,
(7.15)

> b for 2<b<4.

Thena? satisfies all the conditions (i)—(iii) of Assumption 3.

Consequently, Theorems 1 and 2 are applicable. It means that giyea L2(Q") and f
satisfying condition (iv), there exists a solutianof the problem (1.6)—(1.9). The solution is,
after a possible modification on a set of measure zero, locally weakly continuous as an element
of L2(Q?) in dependence oh(which means that it satisfies (5.1)) and it satisfies the energy—type
inequality (5.2) for allt € (0, 7).
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