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Abstract. Motivated by real world networks and use of algorithms based on random walks on these
networks we study the simple random walks on dynamic undirected graphs, i.e., graphs which are
modified by inserting or deleting edges at every step of the walk. We are interested in the expected
time needed to visit all the vertices of such a dynamic graph, the cover time, under the assumption that
the graph is being modified by an oblivious adversary. It is well known that on static undirected graphs
the cover time is polynomial in the size of the graph, on the contrary and somewhat counter-intuitively,
we show that there are adversary strategies which force the expected cover time of dynamic graphs
to be exponential, and relate this result to the cover time of static directed graphs. In addition we
provide a simple strategy, the lazy random walk, that guarantees polynomial cover time regardless of
the changes made by the adversary.

1 Introduction

A random walk on a graph is a simple process of visiting the nodes of the graph in some random sequential
order. The walk starts at some fixed node, and at each step it moves to a neighbor of the current node chosen
at random. The random walk is called simple when the next node is chosen uniformly at random from the set
of neighbors. In the context of communication networks (e.g., Internet, wireless ad-hoc networks and sensor
networks) and information networks (e.g., peer-to-peer file sharing networks and distributed databases), a
random walk on a network (graph) will result when messages are sent at random from device to device.

Since this process presents locality, simplicity, low memory-overhead and robustness to changes in the
network structure applications based on random-walk techniques are becoming more and more popular in
the networking community. In recent years, different authors have proposed the use of random walk for a
large variety of tasks and networks; to name but a few: querying in sensor and ad-hoc networks [22,6, 1],
searching in peer-to-peer networks [14], gossiping [18], PageRank and search engines on the web [15].

One of the main reasons that random walk techniques are so appealing for networking application is their
robustness to dynamics. Many communication networks are subject to dramatic structural changes created
by mobility, sleep modes, channel fluctuations, device failures, nodes joining or leaving the system and other
factors. Topology-driven algorithms are at a disadvantage for such networks, since they incur high overhead
to maintain up-to-date topology and routing information such as routing tables, clusters and spanning trees.
In contrast, algorithms that require no knowledge of network topology, such as the random walk, are at an
advantage.

While at first glance, the process of a token wandering randomly in the network may seem overly simplistic
and highly inefficient, many encouraging results prove that it is comparable to other approaches that have
been used over the years. One important property of random walks on graphs that needs to be evaluated to
study the efficiency of the approach is the cover time [2]. The cover time Cg of a graph G is the expected
time (measured by number of steps or in our case by the number of messages) taken by a simple random
walk to visit all the nodes in G. Methods on bounding the cover time of graphs have been thoroughly
investigated with the major result being that cover time is always at most polynomial for undirected graphs.
More precisely, it has been shown by Aleliunas et al. in their seminal work [3] that Cg is always O(mn),



where m is the number of edges in the graph and n is the number of nodes. Tighter bounds for many classes
of graphs have been established and they can be found in the extensive literature on the subject.

Since real-world networks change over time researches have recently started to study random walks
on such dynamic graphs. Motivated by robotic exploration of the Web, Cooper and Frieze [8] studied the
question of covering a graph that grows over time. They considered a particular model of so-called web graphs
and showed that a simple random walk on the graph fails to visit a constant fraction of nodes if a new node
appears and is connected to the graph after every constant number of steps of the walk.

Motivated by sensor networks we consider a similar question on a different model of dynamic graphs.
We consider dynamic graphs with fixed number of nodes where connections between the nodes appear and
disappear over the time. The question that we study is the cover time of such graphs.

1.1 Overview of Our Results

We show that somewhat counter-intuitively, there are dynamic graphs of this type that have exponential
cover time when explored by a simple random walk. (For the sake of clarity let us say that our examples
are deterministic but oblivious to the actual random walk.) Moreover, we show that a random walk on any
directed graph G can be simulated (in a way we define later) by a random walk on an undirected dynamic
graph that we construct from G; this gives yet another justification to our previous claim. Our examples
are also valid when we allow the random walk to make more than a single step between each graph change.
Indeed, we can allow up-to n'~¢ steps before making each change and still obtain an exponential cover
time. Although one could question whether our graphs could appear in a real-word scenario we do not
consider these graphs to be far-fetched: for example a particular implementation of sensor networks with
links (network interfaces) going to sleep periodically or nodes switching communication frequencies could
exhibit such behavior.

In addition to these negative results we also show several positive results. Most importantly we show that
a lazy random walk (also known as a maz-degree random walk in literature [17]) does not suffer from these
issues. We define as a lazy random walk a walk that picks each adjacent edge with probability 1/dyax, where
dmax 18 the maximum degree of the graph, and with the remaining probability it stays at the current vertex.
We show that a lazy random walk covers any connected dynamic graph in time polynomial in the size of
the graph. Furthermore, we also show that when the dynamic graph itself is obtained by sampling from a
certain probability distribution, a simple random walk will also cover such a graph in expected polynomial
time.

2 Models and Preliminaries

2.1 Random Walks on Graphs

Let G(V, E) be an undirected graph, with V' the set of nodes and E the set of edges. Let n = |V| and
m = |E|. For v € V, let N(v) = {u € V | (vu) € E} be the set of neighbors of v and d(v) = |N(v)| the
degree of v. A d-regular graph is a graph in which the degree of all the nodes is d.

The simple random walk is a walk where the next node is chosen uniformly at random from the set of
neighbors of the current node, i.e., when the walk is at node v, the probability to move in the next step to
wis P(v,u) = ﬁ for (v,u) € FE and 0 otherwise.

The hitting time, H,,, is the expected time for a random walk starting at u to arrive at v for the first
time, and the commute time, Cy,, is the expected time for a random walk starting at w to first arrive at v
and then return to u. Let Hpy,x be the maximum hitting time over all the pairs of nodes in G.

The cover time Cg of a graph G is the expected time taken by a simple random walk on G to visit all the
nodes in G. Formally, for v € V', let C,, be the expected number of steps needed for the simple random walk
starting at v to visit all the nodes in G, and the cover time of G is Cg = max, C,. The cover time of graphs
and methods of bounding it have been extensively investigated [20]. Results for the cover time of specific
graphs vary from the optimal cover time of ©(nlogn) associated with the complete graph to the worst case

of ©(n?) associated with the lollipop graph [11,10].



2.2 Evolving Graphs Model

The most general model to describe a dynamic network is called the Evolving Graph model. We will use a
similar definition as in [16, 13, 12].

Definition 1 (Evolving Graphs) Let G = G1,Gs, ... be an infinite sequence of graphs on the same vertex
set V.. We call this sequence an evolving graph. We say that G has the graph property X if every graph G;
in the sequence has the property X.

In simple words at time ¢ the structure of the evolving graph G is G;. For an integer 7 > 1, an evolving
graph G is evolving with rate % if for all i > 1, G; # Gi41 implies, Gi11 = Gij14; for all j € {0,...,7 —1}.

A simple random walk on evolving graph G is defined as follows: assume that at time ¢ the walker is at
node v € V, and let N(v) be the set of neighbors of v in G, then the walker moves to one of its neighbors
from N (v) uniformly at random.

The strength and the weakness of the above model have the same origin, its generality. On the positive
side, it captures most interesting scenarios of dynamic networks, but on the other hand, most natural
problems are NP-complete such as finding strongly connected components and the equivalence of minimum
spanning tree [12].

2.3 Constructive Evolving Graphs Model

Evolving graphs do not capture the underlying mechanism of how (or why) the graph evolves. In many
situations the evolving graph itself is a product of some random process. (For example this is the case of
web graphs considered in [8].) We will use the following definition to capture the underlying process in the
case it is a Markov chain. A special case of such graphs is considered in Section 5.

Definition 2 (Markovian Evolving Graphs) Let the space set G be a set of graphs with the same set V
of nodes and let P be a probability transition matriz. A Markov Evolving Graphs M = (G, P) is a Markov
chain with G and P: It is a sequence of random graphs G1, G2, Gs, ... with the Markov property, namely that,
given the present graph, the future and past graphs are independent. Formally, for g,g1,...,9: € G

Pr[Gir1 =g | Gi=gt,--.,G1 = g1] = Pr[Gi11 = g | Gt = g4]
and for g,h € G the transition probability is defined by P:

P(h,g) = Pr[Gi41 =g | Gy = h]

3 Exponential Hitting Time of Evolving Graphs

In this section we address the cover time of the simple random walk on evolving graphs by studying the
maximum hitting time. Clearly the cover time must be at least as large as the maximum hitting time. First,
we mention some technical issues. On static graphs the cover time is finite only for connected graphs. This is
not the case for evolving graphs as we will see in Section 5. For simplicity though we restrict our discussion
mostly to evolving graphs in which every graph in the sequence G is connected. (In the Markovian model
we require that every graph in the set G is connected, and call G connected if this is the case). Moreover
we require that all graphs have a self-loop for each of the nodes. This is simply a technical condition to
avoid pathological cases such as the walk switching forever between two nodes. In the case of static graphs
this is a standard way of enforcing ergodicity. An evolving graph G that has the above properties we call an
explorable evolving graph.

Now one can easily claim the following for explorable evolving graphs (a similar claim can be made for
Markovian evolving graphs):

Claim 3 Let G be an explorable evolving graph, then the cover time of G is bounded by n°™.



We outline the argument here. Fix two vertices v and v of G. For ¢ > 1, let V; be the set of vertices that
could be visited within first ¢ steps of a simple random walk on G starting from u. Since G is connected it
must be the case that for each i, V; C V; 1. In particular, V,, must contain all vertices of G and in particular
v. Thus, the probability of reaching v starting from u is at least n~". Indeed, this is true for any two vertices
u and v and starting from any time t. A standard argument now implies that the cover time is at most n?(").

Requiring connectivity at each step of the evolving graph may look like a very strong condition that
should imply polynomial cover time and maximum hitting time. Surprisingly we show that this is not the

case.

Theorem 4 There exists an explorable evolving graph G, such that the mazimum hitting time of the simple
random walk on G is 2(2").

One can think of this result in the following way: consider a random walk on an evolving graph that is
controlled by an oblivious adversary that is deciding what will be the next graph at each time step. In such
a case the adversary, although unaware of the random walk location, can force the walk to step exponential
number of steps before exploring the whole graph.

We give below the basic details of the proof and the main lemma behind it. Let G; be the star graph of
size n (with the addition of a self-loop at each node) where nodes 1,2,...,n — 2 and n are always the leafs
and node n — 1 is always the center. The random walk starts at node 1 and we will bound the hitting time
to node n. The adversary is the following deterministic process: At each time step vertices 1,...,n — 1 will
trade their places, i.e., the adversary changes the edges by changing the names of the nodes. The adversary
uses the following renaming strategy: for 1 < i < n — 1, node i changes its name to (imodn — 1) + 1. Note
that node n does not change its name, nodes 1,...n — 2 increase their name by one, node n — 1 becomes 1.

Proof of Theorem 4. The only way to reach node n is through the center. By induction on i =2,...,n — 2
one can see the following. Unless we have already reached the center of the star the only way how to be at
the leaf named ¢ after the adversary move is to be at the leaf named i — 1 before the adversary renaming.
That implies we must have used a self-loop at that random step. Hence, to get to the leaf named n — 2 we
must have had a sequence of n — 3 random steps all taking a self-loop. To get to the center we have to stay
at leaf n — 2. All in all to be at the center after the adversary move the random walk must have made a
sequence of n — 2 consecutive self-loop steps. That happens with probability 27712, Therefore the expected
time before we observe the random walk to make such a sequence of steps is £2(2"). ]

We would like to point out that all graphs in G are isomorphic and rapidly mixing (the cover time of each
of them is in fact O(nlogn)). This fact shows that common tools like spectral analysis cannot be applied
naively to dynamic graphs.

3.1 Simulating Directed Graphs

One way to understand the results of the previous section is by relating random walks on explorable evolving
graphs to random walks on static directed graphs. In fact we can simulate a simple random walk on a directed
graph G by a careful choice of evolving graph G. We will use the following gadget H to replace every directed
edge of G. For £ > 0, the gadget H, is a sequence of graphs HY, H}, H?, H), H}, H}, HY, ... with vertices L,
R, sgand s; 5, fori =1,...,fand j =0, 1,2. The graph Hlf“ is obtained from the graph in Fig. 1 by mapping
vertices L — L, R — R, so — cp and $;  — Ci, Sik+1mod3 — Vi, Sik+2mods — @i, @ = 1,...,£. (We deviate
here from our convention of having self-loops at every node for the sake of simplicity of the analysis. As
it will be clear in the next section with minor modification of bounds our claims would be true even if we
would add a self-loop to every node.) The main property of a simple random walk on H is summarized in
the following lemma.

Lemma 5 Let { > 0, H, = H), H},HZ, HY, H} ,H?, H?, ... and € = £(1/2)* + (3/4)*. Consider a simple
random walk on H,. If the walk starts at vertex L then the probability of returning to L before visiting R is
at least 1 — €. Moreover if the walk starts at vertex R then the probability of returning to R before visiting L
15 at most €.



Fig. 1. The gadget H, (dashed lines show node transformations)

We provide proof of this lemma in the appendix. Thus the gadget H, has essentially the same effect for
a simple random walk as a directed edge from R to L with a self-loop at L. Given a directed graph G with
a self-loop at every vertex we can replace all its directed edges between different vertices by a copy of H,
to obtain a sequence of graphs G on which a simple random walk will simulate a simple random walk on G
(up-to some error €). Of course, replacing several edges incoming to a vertex by the gadget will introduce
several self-loops to that vertex. To avoid that we can collapse the vertices ¢y from these gadgets into one
thus obtaining an equivalent of one self-loop. (This collapse will affect € slightly but no more than by a factor
polynomial in the number of replaced edges.) We also remove the original self-loops from the graph G.

If we perform a simple random walk on G and we restrict ourselves to observing only visits to the vertices
of the original graph G we will observe essentially the same probability distribution as of a simple random
walk on G. In particular, if we choose £ = n¥*1, for k > 1 and n being the size of G, then the probability of
observing an edge being traversed in the opposite direction in the first on” steps is at most 2-0"Y) Gince
for example the maximal hitting time on any strongly connected directed graph is bounded by 20(logn)
this error is negligible.

4 Slowly Evolving Graphs

The previous section has shown that there are evolving graphs for which a simple random walk essentially
fails as a means of exploring it. All our examples so far considered graphs that evolve at rate one. This would
not really be a typical case in a real-world application. The rate at which graphs evolve is usually slower
compared to unit operations such as sending a packet. So could it be the case that a simple random walk
covers in polynomial time all graphs evolving at lower rate? In this section we show that this is not the case.
Namely for any constant 0 < € < 1 and an integer n large enough, we provide an example of an evolving
graph on O(n) vertices that evolves at rate nl% so that a simple random walk needs expected time 2(")
to cover the graph. Indeed the graph is essentially the gadget from the previous section with the speed of
evolution slowed down.

Let K} be the graph H} from the previous section modified by adding possibly several self-loops to each
vertex so that the probability of staying at the same vertex is precisely one half. (So in particular vertices of
degree two will receive two self-loops and vertices of degree four will receive four of them. We remark that
our claim would be true even without these self-loops but in some cases for trivial reasons. So to capture the
most general situation we introduce the loops.)

For 0 < € < 1 and an integer n > 21/~ we define an evolving graph G¢ to consist of repeated sequence
Ky KO  ....KS Ki Ki. . . Ki K3, ... K3 whereeachblockof Kj, consistsof n'=¢ copies of Kj,.
Clearly G5 evolves at rate ——. We claim:
Theorem 6. The cover time of G¢ is 2°("°).

To prove the theorem we need tools from the next section.



4.1 A random walk on a line with a drift

In order to analyze the simple random walk on our slowly evolving graph we introduce a random walk with
a drift. Let k > 1 be an integer. Let p = (p—_k,...,Po,--.,Pr) be a probability distributions on {—k, —k +
1,...,k}. Let £ > 1 be an integer. A random walk on a line (...,—1,0,1,...) with a drift is a random walk
that starts at origin (0) and at each step the walk makes a step to the left with probability 1/4, step to the
right with probability 1/4 and stays at the current vertex with probability 1/2. Moreover, after each ¢ steps
of the walk a drift step is taken: we pick i € {—k, ..., k} at random according to p and we make |i| steps
to the left if i < 0, and 7 steps to the right if 0 < i. We will show that if the expectation of the drift step
is negative then the probability of reaching a point at distance n on the line before visiting the point —n is
exponentially small in n provided that £ = n'~¢, for some constant 0 < € < 1.

For our purposes we will need a slight generalization of the random walk with a drift as the drift step
will depend on whether we are at an even or odd distance from the origin. Thus we will consider the case of
having two probability distributions p*V*" and p°d on {—k,...,k}, and the drift step will be taken according
to p°Ve™ if the current vertex will be at an even distance from the origin and according to p°d9 otherwise.

For two probability distributions p°¥® and p°dd on {—Fk, ..., k} denote by DT =37, i (pf*" + ppd)
and D™ =3, _oi- (p5"™ 4 p29d). We claim the following lemma.

Lemma 7 Letk > 1 be an integer, 0 < € < 1 be a constant, and p°¥°™ and p°39 be two probability distributions
on {—k,...,k}. If DY + D~ < 0 then for any n large enough, the probability that a random walk on a line
with drifts according to p°°™ and p°I starting from the origin, reaches some point < —n before reaching a
point > n is at least 1 —27¢"". Here ¢ = —6/(D* + D7) and ¢’ > 0 is some constant that depends only on
€ k’peven7 and podd'

Proof of Lemma 7. Consider a random walk of length ¢t = ¢-n - n'~¢ on a line with drifts starting from
the origin. We will argue that with probability exponentially close to 1 the walk will visit some point < —n
but not any point > n. During the walk of length ¢, there will be cn drifts. We will argue that with high
probability the total drift towards the negative side will be at least 2n (i.e., we will move at least 2n steps
to the left as the consequence of the drifts), at no point during the walk the total drift so far was more
than n/2 to the right and at no point the random walk on the line without drifts would reach point n/2. If
these three events occur simultaneously then we clearly must have reached a point < —n during the walk
but never reached any point > n.

We argue first about the random walk of length ¢ without drifts. Consider a random walk of length ¢ on
a line which makes a step to the left with probability 1/4, to the right with probability 1/4 and stays at the
current vertex with probability 1/2. The probability that the walk visits a point n/2 during its ¢ steps is at
most twice the probability that it is at some point > n/2 at step t. (Once we reach the point n/2 we have
the same probability of finishing to the left of it as finishing to its right.) By the usual Chernoff bound (cf.
[5]), the probability that we are at a position > n/2 after ¢ steps is at most e=("/2°/2t — ¢=n°/8¢_Hence the
probability that the random walk without drifts reaches n/2 during its ¢ steps is at most 2e— /8¢,

We will argue now about the drifts. We show for m = n/2k, ..., cn that with probability exponentially
small in m (and hence exponentially small in n) the total effect of m random drifts is a movement to the
left by at least 2m/c positions. We need the following claim.

Claim 8 Let § = 1/(1O(k;1)c). With probability at least 1 — 2= for each i € {—k,...,k}, the number
my; of drift steps by i positions within m drift steps is bounded by:

<; _ (5) A (p;)dd _i_p?ven _ 2(5) m<m; < (; +5) X (p(i)dd +p<;verl 4 2(5) m.

Assuming the claim let us conclude the proof of the lemma. Clearly, the total drift of m drifts is given
by Zfsz im;. By the previous claim we can bound the total drift (unless some small probability event



happens) as follows:
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The first (n/2k) — 1 drifts have always cumulative effect smaller than n/2. Based on the previous calcu-
lation, with probability at least 1 — en2~2("/2) for all m = n/2k,...,cn, the cumulative effect of the first
m drifts is negative, so in particular it is smaller than n/2. Moreover the total drift to the left after cn drifts
is > 2n. That concludes our argument. Thus we only need to establish the claim.

Proof of the Claim: Let me¥*™ and m°%4 be the number of drifts according to p¢¥*™ and p°d9, resp., among the
first m drifts during a walk on a line with drifts. We will establish first that with probability exponentially
close to 1, (3 —6) m < m®¥®, m°4d < (4 + §) m. By Binomial Theorem

omo-v= 3 (1) 2,0)

k is even k is odd

Thus regardless of the starting point of a random walk, the probability that the walk of length n!~¢ on

a line ends at an even distance from the origin is precisely the same as that the walk ends at an odd
distance. Hence, the expectation of m®V*® and m°44 is precisely m /2. Applying Chernoff bound on these two
random variables we obtain that with probability at least 1 — 270" both me*® and m°4 are in the range
((1/2 = 0)m, (1/2 + §)m).

Conditioned on that m and m°9? are in the above range, again using Chernoff bound, we conclude that
with probability at least 1—27?(™) the number m; of drifts by i is between (p§Ve" —§)meVe" + (po9d — §)modd
and (p§ve® + §)mever + (p29d + §)m°dd. That concludes the proof of the claim. O

even odd

4.2 Proof of Theorem 6

In this section we argue that the cover time of G¢ from Theorem 6 is 22("7). Our goal is to argue that the
expected hitting time of vertex R is 22("") when the simple random walk starts from vertex L. In order to
prove this we will establish the following claim.

Claim 9 Consider a simple random walk on Gf, and let us assume that at some time t it is at a vertex
corresponding to either one of an, by, c, in Fig. 1. Then the probability that the walk after time t will visit a
vertex corresponding to some vertex to the left of csy, 4 before visiting R is at least 1 — 2-0(n%),

We establish this claim below by relating the walk on G, to a random walk on a line with drift. We
conclude the proof of the theorem first assuming the claim. A random walk starting from L must pass



through a vertex that corresponds to either one of ay, by, ¢, in Fig. 1. We will focus on times when it passes
through such a vertex. Let ¢ be the first time it passes through one of these vertices. By the above claim the
probability that it would reach R without visiting some vertex to the left of c3, /4 is at most 2-9(°) But
once it visits some vertex to the left of c3,, /4 it again has to pass through one of the vertices corresponding to
either one of a,,b,,c,. We stop at that time and repeat the process again. It is clear that expected number
of repetitions of the process is 22("). Hence the expected hitting time of R starting from L is at least 22",

It remains to prove the above claim. We prove it by relating the walk on Gf, to a random walk on a line
with a drift. Consider the case when ¢ is a multiple of n'~¢ and that we are at the vertex corresponding to
¢ in Gy. For each graph Gy in the sequence G, t' > ¢, we map the vertex corresponding to ¢,4; to a point
27 on a line and both vertices corresponding to a,y; and b,4; to the same point 2j — 1 on a line. Here,
—3n/4 < j <3n/4. Clearly a random walk on G¢ from time ¢ induces a walk on a line —3n/2,...,0,...,3n/2
with a drift every n'=¢ steps (until we would leave the vertices for which we defined the mapping.) The drift
depends on whether we are at an odd position or even position on the line. If we are at the odd position 2j—1,
then in G we are with probability 1/2 at the vertex corresponding to a,+; and with the same probability at
the vertex corresponding to b, ;. Hence the drift at odd position has the following distribution: (0,1/2,1/2).
If we are at the even position 2j then we are at the vertex corresponding to c,; and the drift will have the
distribution (1,0, 0). Since the expected drift is negative, Lemma 7 implies that with probability > 1—27% (n%)
we will reach a position < —n before reaching a position > n. (Our stopping condition guarantees that we
will not leave the region on the line where we defined the mapping so Lemma 7 can indeed be applied to our
walk.) This translates into reaching a vertex to the left of cs,/4 before visiting R.

The case where in the graph G; the walk is at a vertex corresponding either to a, or b, is analyzed
similarly. The assumption that t is a multiple of n'~¢ can be removed by letting the walk run till we reach
the closest multiple of n!~¢ and doing similar analysis. (Within these less than n'~¢ steps we can reach only
a vertex corresponding to a,’, by or ¢,/ for some |n’ —n| < n'~¢. We map this vertex to the origin of the
line and continue with the argument as before.) This concludes the proof of the claim and hence of Theorem
6.

5 Polynomial Cover Time of Dynamic Graphs

We turn our attention to cases were the cover time of evolving graphs is ”good”, i.e., polynomial. Our first
example is of a simple Markovian case.

Definition 10 (Bernoulli evolving graph) Let G be a set of graphs with the same set V' of nodes and P
a probability distribution over G. A Bernoulli evolving graph B = (G, P) is a Markovian evolving graph in
which the rows of the transition matrix P are identical and equal to P, i.e., the random graphs G;, are i.i.d.

We show that the bound for the cover time of the simple random walk on Bernoulli evolving graphs is
very similar to the bound of static graphs; essentially when the process is time invariant and the graph is
always connected then the bound of Aleliunas et al. [3] can be extended to dynamic graphs.

Theorem 11 For any explorable Bernoulli evolving graph, B = (G, P), the cover time of the simple random
walk on B is O(n3logn) and the mazimum hitting time is O(n3).

Proof. (outline): We will give the proof for the case where P is the uniform distribution (the case of general
P is a simple extension). We first show that the simple random walk on the Bernoulli evolving graph is
isomorphic to a reversible Markov chain M. This chain is a simple random walk on the multi-graph G’,
which is the union of all graphs in G. This chain is, in turn, isomorphic to a random walk (not simple)
on a weighted graph G”. We use the theory of electrical networks and random walks [9, 7, 2] to bound the
maximum hitting time between any two nodes in V. In particular, we use the equality for commute time in
a reversible Markov chain, which states that: C,, = W R,,, where C,, is the commute time, W is the total
sum of the edge weights (in both directions) and R, is the effective electrical resistance between u and v.



Since W is equal to the total number of edges in G’, we have W < jn?, where j is the cardinality of G.
Next, we bound R,,. Since every graph in G is connected, there are at least j edge-disjoint paths between
uw and v in G', each of length at most n. From this, we can conclude that R,, < n/j. Therefore we have
H,, < Cy, < n? for any pair of nodes in V and H,,., < n® . To bound the cover time, we use Matthews’
bound [21] which bounds the cover time of reversible Markov chains using the maximum hitting time as
C' < O(Hpax logn).

The property that G is connected is not necessary to obtain a polynomial bound on the cover time as
the following lemma shows (we omit the proof due to space requirements, but it uses similar arguments to
the ones in the previous theorem):

Claim 12 Let B = (G, P) be a Bernoulli evolving graph, G be the set of all mazimum matching of the
complete graph (any such graph is disconnected) and P is the uniform distribution over G. The cover time
of the simple random walk on B is the same as the cover time of the complete graph, nlogn(l+ o(1)).

5.1 d-regular Dynamic Graphs

It is known that simple random walks on regular, connected, non-bipartite static graph have cover time of
O(n?) [20]. Interestingly, it turns out that a similar result holds true for regular, connected, non-bipartite
evolving graphs.

Theorem 13. For any d-regqular connected non-bipartite evolving graph G the cover time of the simple
random walk on G is O(d*n®In®n).

We will use the following lemma from Lovéasz:
Lemma 14 ([19], ex. 11.26) Let G be an undirected connected d-regular (multi)graph on n vertices. Let
Ag be the adjacency matriz of G normalized by 1/d. If \y > Ao > -+ > A, are the eigenvalues of Ag, then
M=1and fori>2, \; <1— #, Furthermore if G is non-bipartite, then fori > 2, \2 <1 — ﬁ.

For completeness we provide a proof in the appendix. We will need the following lemma:

Lemma 15 Let G be an undirected d-regular graph on n vertices and p = (p1,...,pn) be a probability
distribution on its vertices. Let Ag be the transition matriz of a simple random walk on G. Then:

1. , ,
I I
HPAG— <Hp— :
T llg 1P
2. if G is connected
I 1 I
Ag——|| <(1-—— - —
a2l = (=)=,
Proof. We first prove the second claim by a standard argument. Let ay, as, ..., a, be an orthonormal set of

eigenvectors of Ag with corresponding eigenvalues A\; > Ag > -+ > \,,. Since Ag is a symmetric stochastic

matrix, Ay =1 and o = % and all eigenvectors and eigenvalues are real. Clearly
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for some (s, ..., 0, € R. As ag,...,a, are orthonormal, a standard calculation reveals that

Since (p — --) is a vector orthogonal to a; =

Furthermore,

2
2

> BiiAg
1=2

i Aifia;
i=2

2 n
1) 5
<|1l- B;
=z
1 I
<<1_d2n2>

-t

n
This finishes the proof of the second claim. The first claim can be proven in a similar way. One uses the
bound A%,...,A2 < 1 instead of A3,...,A2 < (1— 25).
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SN,
1=2

2

By Lemma 14, A\2,... A2 < (1 — ﬁ) Thus

2

2

As an immediate corollary to the previous lemma we obtain:

Corollary 16 Let G = g1,92,... be a sequence of d-regular graphs on the same vertex set V.= {1,...,n}.
For integers 0 < ¢ < t let at least ¢ of the graphs g1, ...,g; be non-bipartite connected. If pg is the initial
probability distribution on V' and we perform a simple random walk on G starting from pg, then the probability
distribution py of the walk after t steps satisfies:

]12< Lt ¢
nlly ~ d?n?

I 2

Po— —
n

Pt — —

2

A technique similar to [4] gives the following lemma.

Lemma 17 Let Yy,Y1,Ys,... be a sequence of random variables with range V.= {1,...,n} satisfying for
allu,v €V andi >0, Pr[Y; = u|Y;—1 =v] > 1/2n. Ift = min{s; {Yo,Y1,...,Y;} =V} then the expectation
E[t] <3nlnn+ O(y/nlnn).

Proof. For every £ > 0 and every v € V, Pr[v & {Yoi1,..., Yeusnin}] < (1 —1/2n)3nmn < e=(3/2)nn —
n~3/2. Thus, Pr[3v € V; v € {Yoq1,. ., Yeqsnmn}] < n- n3/2 = 1/4/n. For each integer k > 0, if we set
¢ =k - 3nlnn then the probability that Yy 1,..., Yei3nmn does not cover whole V' is at most 1/y/n. Thus
the expected k before V' is covered is at most 1/(1 —1/4/n) = 14+ O(1/+/n). Hence the expected cover time
of V is bounded by E[t] < 3nlnn+ O(y/nlnn).



Proof of Theorem 13. Let Xy, X1,... be a random walk on G. For an integer ¢ > 0, define Y; = X; 4420210 n-
Pick u,v € V. For ¢ > 1, let p; be the probability distribution of Y; conditioned on Y;_; = v. By Corollary

2,2
16, ||p; — %Hz < (1 — ﬁ)‘ld i gt Hence, all coordinates of the vector (p; — %) are in absolute value
smaller than 1/n2. Thus Pr[Y; = u|Y;—1 = v] > % — # > 1/2n, provided that n > 2. Applying Lemma 17
yields the result. O

6 Random Walk Strategy

Consequently to the previous section the following simple strategy for the random walk guarantees that an
evolving graph will be covered in expected polynomial time:

Definition 18 (Lazy Random Walk) At each step of the walk pick a vertex v from V(G) uniformly at
random and if there is an edge from the current vertex to the vertex v then we move to v otherwise we stay
at the current vertex.

In effect what this strategy does is that it makes the graph n-regular; every edge adjacent to the current
vertex is picked with the probability 1/n and with the remaining probability we use one of many self-loops.
If we have an apriori upper bound dp,,x on the maximum degree of the dynamic graph we can achieve a
slightly faster cover time. In that case we can reformulate the strategy as follows:

At each step of the walk with probability 1 — (d(v)/(dmax + 1)) stay at the current vertex u and with
the remaining probability pick uniformly at random one of the neighbors v of the current vertex and
move to v.

We call this strategy dmax-lazy random walk. If the only upper bound on the maximum degree that we
have is n then this strategy becomes the previous one. We claim the following as an immediate corollary of
Theorem 13:

Theorem 19. For any connected evolving graph G with mazimum degree dmax the cover time of the dmax-lazy
random walk on G is O(d2,,,n%In*n).

max

Indeed these strategies do not even require the dynamic graph to be connected at each step. By Corollary

16 and Lemma 17 as long as the dynamic graph is connected for polynomial fraction of the time, the cover

time of a random walk using our strategy will still be polynomial. In that case we can obtain the following
generalization of Theorem 19.

Theorem 20. Let G = G1,Go,... be an evolving graph with mazimum degree dpy.x. Let € > 0 be such
that for every integer ¢, at least el graphs among G1,Ga,...,Gy are connected. Then the cover time of the

dumax-lazy random walk on G is O(e~'d2,,.n% In®n).

The constant in the big-O is a universal constant that does not depend on G.

7 Conclusions

In this paper we demonstrate that the cover time of the simple random walk on dynamic graphs is significantly
different from the case of static graphs. While the latter was well known to be polynomial, the former is
shown here to be exponential on some evolving graphs. Moreover, we show that even if the random walk
takes many steps before the graph evolves the cover time can still be exponential.

We prove that in order to accelerate the cover time one can use a lazy random walk and reduce the
cover time to polynomial. This approach has been used previously on static graphs in order to sample nodes
uniformly at random, but contrary to our situation, it can be shown that it cannot accelerate the cover time
for static graphs.

To summarize, the main results presented here provide theoretical justification to the wide use of random-
walk-techniques in dynamic networks. Nevertheless, careful attention to the network dynamics is required
when choosing the implementation of the random walk.
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Fig. 2. Transition probabilities for the simple random walk on H,

Appendix - Proofs

Proof of Lemma 5. We make several observations about the simple random walk on H,. If we happen to be
at a vertex corresponding to a; in Fig. 1 after step t of the walk, then with probability 1/2 we will be at the
vertex corresponding to a;_; after the step ¢t + 1 and with the remaining probability we will again be at the
(different) vertex corresponding to a; after step ¢t + 1. Similarly for b; and ¢;. We summarize these transition
probabilities below:

fI'OI’HZ\ to: A;—1 bi,1 Ci—1 Q; bl C; Q41 b7;+1 Ci+1

a;  |1/2 1/2
b; 1/2 1/2
¢ 1/41/4 1/4 1/4
where for the a; and b; in the left columns, ¢ = 2,...,¢ and for ¢;, i = 1,...,¢ — 1. Furthermore:

from:\ to:| L ¢o a1 by ¢
co  |1/41/4  1/41/4
a1 1/21/2
by 1/21/2
and

from:\ to:| R ¢¢ by b1y
co  [1/31/31/3

is straightforward that starting from ¢ the probability of visiting ¢, before returning to ¢ is at most (1/2)*
as if we step on a; or b; during the first ¢ steps we will return to ¢y without visiting c,. Hence the probability
of visiting R during the first £ returns to co is at most £(1/2)¢. Also, the probability of not visiting L during
the first £ returns to cq is at most (3/4)¢. Thus Pr[ visiting R before visiting L when starting from co] < Pr|
visiting R during first £ returns to co] + Pr[ L is not visited within first ¢ returns to co] < £(1/2)¢ + (3/4)°.

(|

Hence the walk on H; is equivalent to a walk on Markov chain in Fig. 2. It

Proof of Lemma 14. Clearly, the eigenvector corresponding to A\; = 1 is I. Consider any normalized real
eigenvector z L I with its eigenvalue A. Hence, > ;2?2 = 1 and > ;" ; = 0. Let z; be the largest (in
absolute value) coordinate of z. Clearly |z:| > 1/y/n. W.L.O.G., x; is positive. Let 25 < 0 be the smallest
value of z, and s = v; — vy — -+ — v, =t be the vertices on a path from s to ¢ in G. Consider x(I — A)a:T.

1—>\=£U(]I—A)(ET:$- Z (z; — x5)?
{id}eB(G)

k—1

(Iw — Luiqy )2
1

1 k—1 2
S 1y Z Ty, — Loy
d(k — 1) (i—l )

Y%
Ul

<.
Il
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where the second inequality follows from Cauchy-Schwarz bound. If G is connected and non-bipartite then
A% corresponds to a connected d?-regular graph on n vertices. Since A%; has eigenvalues A2, \3,..., A2, the
second part of the lemma follows. |



