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Abstract. We study the resolvent equation associated with a linear operator L arising
from the linearized equation for perturbations of a steady Navier-Stokes flow U™. We
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1. Introduction

Assume that © C R3 is an exterior domain and U™ is a steady solution of the
Navier—Stokes system

oV +(V-V)V = -VP+vAV + F in Q x (0,400), (1)
divV =0 in Q x (0, +00) '
with the boundary conditions
V=0 in 09 x (0, 400),
(1.2)
V(x,t) — (1,0,0) for |x] — +o0

where (7,0, 0) is a constant velocity at infinity. The solution U™ can be written in
the form U™ = U + (7,0,0) where

T U+ U-V)U = -VP+vAU+F  inQ,

divU = 0 in Q,

U = (-1,0,0) in 09,

Ux) -0 for || — +o0.

(1.3)
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The problem of stability of solution U™ to the problem (1.1) has so far attracted
much attention; see e.g. J. G. Heywood [18], [19], [20], K. Masuda [28], P. Mare-
monti [27], G. P. Galdi and S. Rionero [12], G. P. Galdi and M. Padula [13],
W. Borchers and T. Miyakawa [4], [5], H. Kozono and T. Ogawa [24], H. Kozono
and M. Yamazaki [25], [26], G. P. Galdi, J. G. Heywood and Y. Shibata [14],
T. Miyakawa [30] and Y. Shibata [35]. Most of the results in these references are
based on smallness assumptions on U. However, as explained in [31], [32], one
would also like to find a criterion related to the spectrum of a suitable linear op-
erator, similar to the situation in a bounded domain (see D. H. Sattinger [34])
or in abstract differential equations (see e.g. H. Kielhofer [21], [22]). Recently
J. Neustupa [33] came rather close to such a criterion. The solution U™ is sup-
posed to be such that VU™ = VU € L3/?(2)? N L?(22)? in [33]. Then the main
result from [33] can be stated as follows:
Denote by P, the usual Helmholtz projection in L?(£2)3. Define

Lv := vPyAv — 7P201v + PoBw, (1.4)
where
Bv = —(U-V)v—(v-V)U, (1.5)

for v € D(L) := Hy N W, 2(Q)3 N W22(Q)3. (The closed subspace Hy of L*(Q)3,
which contains the divergence—free vector—functions, is defined in Section 2. Note
that Py A, with the domain D(L), is known as the Stokes operator.) Define the
nonlinear operator A" by the equation

Nv = —Py(v-V)v (1.6)
for v € D(L). Obviously, writing the solutions of (1.1) in the form V = U™ +u =
(1,0,0) + U + wu, the perturbations u satisfy the operator equation

du
i Lu + Nu. (1.7)

Denote by Bgym the symmetric part of B. (Hence Bgymv = —v - (VU )sym.) It is
shown in [33] that the space Hj generated by the eigenfunctions of A+£ Py By, (for
a fixed £ > 0) associated with positive eigenvalues is finite dimensional. Suppose
that

(C1) there exists a function ¢ € L'(0,+00) N L?(0,+oc) such that
Ve @, o < @)@l forall ¢ € Hy and t > 0. (1.8)

The exact notation of the norms is explained in Section 2. r denotes the set
{x € Q; |x| < R} and we suppose that R > 0 is so large that

IVUll3/2,0-07 < §- (1.9)
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Then J. Neustupa [33] could show that given ug € Ha N Wy () with |lug|1 2
sufficiently small, the equation (1.7) with the initial condition ©(0) = wuo has a
strong solution w on the time interval [0, 4+00), such that ||u(t)||12 remains small
for all t > 0 and || Vu(t)||a — 0 as t — 4-oco. It means that solution U™ of problem
(1.1) is stable. J. Neustupa considers condition (C1) to be a substitute for the
usual assumption

(C2) there exists § > 0 such that ¥ A € Sp(L) : Rel < —§

where Sp(L) denotes the spectrum of £. (The assumption (C2) can never be
satisfied in our situation because the essential spectrum Sp.. (L) of L touches
the imaginary axis at point 0 from the left, independently of the concrete form of
function U™; see [3] and [10].) The norm ||Ve“!@||2. o, in (C1) can be alternatively
replaced by |le“*¢||2. o, and all the conclusions of [33] remail valid.

In the presented work, we assume that Q = R3. In this case, D(£) = Ha N
W22(Q)3 and PeAv = Av, Pydiv = v for v € D(L). Since the viscosity
coeflicient v plays no important role in our considerations, we also assume that
v = 1. Thus, operator £ can be simplified: Lv = Av — 701v + P2Bv. We show
that at least in this case the essential spectrum of £ does not play the decisive role
in the stability criterion, namely that (C1) follows from the assumption (A1) that
0 is almost in the resolvent of £, in the same sense as 0 is almost in the resolvent
of respectively the Stokes and the Oseen operator (see Section 5 for the precise
formulation) and from the assumption

(A2) All eigenvalues of L have negative real parts.

Our main result is stated in Theorem 25 at the end of the paper.

2. Notation and some auxiliary results

o For M C R?, we put M¢:=R3 — M.

o We write Bp for the open ball with center at the origin and radius R > 0. It
will be convenient to use the notation By := 0.

o The length a; + s + a3 of a multiindex a = [ay, g, az] € N3 is denoted by |a.

o All our function spaces are to be understood as spaces of complex—valued func-
tions. Let p € [1,00] and M C R3 be a measurable set. Then we denote by
|- llp; m the norm in LP(M). If M = R then we use the simplified notation:
| . ||p. Inaddition, we use the convention that || f||,, s = +oc for any measurable
function f from M into C such that f ¢ LP(M). This means conversely that
any measurable function f : M — Cis in LP(M) if and only if || f||p; » < +o0.

o For measurable functions f, g : R? — C with [, | f(x —y) g(y)| dy < +oo for
a.a. * € R? we define the convolution f * ¢ in the obvious way. For functions
f:R*—C, g=(g1,92,93) : R® — C3, under analogous assumptions, we put

[xg:= (f*gh I * g2, f*g3)~



4 P. Deuring and J. Neustupa

o For p € [1,400), m € N, M C R3 open, W™P(M) denotes the usual Sobolev
space of order m and exponent p. We write || . || p; as for the standard norm of
this space. If M = R? then we use the simplified notation ||. ||, . The space
W/ P(M) is defined in the usual way.

loc

o The spaces of vector—valued or tensor—valued functions are e.g. denoted by
LP(M)3, W™P(B)? or LP(M)°, W™P(B)°. The norms in these spaces are
denoted in the same way as the norms in L? (M) and W™P(B). Vector—valued
functions are denoted by boldface letters.

o The space C§°(R3) is defined in the standard way. We further denote by
Dy°(R?) the completion of C§°(R?) in the norm |[V.|ls. The dual space is
denoted by Dy "?(R3). The norm of a bounded linear functional £ € Dy "% (R3)
is, as usually,

1€]-12 := sup {|¢(v)|/I[Vv]l2; v € DV*(R?), v #0}.

Note that due to the densfcy of C°(R?) in ©3*(R3), we can consider only
v € C§°(R?) instead of v € Dy (R3) in the set on the right hand side.

o Recall that each function u € D*(R3) belongs to L6(R?) and the particular
form of the Sobolev inequality (see [15, p. 59]) says that

2
ullg < —||Vulla. 2.10
Julle < \/gll 2 (2.10)
o The dual space to 95’2 (R?)3 is denoted by D5 " 22 . The norm in Dy 2(R3)3
is denoted in the same way as the norm in )|l ll=1,2-

o We denote by Cg%, (R?) the linear space of all Vector functions ¢ € C§°(R3)3
such that dive¢ = 0.

o For g € (1,+00), let Hy(R?) denote the closure of C5%, (R?) in LY(R?)?. H,(R?)
is the space of so called solenoidal vector—functions in L9(R?)3.

o While E denotes Newton’s potential (Theorem 3), the symbols E” and I}, are
introduced in Definition 1 in Section 3, respectively in Corollary 2 in Section 3.

o In Sections 4-7, we shall also use the symbols 2 (defined in Theorem 16), &
(defined by (5.7)), 9 (defined in Theorem 16), Jy and J (defined in Lemma 11,
respectively at the beginning of Section 6), & (introduced by Theorem 20), I
(defined in Lemma 14), M (defined after equation (7.8)), & (introduced in the
proof of Theorem 18) and U (defined in the proof of Corollary 3).

Lemma 1. Let f € L}, (R®)3 such that

f-vdx|;

1
— g < (R3)3 . 2.11
” bup{nwnz ve O >,v¢o}<oo (2.11)

Then the mapping {; : @é 2(R3) — C defined by the equation (v fRs fode
belongs to ®~12(R?)% and ||4]|_1.2 = 7¢-
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The lemma is an obvious consequence of the density of C§°(R?)? in D% (R3)3. In
what follows, we will always write f instead of £; if f € L], (R?)? satisfies (2.11).
In this sense, the intersection ®j % (R?)? N L2(R?)? is meaningful. We define

lull. == |lwll_12+ |lul2 for u € ®y *(R?)® N L2(R?)%. (2.12)

Then the pair { Dy "%(R3)3 N L2(R?)3, || .||« } is a Banach space.

Let us now recall some results on the function spaces introduced above. We
begin with well-known LP—inequalities which hold for functions defined a.e. in R™.
Since only the case n = 3 will be of interest in what follows, we confine ourselves
to this case.

Theorem 1. (Young’s inequality for integrals) [2, Corollary 2.25] Let p,q,r
€ [1,00] with 1/p = 1/q + 1/r — 1. Let f, g : R® — C be measurable functions.

Then [[[f] g llp < [1fllq - [lgll--
This means in particular that in the case f € LY(R3), g € L"(R?), the integral

Jes |f(® —y) g(y)| dy is finite for a.e. x € R® and [|f * gll, < || fllq - llgll--

Theorem 2. (Hardy-Littlewood—Sobolev inequality) [37, pp. 118-121] Let
p,q € (1,+00), a € (0,3) with 1/p = 1/q — «/3. Then there is C = C(p,q) > 0
such that

P 1/p
([([e-vr=trwla) az) < clsl,
R3 R3

for f: R? +— C measurable.
Next we present some further properties of the space Dy "*(R?)3.

Lemma 2. [15, p. 385; Lemma VIL4.3] The space C3°(R?)? is dense in ®; *?(R3)3
and in D5 "?(R?)? N L2(R?3)3,

As a consequence of (2.10), we obtain the next lemma:

Lemma 3. L/5(R3)? C @61,2(R3)3 and there is C > 0 such that ||f|_1.2 <
C||fH6/5 for f € L6/5(R3)3_

Next we recall some properties of Newton’s potential.

Theorem 3. Put E(z):= (4r|z|)~! for z € R® — {0}. Let ® € C°(R?), o € N},
1 €{1;2;3}. Then E x® € C>°(R3),

O*(Ex®) = Ex0“9, O(E*®) = (OF)* 9P,
AEx®) = o.
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Given p € (1, ), ¢ € (1,3), r € (1,+00), there exist positive constants ci(p),
c2(q), c3(r) such that

1B @l (1/p—2/3-1 < ci(p) [ @],

10U(E * @) (1/g-1/3)-1 < c2(q) [|®]lq,

10mOL(E @)l < cs(r) || 2],
for1 <1, m<3.
The proof of this theorem is well known. In fact, the first part follows from
Lebesgue’s theorem on dominated convergence; the estimate of 9;(E  ®) is a con-

sequence of Theorem 2, and the estimate of the second derivatives of E «+ ® may be
deduced from Calderon—Zygmund’s inequality.

Lemma 4. There exist c4 and c5 > 0 such that to any w € C§°(R?®) one can find
g € C=(R?)3 such that divg = w, g € WH4(R?)? for all ¢ € (3, +00) and

callwl-1z < lglls < ¢ [lw]-1,2.

Proof. Following [15, p. 391-392], we put g; := —9;(E *xw) for [ € {1; 2; 3}. Then
the statement follows from Theorem 3. Note that, in particular, Fx w € 53(1)’2(1[@)
by [15]. O

Now we turn our attention to the space H,(R?).

Theorem 4. Let q € (1,+00). Then, for any f € L4(R3)3, there exists a unique
function P, f € H,(R3) and a function G, f € V[/lloc1 (R3), unique up to an additive
constant, such that VG, f € L1(R?)* and

Ff +VG.f = F.
This defines a linear mapping P, : L1(R*)? — H,(R3). There exists cg(gq) > 0 such
that

1Pafllq < cela) 1 £llq
for f € LY(R3)3.
The proof follows from [15, Section III.1].

Theorem 5. Let g € (1,+00). Then P, |Lq( =Py

R3)3NL2(R3)3 }Lq(R3)3mL2(R3)3'

Proof.  Let P, : L9 (R3)3 — L7 (R3)3 denote the adjoint operator to P,. Then
P, = Py; compare with [15, Exercise II1.1.6] and [11]. Let u € L7 (R®)3. Since
¢ = P2 = Py for all ¢ € C5%,(R?), we have

0:/Rsu~(¢>—¢)da::/Rgu-(’/)2¢—73q/¢)da:ZA(Pgu—Pqu)~¢dw.

3
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It follows by [15, Lemma IT1.1.1] that there exists g € W, (R?) such that (P, —
P2)(u) = Vg. This implies that g is a distributional solution of the Laplace
equation in R3. This observation and Liouville’s theorem yield Pou = P,u. O

In view of Theorem 5, we will always write only P instead of 7.
Theorem 6. Let f € L?(R%)?. Then f € Hy(R?) if and only if [, f- Vo dx =0
for all p € C§°(R3).

The intersection W12(R3)3 N Hy(R3) can be characterized as the space of all
functions g from W2(R3) such that divg = 0 a.e. in R3.

Proof. For the first statement of the lemma, we refer to [36, Lemma I1.2.5.4]. The
second statement follows from the first one. O

In the next two theorems, we state some well-known results on the Oseen system
and the Stokes resolvent problem, respectively.

Theorem 7. For ¢ € ®;"?(R3)3, there is a unique function u € ®3*(R3)3 such
that divu =0 and

/ (Vu-Vo+rdiu-¢) de = ()
R3
for ¢ € Cg5, (R?)?.

The proof follows from [15, Theorem VII.1.2, VIL.2.1, IL.5.1, I11.6.1].

We note that only the uniqueness statement in Theorem 7 will be needed in the
following. Nevertheless, Theorem 7 is a motivation for assumption (A1) in Section
5, pertaining to resolution of the perturbed Oseen problem (5.2).

Theorem 8. Let o € (0,400). We define

gi(r) == e "+ r—2 (e7"+re " —1),
g(r) = e " +3r (e " +re " 1),
. 1
Fi(z) = i)z (5jk91(01/QIZ|) —ijkgz(al/Q\Z|))

forr, 0 € C—{0}, z = (21,22,23) € R® — {0} and j, k € {1; 2; 3}. (It means
that the functions FJ(;:) represent the velocity part of a fundamental solution of
the Stokes resolvent problem (2.13).) Let s € (1,+o0), g = (g1, 92,93) € L*(R3)3.
Define w;(g) = Zzzl FJ(]:) xgp for j =1, 2, 3.

Then w(g) = (w1(g), w2(g), ws(g)) € W>*(R?)? and there is o(g) € WL (R?)
such that Vo(g) € L*(R®)* and the pair (w(g), o(g)) solves the Stokes resolvent
system

—Au+ou+Vr =g, divu=0 inR3 (2.13)
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If (u,7) € W5(R3)3 x WL (R3) with Vr € L¥(R?)? is another solution of (2.13)
then w(g) = u. There is c7(s,0) > 0 such that

25 < c1(s,0) |lglls  for g € L*(R?)”.

[w(g)

The proof follows from [29] and [6, Theorem 1.3, Lemma 1.1].
In addition to the assumptions on the solution U* made in Section 1, we shall
further suppose that there exists ¢y > 0 such that

VU*=VU € L*(Q)° Vse (2, 3+¢). (2.14)

Note that a steady solution U™ = (1,0,0) + U of (1.1), (1.2) with these properties
exists under the assumption that F € L4(R3)3 for ¢ € (1, o], with some qg > 3; see
[16, Section IX.7]. Using the Sobolev inequality (see e.g. [1, p. 104] or [15, p. 31])
and (2.14), we can deduce that

UeL“R? Vae (£, +0). (2.15)

Furthermore, we can deduce from [1, Corollary 5.16, p. 106] that U € L>(R3*—Bg)?
for each R > 0. If we restrict ourselves e.g. to R > 1 then we can observe that
the domains R?® — By satisfy an interior cone condition specified by a single cone
having a fixed height and vertex angle, independent of R. Hence

HUHOO;W_?R < C(eo) HU||1,3+60;R3—?R

where the constant C(eg) does not depend on R. Since U € W13+ (R3)9 we
obtain

Ul o7 — 0 for R — +o0. (2.16)

Notation of constants. Generic constants in our estimates are denoted by the
capital letter C'. If we need more generic constants in one formula then we use in-
dices. The generic constants implicitly depend on certain quantities which may vary
from section to section, but they are always listed at the beginning of each section.
If these constants also depend on some additional quantities, like e.g. v1, ..., Vn,
then they are denoted by C'(y1, ..., Yn)-

3. The scalar Oseen equation in R3

In this section, we consider the scalar Oseen equation with the resolvent term
—Av+T0v+Av =@ in R3. (3.1)

The results we are going to derive will later be used in order to solve a perturbed
vector Oseen equation with the resolvent term in the whole space R?® (Section 5),
and to obtain estimates of the solutions (Section 6).

The generic constants in this section may depend on 7. The dependence on any
other quantity will be indicated explicitly, as mentioned at the end of Section 2.



An eigenvalue criterion for stability 9

Definition 1. Put

s(z) = 7(]z[—2),
—s(z)/2
E© = ¢
@) = S
EV(z) = 1| ‘ o VITG/DR 4721 /2
At |z

for z € R — {0} and X\ € C — {0} such that Re A > 0.

Note that throughout the paper, we denote by letter A nonzero complex num-
bers. Whenever we admit the value zero, we will use letter o.

We will now establish some estimates of convolutions of E®). We begin by
stating an observation for which we refer to [9, Lemma 4.3].

Lemma 5. Let 5 € (1,400). Then

/ (1+s(x) " ds, < CB)r
0B,

for r € (0, +00).
The next lemma was proved in [8] (see [8, Lemma 4.8]).
Lemma 6. (14 s(x — y))_1 < C(l+y))(1+ Ts(a:))_l for z, y € R3.
Now we can derive pointwise estimates of the fundamental solution E™).
Theorem 9. Let p, v € (0,+00). Then
2EDE)] < Culu) AT (|11l
+ |z|*v+\al) 1+ 5(z)) e Co M1z (3.2)

for z € R3 — {0}, o € N3 with |a| < 2 and A\ € C — {0} with ReX > 0 and
IA| < (7/2)2. Moreover,

92BN ()] < CG) (217712 4 21710 (14 5(2)) ™ (3.3)
for z and « as in (3.2) and A € C with Re X > 0, |\| < (7/2)2.

Proof.  Take X as in (3.2). Abbreviate, for a while, x := 7/2 and note that
IAk72| < 1. We find that

A2

2\1/2 _ 1 _
Re[(A+ k%) k] = k Re O D241
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Re(Ac™2) (1+Re(Ac724+1)V2) —Im (As2)Im (A k2 + 1)1/2
A2+ 1]+2Re(Ar2+1)1/2 41

= K 5

N2 41 < A7 +1 < 2,
Im (Ak~2) Im(Ax—2+1)1/2 < 0.
(The inequalities on the last two lines follow from |A 2| < 1.) Hence
Re [(A + K2)Y2 — 4]
[Re(A&™%) + [Im(Ax7?)| [Im (A K2 + 1)1/2\]. (3.4)

il
6
There exists ¢ € [—m/2, 7/2] such that A\k~2+1 = |Ax"2+1| e¥. Since Re A > 0

and consequently |Ax~2 + 1| > 1, we also have

>

I (Ar=2 + 1)V2] = Jsin(p/2)] [Ae72+ 1Y% > [sin(p/2)]
= [(lfcos<,0)/2]1/2

Ak2+ 1 —Re(Arn~2+1)] /2
2Ak72 41|

(A2 + 1] —Re(Ar™%+ 1)]1/2

[Im (A k)|
[IAk—2+ 1]+ Re (Ar2 +1)]"/?

1
> 5 Tm (A ~2)].

Sl Sl

This estimate and (3.4) yield

Re|[(A+ k)2 — k] > (3.5)

Obviously

Al r~t |
A+ w2 g < | < 4 3.6
(A ++7) ol < |(Ak=2+1D)Y2+1] — & (3.6)

In particular, |(A + x2)1/2| < 2k.
Now let z € R3 . {0}. We abbreviate b(\,2) := —(A + k)12 |z| + k2. Then
we get from (3.5) that

ePX2)| < emes M Izl gk (I21=2) (3.7)
with some constant cg > 0 depending only on 7. Thus,

IEV(2)] < C |zt emes NIzl gmrllzl=21), (3.8)
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Let I,m € {1; 2; 3}. Then

GEN(z) = (An)7! [—z 2|73 + |21 0.,b(N, 2)] e, (3.9)
OO EMN(z) = (4m)7" [=6m 2|73 + 3212 2] 7°
— Zm, \z|_3 0,b(\, z) + |z|_1 0., 0., b(\,z2) — 2 |z\_3 0., b(\, z)
+ 12|71 9.,b(\, 2) 8., (N, 2)] ", (3.10)

However, using (3.6), we have
0:,00, )] = [ (A + )2+ k) 22l + 60, (12| + 21) |
< C(IN+ (2] =202 271?)
for v € {1; 2; 3}. Now we may conclude with (3.7) and (3.9) that
BN (2)]
< O (272 + |27+ 2722 (|2] = 20)/?) emes ML emrllzi=20)
< Oz + |2|7¥?) ems P12 gmr(lzl=2)/2, (3.11)
Similarly, due to (3.10), (3.7) and because |9.,0., b(\, z)| < C|z|~1, we get
010 BN (2)]
< Ol + (M4 (12l = 20) % |2 712) |22
12724 (N (2] = )2 2] 712) 1] emes P el 2
C (|27 + |2|72) emes P I1/2 g=r (1zl=21)/2 (3.12)

IN

Recalling the abbreviation s(x) = 7(|&| — 1) from Definition 1, we observe in the
case s(x) > 1 that s(z)~! <2 (1—1—3(:1:))_1. If s(x) <1, weget1l<2 (1+s(a:))_1
Thus we find in the first case that

e r =202 < Oy s(@) ™ < C(u) (1+ s(a)) "

and in the second case, 1 < C(y) (1 + s(z)) ", hence in any case

e—r(lzl=21)/2 < C(p) (1 + S(gc))*“, (3.13)
Moreover,
e~ NP 121/2 < () |N[72Y |2| 77 e P14 (3.14)

Inequality (3.2) follows from (3.8), (3.11), (3.12), (3.13) and (3.14). The estimate
in (3.3) may be shown by similar, but somewhat simpler arguments. (I

We exploit the preceding theorem to obtain LP-estimates of convolutions of
E(@).
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Theorem 10. Let p,q € [1,2] with p > q. Further suppose that p < 2 or ¢ > 1.
Then
HED [ fl1lp < Clp,q) - NP+ EVat P 7, (3.15)

for f € LY(R3), A € C~ {0} with ReX >0, |\| < (1/2)%.
Letq e [1,2) andp e ((1/g—1/2)", o] ifq > 3/20rp € ((1/g-1/2)", (1/q—
2/3)71) if ¢ < 3/2. Then, for f € L4(R?), p € C with Rep > 0, |o| < (7/2)?,

HE@ 1 flp < Cpia) - £l (3.16)
Let g€ [1,3] andp € ((1/q—1/4)7", (1/g—1/3)"'). Then

HAE@ |« f[l, < Cp.a) - 1 fllq (3.17)
forl € {1, 2, 3} and for f, o as in (3.16).
Finally,
HE@ 5 £ ll6 + 1AED [ flll2 < C - [ flless (3.18)

forl € {1,2,3}, f € L%°(R?), p € C with Rep > 0, |o| < (1/2)%.

Proof. In the situation of (3.15), put r := (1—1/¢+1/p)~!. Note that since p > ¢
and ¢ > 1 or p < 2, we have r € [1,2). Using (3.2) with a =0, p = 2/r, v =0,
and referring to Lemma 5, we get

/ |E()\) >|T dx < C/ |$| (1+8( ))—26—08|)\‘2|$| dx

oo
2
|w| ’"da:+/ a " emes A O‘da)
1

(z
S C <1 4 |)\| 4+2r tfrJrl efc8t dt)

< C

I/\I2

IN

1 4 |)\| 4+2r t—r—i—l e—Cgt dt)
0

< CA+ N2y < O~ (3.19)

where the last and last but one inequality hold because » < 2. Now inequality
(3.15) follows from Theorem 1.

In the situation of (3.16) and (3.17), we also put r := (1 —1/¢+ 1/p)~!. The
exponents p and ¢ are chosen in such a way that r € (2,3) under the assumptions
of (3.16), and r € (4/3, 3/2) under those of (3.17). Further observe that for
z € R? < {0},

B@(2)] < Clz™,

3.20
C 12172+ 12172 (1 + s(2)) ). -

@ (2)]

A
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Via estimates similar to (3.19), inequality (3.3) and Lemma 5 imply that

» |E@(z)["dz < C(p,q)

in the case of (3.16), and

/ BEQ @) dz < C(p,q)
R3

in the situation of (3.17). Now we obtain (3.16) and (3.17) applying again Theorem
1. Finally, as concerns (3.18), we refer to the estimates in (3.20) once more, which
allows us to apply Theorem 2 to E@ x f and (xp, - 9,E®) % f, and Theorem 1
with p =2, ¢ = 6/5, 7 = 3/2 as well as Lemma 5 to (xp¢ - O EW@) « f. Inequality
(3.18) then follows. O

Theorem 11. Let ¢ € C with Reg > 0, |o| < (7/2)%. Take ® € C5°(R?), and
put u := E©@ x ®. Then u € C=(R®), u verifies (3.1), and

0% = E@ % 5°® for a € N},
(3.21)
ou = (alE(g)) * O for1<1<3.
Let ¢ € (1,00) and R € (0,00). Then
100mullg: Br < Clg, R) [|®]q- (3.22)

Proof. Theorem 9 yields that for any S > 0,
10°E@ (2)| < C(S)|z|77 11 for z € Bg~ {0}, f e N3 with |3 <1. (3.23)

In particular, we have E(@ € L] (R?), and we may conclude that u € C*°(R?),
0%u(x) = / E@(y) 0°®(x —y) dy for x € R?, o e N3.
R3

This proves the first equation in (3.21). Let Ry > 0 with supp(®) C Bg,, and take
1€{1,2, 3}, x € R% It follows from the first equation in (3.21) that

Ou(x) = lim E9(x —y) §;®(y) dy. (3.24)
€40 JBro+ia/~Be(®)

However, we can integrate by parts in (3.24) for € > 0, say, smaller than (Ro+|x]|)/2.
Since in view of (3.23), we have

/ E@(x —y) d(y) o dS, — 0 fore |0, (3.25)
8B, (x) €
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we thus obtain the second equation in (3.21). Returning to the proof of the claim
that w verifies (3.1), we observe that by (3.9), (3.10), for any S > 0,

0°(E — E)(2)| < C(5) |27 (3.26)

for z € Bs ~ {0}, a € N} with |a] < 2, where function E was introduced in
Theorem 3. Estimate (3.26) with o € N3, such that || = 1, yields that

/8 ( )81(E(9)—E)(:c—y) B(y) ””Zyl dS, — 0 (el0) for1<1<3.
Be(x
(3.27)

Since the function ® is Lipschitz continuous, we obtain

/ B —y) (o(y) —0x) L= ds, — 0 (e10) for1<i<3.
9B, (z) €

(3.28)
We further note that for 1 <1 < 3,
- 1
/ O E(x —vy) n dsy = —<
dB.(x) € 3 (3.29)
— AEW 1 79,E@ 4 pE@ =
—Au+Tdhu+ou = E@ % (—AD+79,D + 09) (3.30)

where the last equation follows from (3.21). After expressing the right—hand side
of (3.30) as a limit like in (3.24), we integrate by parts and afterwards apply (3.25),
(3.27)—(3.30). It follows that u satisfies (3.1).

This leaves us to establish (3.22). So, let I,m € {1, 2, 3}. Theorem 1 withr =1
and (3.26) yield

| (X2r) d0n(E@ —E)) «® | < Cla.R) @], (3.31)
By Theorem 9, we have

00, (E@ — E)(z)] < C [l +]2[ 2 (1+s(2)) "] for z € R*~ {0}
Thus, Holder’s inequality and Lemma 5 now imply that

| [ (x2R,00) 810m (B — E)«®]|(z)| < C(g)|®|, for x € R®.
Hence

| (Xer,o) 00 (B'@ — E)) %@ |, < Cla, R) @], (3.32)

Combining (3.31), (3.32) and the last inequality in Theorem 3, we obtain (3.22).
O

By the density argument, we may deduce from Theorem 10 and 11:
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Corollary 1. Let ¢ € (1,2), o € C with Rep > 0 and |o| < (7/2)%. Let f €
L9(R3), and put u := E©@ % f. Thenu € W2 (R?), dyu = (E@)x f (1<1<3),
u satisfies (3.1), and

[00mullg;Br < Clg, R)[|fllq for1l<I,m<3.
Moreover,
NED «h) = E@x«gh forle{l,2, 3} and h € WHI(R?). (3.33)

Due to Corollary 1, we need not distinguish between 9;(E@ x f) and (0, E(®))* f
for f € L9(R3). Therefore we may write 9 E@ x f instead of 9;(E©@ x f) or
(8[E(9)) * f

We can use some of the preceding results in order to prove the uniqueness of
solution of the scalar Oseen equation.

Theorem 12. Let o € C with Reo > 0, |o| < (7/2)2. Suppose that u € V[/lic1 (R3)
satisfies the equation —Au+7 du+ou = 0 and that u|p,. € LP(Bgg), Vu|p,, €
0 0

Lﬁ(BR8)3 for some Ry € (0,00) and some p, p € (1,00). Then u = 0.

Proof. Let ® € C°(R3). Put T := (—x1,22,73), ®(x) := &(T) and w(x) :=
(E@ % ®)(x) for £ € R®. Then we know by Theorem 11 that w € C>(R3) and
that the equation —Aw — 7 0w + pw = P is satisfied.

Let R € [Ro,00) with supp(®) C Bg. Note that [ — y| > |z|/2 for @ € Be,
y € By. Thus, by referring to Lemma 6 and Theorem 9, we get for @ € BSp,
a € N3 with |a] < 1:

—1-|a|/2

0% w(@)| < CR) || =712 (14 s(2)) (3.34)

Moreover, due to our assumptions on wu | Brg and Vu]| Bpg, We may choose a se-

quence {R,} in [R,00) such that R, — oo and the sequences {||ullp;o5,, } and
{IIVullp, 085, } are bounded. However, by Hélder’s inequality, (3.34) and Lemma
5, we obtain

[ (@] + l + @) w) as.
8B,

< CR) |2l (llullp:o5s, + IVullposs, ) - Bt (3.35)

for n € N, with some € = ¢(p,p) > 0. Note that the right—-hand side of (3.35) tends
to zero for n — oo. We further find that

/ uddr = / u®der = lim u(—Aw — 1w+ ow) de. (3.36)
RS By "= /B,
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Integrating by parts on the right-hand side, we obtain an integral over Br, which
vanishes because —Au + 7 01u + pu = 0. Moreover, we obtain surface integrals on
O0Bp, which tend to zero for n — oo due to (3.35). Since ® was chosen arbitrarily
in C§°(R?), we may conclude that u = 0. O

We further note

Theorem 13. Let f € L*(R3), A € C \ {0} with Re X > 0, |\| < (7/2)?. Then
EXN % f ¢ W22(R3) and |00, (ED) % f)|lo < ||fll2 for 1 <1,m < 3.

Let g € L*(R?) N LP(R?) for some p € (1,2) (so that E© x g € W2P(R?) by
Corollary 1). Then ||0,0,,(E™ % g)||2 < ||g|2 for 1 <1,m < 3 and H81E(>‘) xg)|l2 <
gll2-

Proof. ~ We know by inequality (3.15) that EX) x f € L?(R3). Denoting by
g the Fourier transform of a function ¢ € L'(R?) (which means that §(§) :=
(2m) 792 fea @6V g(y) dy), we get EO(€) = (2m)%2 (o + [¢ + 7i&) ! for
& € R3; compare with [23, p. 19-20]. Thus, if ® € C5°(R?), we get [|9,0,, (B %

)|l < ||®]|2 for 1 < I,m < 3 by Plancherel’s theorem. If Im A = 0, we further get
[01(EX) % ®)||2 < ||®|]2. Now the first part of the theorem may be shown by the
density argument and, as concerns derivatives of order 1, by interpolation. The
second part follows by a continuity argument with respect to A. O

The following lemma is a consequence of Theorem 13.

Lemma 7. The inequalities |VE© xwl|ly < C|lw||_12 and ||E®@ % w]|,

< C(p) ||w||-1,2 hold for p € C withRe 0 > 0, |o| < (1/2)%, p € (4,6), w € C§°(R?).
Moreover, if ¢ = 0 then the estimate [0y FE© w||_y 5 < C ||w| -1, holds for

w € C§°(R3).

Proof. Let w € C§°(R?), and choose g = (g1, 92,93) := g(w) as in Lemma 4.
Then we find for k € {1, 2, 3}, using (3.33), that

3
1B @ wwlz = || D (B )| < Clglla < Cllull-rz, (337)
=1

where we applied Theorem 13 in the last but one inequality and Lemma 4 in the
last one. Moreover, referring to (3.33), inequality (3.17) with ¢ = 2, and finally to
Lemma 4, we find for p € (4,6)

3
|B@ s wll, = HZ @B« g)| < CO) lgla < C@) ]z

If o =0, we can prove the last inequality in Lemma 7 by an estimate as in (3.37),
again based on (3.33), Theorem 13 and Lemma 4. O

By the density argument, we may now define convolutions of F(@ with w €
D, "?(R3)?. The details are stated in the next corollary:
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Corollary 2. Let o € C with Rep > 0 and |o| < (7/2)2. Then there is a unique
linear mapping T, : 5 " (R?)3 - D% (R?)? such that

I,(w) = B©@ xw for w € C§°(R?)?, (3.38)

IV, (w)]a < C |lw]|_12  forw e Dy *(R3)3. (3.39)
Moreover, operator I, satisfies the inequality

IT,(w)]l, < Cp) |wll-12 for we Dy (R, p e (4,6], (3.40)

and in the case ¢ = 0, d,T,(w) belongs to Dy "*(R3)3.

Ifw e Dy *(R?)? N L2(R?)3 and 1 < 1,m < 3 then
T, (w) = (O E?) xw
I,(w) € Wi (R?)? (3.41)
N0 T, (w) € L*(R?)3
—AL(w) + 7L (w) + oI, (w) = w. (3.42)

Furthermore, if w € Dy "*(R3)? N Hy(R?) then divT,(w) = 0.
Finally, if w € L2(R?)3 N L%/5(R?)3, or if p # 0 and w € Dy "?(R3)3 N L2(R3)3,
we have T,(w) = E@ x w.

Proof. Let w € ©;5"%(R%)3. By Lemma 2, there is a sequence {w,} in C§°(R3)3
with ||w,, — wl||_1.2 — 0. Thus, by (3.18) and Lemma 3, the sequence (E(®) % w,,)
converges in L(R?)?, and Lemma 7 yields that the sequence (VE(@ xw,,) converges
in L2(R?)3. In the case ¢ = 0, Lemma 7 further yields the convergence of {9, E(@) x
wy} in Dy 1’2(R3)3. These references additionally imply that the respective limit
functions do not depend on the choice of the sequence {w,} such that w, — w
in ©;5"%(R3)3. Thus, the linear operator T, : Dy "*(R3)3 — Dy*(R?)3, verifying
the first relation in (3.38), can be defined in an obvious way, and this operator
satisfies the second relation in (3.38) as well as (3.40) with ¢ = 6. Furthermore,
due to Lemma 7, this operator fulfills (3.40) with ¢ € (4,6), and it also satisfies
the inclusion T,(w) € Dy "?(R3)3 if o = 0.

Let w € ®5 "*(R?)® N L2(R®)®. Then we know by Lemma 2 that there is a
sequence {w,} in C§°(R3)3 such that ||w, — w|. — 0. Inequality (3.17) and the
relation ||w, —wlj2 — 0 imply that

16 E©@ xw, — (,E@)xw|, —0 (n—o0) forle{l,2 3}, pe(4,6).
On the other hand, since ||w,, — wl||—1,2 — 0, we may conclude with (3.39) that

16, E© % w,, — dT,(w)|ls =0 (n—oc0) forle{l,?2 3}.
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We have thus proved the first identity in (3.41). The other statements in (3.41),
as well as validity of equation (3.42), follow from Theorem 13, (3.39), (3.40) (the
convergence of (E(@ x w,) in L%(R?)%), and Theorem 11.

If w € ;" (R3)3 N Hy(R3), we may choose a sequence {,,} in C5°(R?)? with
l¢,, —wl|l2 — 0 and div ¢,, = 0 for n € N. Then 9;T,(w) = (9, E@) xw by (3.41),
(O EW@) * (¢, —w)|, — 0 (n — o0) for p € (4,6), 1 <1 < 3 by (3.17), and
(QEW) %, = E@ %9, forn € N, 1 <1< 3 by (3.21). In this way we obtain
that divI,(w) = 0.

If w e L*(R3)3 N LY/5(R3)3, we have w € L2(R?)? N D, *(R?)? by Lemma 3,
hence 9;T,(w) = 9 E(@ xw by (3.41). On the other hand, the functions T, (w) and
and E(© % w belong to Dy%(R?)3, as follows from the definition of T, and (3.18),
respectively. Now the inequality (2.10) implies T,(w) = E(© xw. If ¢ # 0 and
w € Dy (R33N L2(R3)3, the preceding equation follows from (3.15). O

4. Estimates of operators B, B, and PB, PB,.,

In this section, any generic constant may depend on 7 and U. Other quantities
entering into these constants will be indicated explicitly.

The operators B and By, were defined in Section 1 in the domain of £. These
operators can be naturally extended to the space W'llocl (R3)3.

Lemma 8. If g € [6/5, 2] and v € D (R?)® then Bv € LI(R?)? and

[PBolly < Clg) IBo]ly < Clg) [Voll2-
In particular, PBv € D5 "% (R?)3 N Hy(R?).

Proof. Take ¢, v as in the lemma. Then (1/q— 3)™' € [3,3] and (1/g—3)"' €
[3,00}, so that ||VU||(1/q_1/6)—1 < oo and ||UH(1/q—1/2)*1 < 00 by (2.14), (215)
and (2.16). Thus, due to inequality (2.10), we have

1Bvlly < C(IIVUlla/g-1/0-1 [0lls + 1Ull1/q-1/2)-1 [Voll2) < Cla) [Voll2.

Now the first part of the lemma follows from Theorem 4. The last statement is
a consequence of Lemma 3 and the fact that P maps L*(R3)? into Hy(R3) and
LS/5(R3)% into Hg,5(R?) (see Theorem 5). O

Lemma 9. Let w € Dgl’Q(R:‘)?’, q € (1,2) and g9 € C with Re o > 0, |o| < (7/2)2.
Then B (I,(w)) € L*(R?)> N LI(R?)? and PB(L,(w)) € H2(R?) N D, "*(R%)* N
L(R?)3. Moreover, if & € L1(R3)? then B(E@ x ®) € LI(R3)? and

IPB(L(w))]. < Clwl-1z, (4.1)
IPBE D), < Clg) |Plly- (4.2)
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Furthermore, there exist non-increasing functions D1, D;‘Z) 2 [0,00) +— (0,00)
depending on 7, U, and in the case of Déq) also on q, such that Di(R) —
0, DS(R) — 0 for R — oo, and

| P[x55 B(L(w)) ][, < Di(R) |wl-1z, (4.3)
IPxs; BE@«2)] || < DE(R) ||, (4.4)

A

IN

for R € (0,00), w € Dy "?(R3)3 and & € LI(R3)3.

Proof. Recall that the norm ||. ||, was defined in (2.12). Let ¢ € {£, ¢, 2}. Then
g <2 s0(1/g—%)"" < 6. Moreover we have ¢ > 1, hence (1/g— 2)~! > 4 in
the case ¢ < 3. Obviously (1/¢— £)™' < (1/¢— 2)™! in that latter case. Thus
we may choose p € (4,6] with (1/¢— £)™' < P, and with p < (1/g— 3)~! in the
case ¢ < %. As a consequence, (1/¢—1/p)~! € (%, 3], so [|[VUl[(1/g-1/p)-1 < o
by (2.14). Moreover (1/¢— 4)7! € (2, 00, hence 1Ull(1/g—1)-1 < oo by (2.15) and

(2.16). In addition, we get for w € D5 "*(R3)3, R € [0, ),
X535, B(Ty(w))lle
< C(IVUla/e-1/m-1; B, ITo(w)ll5 + 1Tl (1/6-1/2)-1; 55, IV (w)]2)
< C(IIVUl/g-1/m-1:Bs, + 1Ul(1/-1/2)1: B2,) [lwll-1.2, (4.5)

where the last inequality follows from (3.39), (3.40) and the fact that p € (4, 6;. Now
we may conclude that B(T,(w)) € L#R?) for ¢ € {2, ¢, 2}, w € D, (R3)3,
so the inclusion PB(T,(w)) € H2(R?) N Dy "*(R?)? N LI(R?)? now follows from
Theorem 4 and Lemma 3. The latter references, inequality (4.5) with ¢ € {g, 2},
as well as the inequalities ||VU||(1/g-1/5)-1 < 00, [|U||(1/g-1/2)-1 < 00 (see above)
and |U | B |leo — 0 (R — 00) (see Corollary (2.15) and (2.16)) yield that the first
inequality in (4.1) is valid (R = 0 in (4.5)), and that there is a function D; with
the properties stated in the lemma. Next take

Fe((1/g—3)"" o) ifg>3,
Fe((l/g—3)"" A/g—2)"")  ifg<d

and choose o € ((1/¢— )%, (1/¢—3)~"). Then (1/q—1/7)"" € (3, 3), (1/q—
1/r0)~t € (3,00), and

IxBs, BE@ «@)|lq < C([IVUl1/q-1/m-1: 85, |E@ |7
Ul (1/g-1/r0)-15 B3, IVE@ |1, ) (4.6)

for @ € LY(R3)3. Now the second estimate in (4.2) as well as inequality (4.4) follow
from (4.6), (2.14)~(2.16), (3.16) and (3.17). O
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The ensuing theorem is a key technical result of our theory. It will allow us
to solve the resolvent problem (5.9) related to the perturbed Oseen system (5.2),
under the assumption that the resolvent parameter A is small (Theorem 19), and
to establish resolvent estimates for small A (Theorem 21).

Theorem 14. Let ¢ € (1,2). Then there exist functions Ds, Dflq) 2 (0,00) —
(0, 00) depending on 7, U, and in the case of Déq) also on q, such that

IPB (T (w) ) — PB(To(w))].
< {2nim)+ D) [\;E;hl(l]l?gﬂ + DN ol (@7
for A € C~ {0} with ReXA > 0, || < (7/2)2, R € (0,00), R € [2R + 1, ),
w e Dy (R33N LA(R3)? and
|PB(EW % &) — PB(EQ « )|,
< (2087 (R) + DI (R) B2/ + DID(R) INM* ) e, (48)

for \, R, R as in (4.7), and for ® € LY(R3)3. (The functions Dy and DS were
introduced in Lemma 9.)

Proof. Let ¢p € C*°(R) with ¢|(7oc,71] =0,0<v <1, w|[0,oo) = 1. For
R € (1,00), * € R?, put ¢r(x) = ¥(|z| — R), so that yp € C®(R3) with
YR |Br, = 0, ¥|p; =1, and |Vip(x)| < C for € R®. Note that the upper
bound of |[V¢g(x)| is independent of R.

Take A, R, R as in the theorem, and suppose that g € C5°(R3)3. Then

3

PBEW xg) — PBE" xg) = > 9, (4.9)
i=1
where 91 1= 73(XB;2 B(EMN xg - E® xg)) and
Ny = P[XBR %(E(A) * (XBE g) — EO « (XB; 9))]7
Ny = Plxe.B(EV (x5, 9) — BV (x5, 9))].

Let us abbreviate u® := EX « (x5, g), ul® := E©) « (x5, g). By (3.16), (3.17),
Theorem 11 and 12, we have

u™ —u® = —EO y xu®, (4.10)

Take v € (2, 2), for example vy = 1, and set s := [(1/y— )"+ (1/v — )] /2.
Then we get from (4.10) and (3.15)—(3.17) that

[u® = uO g + 9@ = w®), = [EO s Auoo + [VEO  AuV]
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< CA Py < AP Nglhis, < CINY? gl s,

where the last inequality holds because v > 2 and || < (7/2)%. Thus, due to

Theorem 4, for ¢ € {g, q, 2}, we have
1Ml < C(IVUlg 1y 1™ = u®]luc
U o171 5 19D —u®)],)
< C(RY/*V|VU|s+ RY* 2 [Ulloo) M2 lglls: 5,

We can conclude, using Lemma 3, that

IN

193] C(R) N2 |gllz, (4.11)
1M, < Cla. R) A glly- (4.12)

As an immediate consequence of (4.3), (4.4), we get

[Mull« < 2Di(R) lIgll-1.2, (4.13)

IMll, < 2DSP(R) |lgll,- (4.14)

Let us now turn our attention to the estimate of 9. At the beginning, we observe
that for g € {q, %, 2}, we have

Malle < C(IVU]

@;BR)

0 (B # Gty 9] |y + | [VE® % (i, 9] 1, )
0€{0, A} ‘ ‘

C(q, R) (VU2 +||U|ls)

> 3

&Br t ”U

IN

B (x —y)g;(y) dy'

0€{0, A} j=1 TEBR B?a
3
+ Z sup 6[E(9)(a: —y)g;(y) dy D )
1—1 *€Br | /By,

Now let « € Bg, j € {1, 2, 3}. Then

’ . E@(x —y) g;(y) dy'

< ‘/R EQ(z —y) (Yr g;)(y) dyM/B E9(x —y) (Yrg))(y) dy

a>Ba_y
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1/2
[onsan| ([ B9 wPay)
R3 Bg~Bg_,

where vg(y) 1= E@(z — y) 1g(y) for y € R®. Note that YglB,_, = 0. This
latter observation, (3.3), Lemma 5, 6 and the estimates

(4.16)

lyl | |yl ly| (7

—yl > Ly > M —1)/2—
|z —y| > 5 T3 || 5 )/2 — ||
lyl lyl
> R—|x| > ! 417
= o 2| > 73 (4.17)

for y € By, | imply that vg € C*°(R%) N D4°(R3). Thus
1/2
\/ 0ns dy\ < lgll-12 (/ 1V, (B9 (@ — y) by >)2dy)
R3 B;
_ -3
Cllgll-1.2 (/B e — g™ (14 s(x —y)) dy

R—1
+ /
Bg~Bg_,

clalva ([ 17 (14 s) " dy

R—1
+ /
B

1/2
_ -2
o7 (14 5(w) ay) (118)
where the last inequality follows from (4.17) and Lemma 6. Now we apply Lemma
5 to obtain

IA

, 1/2
lz—y|? (1+s(z—y)) dy)

IN

a>Ba_1

11 R
veg;dy| < C(R _ ~+1n<~>} 4.19
[vnss ] < cotglaa | g m(G (4.19)
Again using (3.3), (4.17), Lemma 6 and 5, we find that
1/2 =
(/ |E@ (2 — y)Qdy) < C(R) m( A ) (4.20)
Bp~Bg_, 2 R-1

Combining (4.16), (4.19) and (4.20), we get

‘/CE(Q)(a:y)gj(y)dy‘ < C(R) gl {\}

()] o

l\D\H
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A similar reasoning, albeit somewhat simpler because VE() decays more rapidly
that E(@, allows us to conclude that

OED (x —y) g;(y) dy’ < C(R) lis]. (1=<1<3). (4.22)

NP

Here and in (4.21), & was an arbitrary point from Bg. Thus, we may conclude
from (4.15), (4.21) and (4.22), for g € {2, 2}:

’ c
BR

11 R
Molle < C@ R) gl | —= + = In[ =—— ] |, 4.23
el < 0@ Ml | =+ 5 () | (1.23)
hence by Lemma 3,
11 R
10 < s | —=+=In{ =—— | |. 4.24
a1 < CR gl | =+ 5 ()| (1.24)

Since ¢ < 2 (hence ¢’ > 2), we get by a much simpler computation, based on
Holder’s inequality, (3.3), (4.17), Lemma 5 and 6, that

1/q’
2 R

< Clg) RTVIPRIE g

for x € Br, 1 < j <3, a € N} with |a] < 1. Now we again refer to (4.15), to
obtain

19%]l, < C(a,R) llglly R4 (4.25)

Next, using a density argument based on Lemma 2 and the first inequality in
(4.1), we may deduce (4.7) from (4.9), (4.11), (4.13), (4.23) and (4.24). Finally the
estimate in (4.8) follows from the second estimate in (4.2) (the density argument),
(4.9), (4.12), (4.14) and (4.25). O

Lemma 10. Let q € [1, 8]. Then ||Baym(®)|l < Clq) |||z for & € L*(R3)3.
In particular, PBsym(®) is well defined for ® € L*(R3)3. Moreover By (P) €
L3(R3)3 for ® € W22(R3)3.

Proof. Since (1/q—1/2)"" € (2,3], we have by (2.14) that [|[VU||(1/4—1/2)-1 < c©.
Thus, for ® € L*(R3)3,

[Bsym (@)l < CIVUl(1/g-1/2)-1 [|@ll2 < Clg) [[@]]2.

[Bsym(®)ll2 < C VU2 [|®]|oc < 00 O

If ® € W22(R?)3, the standard Sobolev inequality yields ||®|/.. < C || ®||2.2, so
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Theorem 15. Let £ € R. Let o be a positive eigenvalue of the operator A +
EPBsym and f be a corresponding eigenfunction. (Le. f belongs to space Hjy —
see Section 1.) Then f € W%*(R3)3 for s € [1, ¢] and

IVFllz < CEFll2s fll2s < CE,s5,0) [[£]l2: (4.26)
In particular f € Dy "?(R3)3.

Proof. A simple variational argument yields ||V f||3+0 || f[|3 = [zs g- f dx, where
g :=§{PBgym f. It follows from Lemma 10, (2.10) and Theorem 4 that

IVEIE+a IF13 < [EHPBsymflless 1Fls < CE) I Fl2 [V Fl2-

This implies that [|[V £l < C() || £

We know due to Lemma 10 that g € Hy(R3). Moreover —Af + of = g and
div f = 0 in R3, where the equation div f = 0 follows from Theorem 6. In this
situation, we may conclude by means of Theorem 8 that

3
1<j<3

k=1

with F j(,j ) introduced in that reference. However, g € L*(R®)3 for s € [, 9
according to Lemma 10, so Theorem 8 implies that f € W2*(R3)3 and || f|l2,s <

C(s,0)|lg|ls for s € (1, £]. The second inequality in (4.26) now follows from Lemma
10. Since the case s = ¢ is admitted, Lemma 3 yields f € Dy "% (R?). O

5. Solving the perturbed Oseen system (5.2) and the related resolvent
problem (5.9).

In this section, we use the same convention on generic constants as in Section 4.
Let us start with a simple result from operator theory, which the reader can
easily verify.

Lemma 11. Let X, Y be vector spaces, A : X — Y a linear and bijective operator
and B : X — Y a linear operator. Let Jy denote the identical mapping of Y
onto itself. Then the operator Jy + Bo A™! : Y — Y is bijective if and only if
A+ B : X +— Y has the same property. If one (and hence both) of these statements
is true, we have

(A+B) ' =Ao(Oy +BoA™H)Y
(Jy + BoA™)™ = Ao (A+B)"L.



An eigenvalue criterion for stability 25

In the following, the role of A will be played by the operator —A + 7 94, set up in
a suitable function space, whereas B will correspond to —P%B. A suitable function
space is given by

Theorem 16. Let § denote the space of all functions v € Dy (R3)3 N W21 (R?)?
such that 8,0,,v € L*(R3)3 for I,m € {1, 2, 3}, dv € 5361’2&1@)3 and divv = 0.
Define A(v) := —Av + 70yv for v € . Then A : H — Dy "2(R3)3 N Hy(R?) is
linear and bijective, with A~ =T |©51,2(R3)30H2(R3).

Proof.  Obviously A(v) € L*(R?)* and [5; A(v) - Vo de = 0 for ¢ € C5°(R?)?
and v € §. Thus, Theorem 6 yields 2A(v) € Hy(R3) for v € §. It is obvious
that Av € D5 %(R3)3, so Av) € Dy (R?)? (v € §). Therefore A : § —
D, (R?)? N Hay(R?) is well defined. We know by Corollary 2 that Ty(w) € $ and
A(To(w)) = w forw € D5 1% (R?)3N Hy(R3). This shows that 2 is onto. Theorem
12 implies that 2 is one—to—one. (Il

We further suppose that the following assumption (A1) is satisfied:

(A1) For any £ € ©;"*(R?)3 there is a unique function u € ©y*(R3) such that
divu =0 and

/ (Vu-Vo+701u-v—PBu-v)de = {(v) (5.1)
R3

for all v € C§°(R3)? with divw = 0.
This means: we assume that the perturbed Oseen system
—Au+1ou—Bu+Vr=g, divu=0 inR3 (5.2)

admits a unique weak solution in the same way as the Oseen system does (compare
with Theorem 7). We will now solve a version of (5.2) in which the pressure is
eliminated.

Theorem 17. The relation PBv € Dy *(R?)> N Ha(R?) holds for v € .
Define A : § — Dy "3(R?)? N Hy(R3) by A(v) := A(v) — PBv for v € §. Then
2 is well defined, linear and bijective.

Proof.  Since $H C 33(1)’2(R3)3, the first claim of the theorem holds according to

Lemma 8. In view of Theorem 16, we may conclude that the operator 2 : § —
D, % (R?)® N Hy(R?) is well defined. As an easy consequence of the uniqueness

statement in (A1), we obtain that 2l is one-to—one. This leaves us to show that 2
is onto. To that end, take ® € Dy "*(R?)? N Hy(R?), and let u € Dy*(R?)3 be the
solution of (5.1) with £ given by

Uep) = / O pdx for ¢ € C5°(R?)®. (5.3)
R3
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Then
/ (Vu-Vo+1du-¢)de = f-edx for ¢ € CF(R?)3, (5.4)
R3 R3

with f := ® + PBu. By the first statement of Theorem 17, we have f €
D, ?(R3)® N Hy(R3)3. Due to this and Theorem 16, we know that there is @ € §
with 2(v) = f. Now (5.4) and the uniqueness result in Theorem 7 yield u = v,
hence u € §. At this point we may deduce from (5.4) and the definition of f that
2(u) = ®. This proves that 2 is onto. O

Corollary 3. The mapping Z : D, %(R3)? N Hy(R?) — D, 2(R3)3 N Hy(R3),
with Zo(w) == w — PB(Ty(w)) for w € Dy ?(R3)3 N Hy(R?), is well defined,
linear, bijective and bounded.

Proof. The operators 2 and 5[, from Theorem 16 and 17, respectively, are bijective,
so we get by Lemma 11 and the first statement in Theorem 17 that the operator
0 from the space D5 "%(R3)3 N Hy(R?) into itself, with

V(w) = w—-PB(A  (w)) (we D, *(R)? N Ha(R?)),

is bijeciive. Since A~ =T |,}3071,z(RS)3ﬂH2 ®) by Theorem 16, we see that U = ZO,
hence Zj is bijective. The boundedness of Zj follows from (4.1). O

Theorem 18. Let g € (1,2), and define an operator Z\” : L1(R3)? — L1(R3)3 by
Z{(®) = & — PB(E® &) for & € LI(R3)3. Then Z\? is well defined, linear,
bounded and bijective.

Proof.  We know from Lemma 9 that Z\ : LI(R3)3 — L(R3)? is well defined
and bounded. The claim that Z(()q) is bijective will be proved by reducing it to

the fact that Zy is one-to-one (Corollary 3). To this end take R € (0,00) and
define & : LY(R3)3 — LI(R?)? by Sp(®) := P(xB, - B(E® % @)) for & €
L4(R3)3. In order to show that G is compact, we take a bounded sequence (®,,)
in L9(R?)3. Then we may deduce from (3.16), (3.17) and Corollary 1 that the
sequence ((E©) «®,) |z, )n>1 is bounded in W24(Bg)3. On the other hand, let

€ € (0,1). Then, for ® € LI(R3)?,
I8r(®)llg < C(IVUllate); B (B % D)lloge); Br

U 346 B [(VE@ % @) (1/g-1/3+0) )1 Br )5 (5.5)

where a(e) :=q+e¢, b(e) :== (1/g—1/(g+¢€)) in the case ¢ > 3, and a(e) := 3 +¢,
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ble) == (1/q—1/(3 +e))_1 if ¢ < 3. However,
-1
11 3¢ 3
- — < ifg< -,
(q g+e> 3-2¢ 173
1

Lo LY B
g 3+e¢ 3—q

Since the sequence ((E®) «®,)p, ), _, is bounded in W?9(Bg)?3, as noted above,
we may now apply the standard theory of compact _imbeddings in Sobolev spaces.
This theory implies that there is a subsequence {®},, of {®,} such that the se-

1

quence {((E©x®,) |5, },,5, converges in L(Va-1/tar9) (Br)? (the case ¢ > 2),

—1
or in L(l/q_l/(3/2+e)) (Br)? (the case ¢ < %), respectively, and the sequence

{ (VE© « E)n) |BRr }n>1 is convergent in L(l/q_l/(?’“))i (Br)3. In view of (5.5)
and (2.14)-(2.16), we may conclude the sequence {Gr(®n) }n>1 converges in
L9(R3)3. Thus we have shown that the operator G : LI(R3)3 — LI(R?)3 is
compact. This is true for any R > 0. We further note that by (4.4), we may choose
R € (0,00) so large that

IP(xBy BE® @), < (2r)7H||®], for & € LI(R?)%. (5.6)
Let us now fix such a value R. Then the operator
Gr: LYR*)? > & & —P(xp, B(EW «)) € LI(R?)? (5.7)

is one-to—one. Moreover, a simple fixed point argument based on (5.6) yields that
B is onto. Thus &y is linear and bijective, in particular with Fredholm’s index
zero. Since &p is compact and Z(()q) = By + G, we may conclude that Zéo) is
Fredholm with index zero.

Let us now show that Z(()q) is one-to—one. To this end, take ® € LI(R3)? with
Z§(®) = 0. Let (1/g— )™ <p< (1/g— 1)~ withp > 3,

pe((1/g—3)™, 00) if g > 3,
o

pe((t/g=5"" 1/a—371) else.
Since p < (1/¢ — $)~!, we have 2 — 1/p < 3. Obviously (2 +1/p)~* < 2. Thus
we may choose
€@ HDN(G+1/p)7" §) with1/y—1/p< 3.

Then vy < 3 < P, so the last relation implies (1/79 — 1/p)~* > 2, hence
NU | (1/~0—1/5)-1 < 00 by (2.15), (2.16). Since 79 > (% 4 1/p)~*, we further have

(/70 —1/p)~t > 3.
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Now suppose that ¢ > 3. Then p > (1/¢ — 3)~' > 3. On the other hand,
1/70 — % > %, so we may conclude that (1/7o —1/p)~' < 3. It follows from (2.14)
that [[VU||(1/+o—1/p)—1 < 00. Now we get from (3.16), (3.17),

BE « @), < C(IVUl/r0-1/p)-1 1B * 2,
Ul ro-1/m1 IVEP x 2ll5) < Cp,p) [2llg. (5:8)

Since ZéQ)(@) = 0, we may conclude with Theorem 4 that ® € L (R3)3. Thus
there is always some ¢; € (1, 2) with ® € L% (R?)3.

Let py € ((1/qr—5)7% (1/qr—3)7"). Since q1 < 2, we have (1/q1—3)~! <6,
so we may choose py € ((1/q1 — 3)7%, (1/qn — 3)™*) with p1 < 6. Then (3 —
1/p)7 > 2, (2-1/p1)" € (3, 3), so that by (2.14)—(2.16), |U||(5/6—1/p,)-1 < o
and ||[VU]|(5/6—1/p,)-1 < 00. As a consequence, by an estimate as in (5.8), and by
referring again to (3.15), (3.16), we get | B(E©x®)||s/5 < C(Py,p1,q1) [| @]l Thus
we have found that B(E® «®) € L5/5(R?)3. In view of Theorem 4 and the assump-
tion Z\?(®) = 0, we thus arrive at the relation ® € L6/5(R3)3. Now inequality
(3.18) yields E© % & € ©,°(R?)?, hence PB(E© x ®) € Hy(R?) ND; " (R3)3 by
Lemma 8. Since Z(SQ)(CP) = 0, we thus obtain ® € Hy(R3)NDy "2(R3)3NLE/5(R?)3,
so Corollary 2 implies Zéq)(q)) = Zo(®). Therefore Zo(®) = 0, and we may con-
clude with Corollary 3 that ® = 0. This proves that ZSQ) is one-to—one. However,
a Fredholm operator with index zero which in addition is one—to—one is bijective,
so the proof of Theorem 18 is completed. O

Corollary 4. Let g € (1,2), A € C ~ {0} with ReX > 0, |A| < (7/2)?. Then the
operators

Zy : D5RYENHy(R?) 5> @
— & — PB(EW « @) € D, %(R?)® N Hy(R?),
Z@ . LIRE 33— & —PB(EW «®) € LI(R?)?

are well defined, linear and bounded. If 1, g € Dy "?(R?)3N Hy(R?) with Zy () =
g, and if we set u := EW) x ap, then uw € W22(R?)3 N LS(R?)% and

—Au+7ohu+Au—PBu =g, divu=0. (5.9)
If, in addition, g € LY(R®)? then the relations ¥ € L1(R3)3, Z;'J) () = g hold.

Proof.  The corollary follows from Lemma 9, Theorem 13 and Corollary 2. In
particular, the last statement is a consequence of the inclusion P‘B(Fg('w)) €

Hy(R¥) N Dy 2(R3)3 N LIYR3)3 (for w € Dy ?(R?)?) in Lemma 9. O
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Theorem 19. There exists ¢ € (0, (7/2)%], depending on U, such that Zy :
D, 12(R3)3 N Hy(R3) — Dy V2 (R?)? N Hy(R3) is bijective and |||, < C || Zx(®)]|.
for ® ¢ D, (R?)3N HQ(R3) A e C~ {0} with ReA >0, |\ < €.

Let q € (1,2). Then there exists e2(q) € (0, (1/2)?], depending on U and
g, such that the operator Z/(\Q) : LYR3)® — L%(R3)? is bijective and ||®||, <
C(q) |12\ (®)]|, for ® € LI(R®)3, A € C~ {0} with ReA >0, |A| < ex(q).

Proof. By Corollary 3 and the open mapping theorem, there exists Cy > 0 such
that

Jwll. < Col|Zo(w)]|s for w € Dy (R N Ha(R?). (5.10)
Similarly, by Theorem 18, there is éo(q) > 0 such that

@Iy < Colq) |Z57(@)]l, for @ € LI(R?)°. (5.11)

Now, in view of (4.7), we may choose & > 0 so large that 2D;(R) < (12Cy 7)Y
with D (R) from Lemma 9. Since In(1/(1 — 1/R)) — 0 ( R — o0), we may fix
some R € [2R + 1, o0) such that

1 1 1 1
D3(R) | —= + = ln( NH < ,
3l )L/E 2 1-1/R 12Cy T
where the constant D3(R) was introduced in Theorem 14. Finally we choose ¢; €

(0, (7/2)?] so small that D3(R) - /> < (12 Cy - 7)~L. Then it follows from (4.7)
and the last statement of Corollary 2 that

1Zx(w) = Zo(w)]. < [lwll. (5.12)

4C
for w € D5 2(R3)3 N Hy(R3), A € C~ {0} with ReX >0, |A| < ¢;. Thus, we may
deduce with (5.10) and a simple shoestring argument that ||wl. < 2Cy HZA( )|«

Let g € ©, "*(R%)? N Hy(R?), and put &g := (Zy) "1(g), ®ny1 := (Zo) (g —
(Zx — Zo)(® n)) for n € No. Then (5.10) and (5.12) yield the convergence of
the sequence {®,} in the norm ||.|[.. The limit function @ verifies the equation
Z,\(<I>) = g. This proves that Z » is bijective. An analogous argument based on
(5.11) and (4.8) implies existence of e2(q) € (0, (7/2)?] with the desired properties.
]

6. Resolvent estimates for the perturbed Oseen system (5.2)

In the rest of this article, we write J for the identical mapping of H>(R?) onto itself.
Put D(L) := Hy(R3) N W22(R3)3. Since W22(R3)? ¢ Dy *(R?)? and because of
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Lemma 8, the term PBw is well defined and belongs to Hs(R3) for v € D(L), so
we may define

Ly = Av—-10v+PBv (ve DXL)). (6.1)

Then £ : D(L) — Hy(R?) is linear and densely defined in Hy(R3). We will use the
usual notation p(L) for the resolvent set of L.

Note that if g € L2(R3)?, w € D(L) with Lu = Pg, Theorem 4 yields some
7€ W2 (R?) such that the pair (u, ) solves the perturbed Oseen problem (5.2).
Thus, estimates of the operator (AJ — £)~1, for A € o(L), correspond to estimates
of solutions of the resolvent problem (5.9).

The ensuing theorem is due to [3], [10], [17, Theorem 1.3.2].

Theorem 20. There is at most a countable set & C C such that Sp(£) ~ K C
{A € C; ReX < —(Im\)?/7%}. Set & consists of eigenvalues of operator L.
There exist a € (0,00) and ¥ € (7/2, 7) such that

Soa = {Ne C~{a}; |arg(A —a)] <V} C o(L).

From now, we assume that operator L satisfies condition (A2) — see
Section 1 for its formulation. It means, in particular, that Re A < 0 for all A € R.
Note that by (A2) and Theorem 20, we have

{AxeC~{0}; ReA>0}U({A€C; ReA<0}NSyq) C o(L). (6.2)

In this section and in Section 7, we write C' for constants which may depend on
7, U, a or ¥. As usual in this article, if such a constant depends on additional
quantities 71, ..., Yn, for some n € N, we denote it by C(y1, ..., Vn)-

Lemma 12. Let A € C~ {0} with Re A > 0 and || < €1, with €¢; from Theorem
19. Take g € DNH,(R?). Then (\I—L)'g = EM«(Z,)"(g) and \T—-L)'g €
DNDL).

Proof.  We have to compare u := (A\J — £)"!g and @ = EW x (Z,)"!(g).
Corollary 4 and Theorem 6 yield that w € D(£) and (A\J — £)(u) = g. Since
X € o(£) by (6.2), it follows that w = &. Observing that D(£) C ©?(R3)? and
u=(1/)) - (Lu + g), and recalling Lemma 8, we obtain u € D, ""?(R3)3. O

The next theorem is the crucial element of our theory; it states resolvent esti-

mates for the perturbed Oseen system (5.2), under the assumption that the resol-
vent parameter A has a small modulus and non—negative real part.

Theorem 21. The inequality |[V(AT — L) g|l2 < C||g||« holds for g €
D L2(R3)2NHy(R?), A € C~ {0} with Re XA > 0, |\| < €1, where €; was introduced
in Theorem 19.
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Let s € (1, &], 6 € (0,1]. Then there is e3(s,8) € (0,€1], also depending on T
and U, such that for f € L*(R3)3NH(R3), R € (0,00), A € C~ {0} withRe A > 0,
|A| < e3(s,d), the ensuing estimates hold:

VAT = L) fllz; e + V[T = L) o AT = L)) ] |y, 5,
< C(s, 8, R) N T*Y979 1 7, (6.3)
VAT = L) flla;pr < C(s,6, R) [N|72740H/70 ) £ . (6.4)

Proof. Take g € D5 "*(R?)3 N Hy(R3) and A € C ~ {0} with ReX > 0, |\| < €;.
Then we get by Lemma 12, Corollary 2 and Theorem 19 that

IVOT = £)7 Mgl = B % (Z) " (g)ll2 < CII(Z2) " (@)ll-12 < C gl

This proves the first claim of the theorem. Now let f € L*(R?)3N H(R?), and take
) as before. Then f € LS/5(R3)3 by interpolation, hence f € D5 "% (R?)?N Hy(R3).
Thus we may define u(!) := EM x (Z,)~1(f), and obtain u(" e D;"?(R?)? N
Hy(R?) N W22(R?)? by Lemma 12. Repeating this argument, we put u(t!) :=
EW 5 (Z) Y u®) for i € {1, 2}, w:= EM % (Z,)}(u), and obtain u®, u®,
w e Dy (R33N W22(R3)3 N Hy(R?). Moreover Lemma 12 yields

u® =(\I-L)7f, w=AT-L) o(AT-L)7'f. (6.5)

Take ¢ € [3, 2), and suppose that [A| < min{ ez(r); 7 € {s,q} }, with e2(q), e2(s)
from Theorem 19. Put p := ((1/¢— §)' 4+ (1/¢— 5)~'). Since ¢ > 3, we have
p > 2. (Actually only values of ¢ close to 2 are of interest because it is them who

lead to values of ¢ close to 0 in (6.3) and (6.4), as will be seen below.)

Since f € @y "?(R3)? N Hy(R3) N L¥(R3)3, as explained above, we have
(Z)7L(f) = (Zﬁs))*l(f) by Corollary 4. In addition, inequality (3.15) implies
u® € L*(R3)? N LY(R?)3. Again referring to Corollary 4 and (3.15), we may
conclude that u® € L9(R3)3,

(207 w®) = (Z7) @) forr € {g,s},

_ (6.6)
(Z0) M (®) = (Z") " (u®).
Recalling (6.5), and applying (3.17), (6.6), Theorem 19 and (3.15), we find that
VAT = L) fllzs b < Va2 5, < C(R)[Vu®,
C(R,p,q) [(Z) 7 (wM)]l, < C(R,p,q) [uV]],
C(R,p,q, 8) A2~ 1A=1s10 ) (ZEN =L (f))
< C(R,p,q,s) AP0 V0

<
<
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= C(Rp,q8) NI £, (6.7)
with § :==4(1/¢ — 1/2). An analogous argument, starting with (6.5), yields
IX-T=2£)" o AT =L)" fllz < C(Rp,q,8) XTI £,

Thus, since ¢ may be chosen arbitrarily in [3, 2), we have proved (6.3). In order to
estimate (AJ — £)73 f, we again proceed as in (6.7), but with f replaced by u).
Note that f may in fact be replaced by u® since u(!) € L*(R3)> N D, "*(R?)3 N
H»(R3), as explained above, and because of (6.6). In this way we arrive at the
inequality

VO3 = £) Fllo: 5 < C(Rpyq,5) A7 [u D, (6:8)
However, by (3.15) and Theorem 19, we have

lu®ls < C) AT IEZT) T DIl < CE N (s (6.9)
By combining (6.8) and (6.9), we arrive at (6.4). O
Corollary 5. The inequality

VT = L)~ fll2 < C(€,0) [ £ll2 (6.10)

holds for &, o, f as in Theorem 15 and for A € C ~ {0} with Re X > 0, || < ;.
Let § € (0,1]. Then there is €4(8) € (0,¢1], also depending on T and U, such
that

IVO3 = £) 2 f s + [V [(33 = £ 0 AT = £72H)] . .,
< 0(5707 5, R) |)‘|_6 ||f||2> (611)
IVOAT = L) fllzi 5 < C6.0,6,R) N2 || ]2 (6.12)

for R € (0,00), A € C~ {0} with ReX > 0, |\ < €(d), and for o, &, f as in
Theorem 15.

Proof.  Take o, &, f as in Theorem 15. Then ||f|. < [|fll2 + C|flle/s <
C(&,0)||fll2 by Lemma 3 and (4.26). Inequality (6.10) now follows with the first
statement of Theorem 21. Let § € (0,1], and put s := 1/(1—6/8). Then s € (1, £),
so [flls < C(8,&,0)||f|l2 by (4.26), and —4(1 — 1/s) — /2 = —4§. From these
observations and inequalities (6.3) and (6.4) with ¢ replaced by ¢/2, we obtain

(6.11) and (6.12), respectively. O
Lemma 13. Let A € C with Re A > 0, and g € H>(R?). Then
VAT = L) gl < C(llgll2 + 1(AT = £)7 (g)]l2)-
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Proof. Putu:= (AJ—L)"!g. Thenwu € D(£) and —Au+Au = g—7 O u+PBu,
so that

Re / (—Aw- @+ \|u|?) dz = Re / (g9 — 701w+ PBu) - u d. (6.13)
R3 R3
But [o; —Aw-w dz = ||[Vul3, Re [z du-u de =0, so we deduce from (6.13)
and Lemma 8 that
IVal3 +ReAul3 < llgllz [[ull2 + C [|Vullz [|ull2.

Since Re A > 0, the lemma now follows by a simple shoestring argument. (]

Lemma 14. Let 71, 72 € (0,00) with 71 < 72. Put M, , := {A € C; ReX >
0, 11 <|A| <~v2}. Then M, -, C o(L) (see (6.2)) and

1T =L)7H@) 2 + VAT = £)7 @2 < C(y1,72) @]z for @ € Ha(R?).

Proof.  Recall that o(L£) is an open set in C, and the mapping o(£) > A —
(AT — £)~! is holomorphic, in particular continuous, with respect to the operator
norm of linear bounded operators from H(R?) into Ho(R3). Thus, an elementary
argument involving finite coverings of 9M,, ,, and Neumann series of operators
yields that ||[(AJ — £)71(®)]2 < C(y1,72) ||®]l2. Now the lemma follows from
Lemma 13. O
Theorem 22. There is a constant Cy > 0 depending on 7, U, 9 and a such that

1) the estimate
AT = £) gl < Cllglla (6.14)

holds for g € H2(R?), A € C~ {0} with ReX > 0, |A\| > C4, and for X\ € Sy, with
ReA <0 and |\ > Cy and

2) the estimate
AIVAT = L) gl2 < ClIVgll2 (6.15)
holds for g € Ha(R?*) N WH2(R3)3, and for A as in (6.14).

Proof. Let A € C~ {0} with ReA > 0 or A € Sy,. This means by (6.2) that
A€ o(L). Let g € Hy(R?) N WH2(R?)3, and put u := (\J — L) 'g. Then

—Au+ A u = g — 701u+ PBu. (6.16)

Multiplying this equation by —Aw, integrating over R3, separating real and imag-
inary parts, and then applying Holder’s inequality and Lemma 8, we get

[Aull3 +ReX [[Vul3 < C(IVgll2 [Vullz + [|Vul2 [|Aul2), (6.17)
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[ [Vul3 < C(IVgllz [Vaullz + [[Vull2 |Aullz). (6.18)

Now we distinguish between the cases Re A > 0 and Re A < 0. First consider the
(more difficult) case Re A < 0. Then A € Sy 4, hence

Re(A—a) > —cos(m —¥) - |A —al, ImA| > |A—al-sin(r — ).
We may thus deduce from (6.17) and (6.18), respectively, that
[Aulf3 + (—cos(m — ) - [A —a| +a) [Vul; < [|Aul5 +ReX [Vul3
< C(IVglz IVullz + [[Vul2 |Au]2),
A=l -sin(r —9) - [Vull3 < C (Vg2 [Vullz + [[Vullz [|Au]2).

The second inequality is multiplied by 2 cot(w — ) and then added to the first one.
It follows

1A%]3 + (cos(m — ) - |\ — al + a) [[Vul3
< C(IVall2 Vullz + [IVullz [[Au]2)
a1 (IVgll2 [IVallz + [[Vul3) + 3 (| Aull3, (6.19)

IN

with a constant a; depending on 7, U and ¢¥. Now suppose in addition that
[A| > 21/ cos(m — ). Then cos(m — ) - |A—a|+a > cos(m — ) - |\| > 2a4, hence
from (6.19)
[Aul]3 + (cos(m —9) - [A—al/2+a/24 ay) [|[Vul3
< ar ([IVgllz [Vulz +[[Vul3) + 3 [|Aul3,
so that

3 [1Aul3 + (cos(r — ) - [N —al/2+a/2) |Vul3 < o1 [Vl [Vl

Since cos(m — ¥9) - |]A —al +a > |\ - cos(m — ¥), we now get [A| - [|[Vul3 <
C||Vgllz ||Vull2, hence |A|||Vulls < C||Vg|l2. Recall that this inequality was
proved under the assumptions A € Sy 4, Re A <0, [A| > 2a3/ cos(m — 9).

Now we consider the case Re A > 0. Adding (6.17) and (6.18), we obtain

1A%]3 + (Re A + [Im A]) [Vuld < C([Vgll2 [Vulz + [Aullz [[Val-).

But Re A + [Im A| > |)|, so we may conclude that

1Aw]3 + A Vul3 < € ([Vgll2 [IVallz + [Vl [[Aull2)

< o ([Val [Vullz + [ Vull3) + 5 | A,
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with a constant as > 0 depending on 7 and U. Thus, if |\| > 2as, we arrive at
the inequality

3 1A + N[ [Vul} < a2 ([Vgll2 [Vull2.

It follows |A| [|[Vullz < C'||Vygl|l2. This completes the proof of (6.15). In order to
show (6.14), we multiply (6.16) by @ instead of —Aw. Then we obtain (6.14) by
repeating the previous arguments with obvious modifications. O

Note that Theorem 21 presents the resolvent estimates related to the operator
L for the case that |\| is small, whereas Theorem 22 deals with the case of large
|A|. Lemma 14 might be considered as an (obvious) result for intermediate values.

7. Estimates of the semigroup e**.

We recall that our convention at the beginning of Section 6 with respect to generic
constants remains valid in this section. Furthermore, we recall that we assume that
the operator £ satisfies conditions (A1) (Section 5) and (A2) (Section 6).

By Theorem 20, (6.14) and [17, Theorem 1.3.4], the operator £ defined in (6.1)
generates an analytic semigroup in Ho(R?) ([17, Definition 1.3.3]), which we denote
by e“t. In what follows, we will exploit the resolvent estimates from Section 6 in
order to evaluate this semigroup. We begin by introducing the constant

Cy := max{ C1; es(55); 1/v2; 2a tan(m — 0) },

where C} was chosen in Theorem 22, and 64(%) in Corollary 5. For the quantities
a and ¢, we refer to Theorem 20. Since Cy > 2a tan(m — 1), we may choose
Jo € (7/2, ¥) so close to /2 that for any s € [Ca,00), the inclusion

{sew; @ € [, —m/2] U [1/2, Y] } U {reiﬁ(j; Te [3700)} C Soa (7.1)

holds. Let , 3 € (0, 00) with o < 3, 8 > Cy. Then we define the curves T\ c C,
with 7 € {1, ..., 5}, by setting

Fga’ﬁ) ={a-e% pel-n/2, /2] }, Féa’ﬁ) = {ir; re o]},

r{? .= {iB+re?; re0,00)}, rief = {v; ye Fgff)}
for i € {4; 5}. Let s € [Cq,00) and define

Ags) = {se'? g e[,V }, Aés) = {re'; rels,00)},

AP = {yend )

Then, in view of (6.2), (7.1) and Theorem 20, and since § > C2 > a tan(m — 9),
we have F,(,O"ﬁ)7 Aff) ColL) (1 <v <5 1<pu<3). As a consequence of these
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relations and [17, Theorem 1.3.4], we obtain
5
ct _ -1 At —1
eFtw) = (2ni) ;/rgm M — L) tw dX

3
= (2mi)7! Z /Am M AT — L) w dA (7.2)

pn=1

for t € (0,00), w € Ha(R?). As to the arguments we present in this section, we
can note: The main difficulty consists in showing that for large ¢ and for &, o, f
as in Theorem 15, the term ||Ve“!(f)|2. 5, is bounded by C(R,&,a)t=1=¢| £,
for some € > 0. (Incidentally we will choose ¢ = %, but this will only be for
definiteness.) We will obtain such an estimate by considering the first sum on the
right-hand side of (7.2). This means in particular that we have to show that

for large t. In view of (6.10), this should require o < ¢t17¢. On the other hand,
in order to produce a factor t~7 for some v > 0 in the estimate of the integral
Jr@o MV — L) 'f|g, d)\ for v = 2 and v = 4, we introduce the local
parameter o(r) := ir (r € [o, []), and then integrate by parts with respect to r,
so that the factor e is transformed into e"* (it)~!. But this means that a single
partial integration does not suffice to generate a factor t~1=¢. On the other hand,
after two such integrations, we obtain a term V(ir I — £)73f|,,, which gives rise
to a factor 7=279 for some § > 0 (see (6.12)). The integration of this term on the
interval [a, 3] leads to the factor a=1=9 = t(1+9)(149) which cancels the effect of the
second partial integration. Therefore, recalling that the term V(ir I — £)"2f |5,
only produces a factor r =9 (see (6.11)), we perform a kind of interpolation between
one and two partial integrations. To this end, we use fractional derivatives, as
introduced in the next lemma.

< C(gao—, R) Hf”2 tilie

2; Br

/ MVNT—L)7Lf dX
Fgaﬁ)

Lemma 15. Let r, b € R with k < b, p € (0,1), h € C'([,b]) with h(b) = 0.
Define h : [k,b] — C by

_ b
h(r) :=T(1 - u)_l/ (s —7) " h(s)ds forr € [k,b].

r

Then h € C([k,b]) with

—/

b
h(r)y=T(1- u)_1/ (a—7)" ' 0 (a) da for r € [k, D). (7.3)

b
Define ~: [k,b] 5> r+— I‘(u)_l/ (s—r)™" El(s) ds e C. Then h= —.
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(Note that T" without any subscript or superscript denotes the Gamma function.)
We leave the proof of this lemma to the reader, and only note that the equation
~v = —h may be reduced to the relation B(u,1—p) =T'(p) - T'(1 — p) for p € (0,1),
where B denotes the usual beta function.

Now we can prove an inequality which will be the key element in our estimate
of the integrals over Fg”ﬁ) and I‘ff"ﬁ).
Lemma 16. Let § € (0, 1) and abbreviate b := min{ es(6); 1/v2 }, with es(6)
from Corollary 5. Then, for &, o, f as in Theorem 15, R € (0,00), x € (0,b),
t € (0,00),

< O(& 0,8, Rt 67| f]]a.
2; Br

b
H/ "V (ird — L) 72 f dr

Proof.  Take &, o, f, R, K, t as in the lemma. Note that by (6.2), we have
{ir; 7 € [K,b]} C o(L). Therefore the mapping g : [x,b] > r +— V(ir3—L)" ' f |5, €
L?(Bgr)? is in particular twice continuously differentiable, with

9" (r) = (-1)" vV (ir3 = L)~V (f) |pg

for v € {1; 2}, r € [k, b]. Thus, due to the assumption b < e4(d), inequalities (6.11)
and (6.12) yield

r Nlg'llz + 2 lg" (M)l < C(€, 0,6, R) || fll2 (7.4)

for r € [K,b]. Put h(r) := (it)~! (e — &) for r € [k,b]. Define h and v as in
Lemma 15, with u = i. Then we get a partial integration, using the equation
v = —h' (Lemma 15), and changing the order of integration,

b

b .
[ @53 02 s ar = () [ 70 g0 ar

K

- iI‘(}l)l/:E/(s) (AS(ST)1/4g’/(r) dr> ds
T [ - T ) ds g o), (1.5

Note that 72 is a fractional derivative of h (of order 2). Thus we have transformed
an integral of the form f}f h'-g’ dr involving the derivative A’ of h, into an integral

of the form f: I ¥ dr (modulo boundary terms) involving a fractional derivative
of h, in contrast to the function h itself, which would arise by the standard partial
integration.

The lemma follows from (7.4), (7.5) and the inequalities |h(r)| < 2/t, |h/(r)] < 2
for r € [k,b]. We omit the details because they were already elaborated in [7, proof
of Lemma 6.2]. O
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In the following theorem, we estimate Ve“!(f)|p, for large values of ¢, with f
given as in Theorem 15.

Theorem 23. Put b := min{ e4(15); 1/v2}, with e4({5) from Corollary 5. Let
R € (0,00),t € [b7!,00), and take &, o, f as in Theorem 15. Then

IVe“t ()2 B < C(& 0, R) || f]l2-t~/5.

Proof.  We start from the first equation in (7.2), with @ = t=2. The latter
assumption means in particular that o = t72 < ¢! < b. We further take 3 €
[C2,00), where Cy was introduced at the beginning of this section. We find that

Hv/ M AT - L)L dX
r{®®

2;BR

/2 » )
< Oé/ ler ] || V(e T — £)71f|‘2;BR de

—T

IN

C(&0) [fll2 ae™ < C0) | fll2t7, (7.6)

where the last but one inequality holds because of (6.10). The last one is a conse-
quence of the choice a = t72. If A € Fga’ﬁ) u I’éa’ﬁ), we have [A| > 8] > Cy > C
and A € Sy 4, Re X > 0, so inequality (6.15) is valid for such A. This allows us to
conclude that

‘v( > /rgm MAT-L)7Lf d>\>

ve{3;5} 2; Br
< CHVsz/ ’eiﬂ-&-rem |iﬁ—|—rem\_1 dr
0
< CIVflapt [ et < C@ ]l (907 (r.7)
0

where the last estimate follows from the first inequality in (4.26). This leaves us
to deal with the main difficulty of this proof, that is, the estimate of the integrals
over Féaﬁ) and I‘Ef"ﬁ). To this end, we perform a partial integration. Noting that
b < Cy < 3, we obtain

V(/ MONIT-L)7f dA)
Féa-ﬁ)

Ié; 4
= i/ eV (irT = L)7Hf) |, dr = > o, (7.8)
(e j=1

Br

where

M = L VAT L)),
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Ny = —t 1" V(iaT - L)' (f)|g,
© b
i ~ . -

Ny = z/ e (ird — L)) |5, dr,
i 8, >

N, = / eV (ird - £)72(f) |, dr.
tJy R

The integral over Ffla’ﬁ ) s split into the sum 2?21 M;, where N, is defined in an

analogous way as N;, for j € {1; ...; 4}. Recalling that C; < Cy < 3, we get from
(6.15) and (4.26),

19Ul + [9ll2 < C©) (#8)7" [Ifll2- (7.9)
We further find, using the standard resolvent equation, (6.10) and (6.11) with
§ = 1z, that
16°

1M +Malz < 71 [ — | |V(=iaT = L) (f)ll2 Br
+ 71 el ||2iaV[(—ia3 — L) o (iad - E)_l(f)} Hz; Br

IA

C(& 0, R) [|fll2t™" (|sin(at)| + a'?/16)
C(& o, R) [ fll2 (a+a'™10¢71). (7.10)

IN

Lemma 16 with § = 1 yields
19%]l2 + [Nl < C€ 0, R) [ fll2 7% a7/, (7.11)

As to Dy, we perform an additional partial integration, to obtain

ﬁ . G .
Ny = 2175*2/ "V (ir T = L)HF) |, dr+ 72 VBT - L)) |5,
b

— 12" V(T - L)2(f) |5,

Now we apply (6.15) with A =18, (6.11) with A = ib, the inequality b < 64(11—6) and
(4.26), to obtain

g
[Mullz < CfQ/ IV(rT = L) fll2 dr + C(€, 0. R) t7% || fll (7.12)
b

The remaining integral in (7.12) is split into an integral from b to Cs and into

another one from C5 to 8. (Recall that b < Cy < 3.) But be2 |(ir3—L)3f|l2dr <
C || fll2 by Lemma 14 with 73 = b, 72 = C3, whereas

b B8
[ INGra =) fladr < CI9Fle [ 1t dr < €[]
C> Ca
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by (6.15). Thus, referring to (4.26), we obtain from (7.12),

1Ml < O 0, R) || fll2t™2 (7.13)

An analogous estimate for ||| may be derived by the same arguments. Now,

combining (7.8), the analogue of (7.8) for the integral over I‘ff"ﬂ)7 (7.9)—(7.11),
(7.13) and the analogue of (7.13) for 914, we obtain

Hv( > /( B)e)‘t (Aj—z:)lfdA>
o

ve{2;4} 2;Br
< ClEoB) IFla (1) + a7 al¥/io 4 g5/ o 1/10 1 4-2)
< ClE o, R) (Il (@87 +17%%), (7.14)

where the last inequality holds because we chose o = t=2. By referring to (7.2),
(7.6), (7.7), (7.14), we may conclude that | Ve*!(f)|2; 5, < C(&,0,R) ((t8)~' +
t79/8). Letting 8 tend to infinity, we obtain the statement of the theorem. O

Theorem 24. Choose b as in Theorem 23. Then, for t € (0,b71], ® € Hy(R3?) N
H'(R3)3, the inequality || Ve (®)|2 < C(¥o) |[V®||2 holds.

Proof. Take t,® as in the theorem. Put sg := 1/t if t < 1/C5, and s¢ := Cy if
t > 1/Cy. Then we have so > Cy in any case, so we may represent e~!(®) by the

second sum in (7.2). Moreover, for A € AESO), 1 <4 <3, wehave |\ > s9g > Cy >
(4, and in the case Re A < 0 in addition A € Sy 4 (see (7.1)), hence

VAT = L)"')l < CIAITH V|2 (7.15)

by (6.15). In addition, we observe that sot = 1 if t < 1/Cy, and sot < Co b~ ! else.
As a consequence, sot < C' in any case. Choosing 11(¢) := spe'? (¢ € [~o, o))
as a representation of A" we get with (7.15):

6" 4(0) 9 (16)3 - £)
< e cos pt S0 C|Soew‘_1 ||V¢)||2 < C HV‘I’HQ;

where we have used that sot < C, as noted above. Moreover, introducing the local
representation 1, (r) := e’ (r € [sg,00)) of Aés(’), we find with (7.15) that

e () W (a(r) T = £) 7 0|y < C() € =7 171 [V,

Furthermore, observing that sgt > 1,

(o] (o] o0
/ ert cos Yo 7“_1 dr = / e cos Yo a—l da S / e cos Yo a—l da S 0(190)
s 1

S0 sot
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The same argument also works for an analogous representation of Ags‘]). Combining
the preceding results, we get

Hv(/m) M (AT — L)1 (®) d)\) |, < cwo)Ivel.

for ¢ € {1; 2; 3}. This proves the theorem. O

Theorem 25. Let £ € R and R € (0,00). There exists a non—increasing function
¢ belonging to Ll((O,oo)) N L2( (0, 00) ), depending on 7, U, 9, a, Y9, £ and R,
such that

Ve (£)ll2i < (2 [1F]l2

for t € (0,00) and for f € H} (i.e. for f being an eigenfunction of the operator
A + £ PBgym, associated with a positive eigenvalue).

Proof.  Again we abbreviate b := min{es(%); 1/v2}. By Theorem 23, there is
71 > 0 depending on 7, U, R, ¥, a, &, o such that [|[Ve“*(£)||2. 5y < 71t~ 2% | Fll2
for t € [b7!,00) and for f € D(L) verifying the differential equation stated at
the end of Theorem 25. Moreover Theorems 24 and 15 yield the existence of
a constant v > 0 depending on the same quantities and also on ¥y such that
[VeLt (£)|l2 < v || fll2 for t € (0,67 '] and for f as before. Thus, the function ¢
defined by o(t) := v, t=/8 for t € [b™1,00), @(t) := 72 for t € (0,b1), has all the
desired properties. O
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