MULTIPLES OF HYPERCYCLIC OPERATORS

by
Catalin Badea, Sophie Grivaux \& Vladimir Müller

Abstract

We give a negative answer to a question of Prajitura by showing that there exists an invertible bilateral weighted shift T on $\ell_{2}(\mathbb{Z})$ such that T and $3 T$ are hypercyclic but $2 T$ is not. Moreover, any G_{δ} set $M \subseteq(0, \infty)$ which is bounded and bounded away from zero can be realized as $M=\{t>0 ; t T$ is hypercyclic $\}$ for some invertible operator T acting on a Hilbert space.

1. Introduction

This note is devoted to the study of multiples of hypercyclic operators acting on a real or complex separable Banach space X. An operator $T \in \mathcal{B}(X)$ is said to be hypercyclic if there exists a vector $x \in X$ which has a dense orbit, i.e. the set $\left\{T^{n} x ; n \geq 0\right\}$ is dense in X. Hypercyclic operators have been the subject of active investigation in the past twenty years, and we refer the reader to the book [1] for a thorough survey of this area. The first examples of hypercyclic operators were given by Rolewicz in 1969: if B is the backward shift on $\ell_{p}(\mathbb{N}), 1 \leq p<+\infty$, or $c_{0}(\mathbb{N})$, with the canonical basis $\left(e_{n}\right)_{n \geq 0}$, defined by $B e_{0}=0$ and $B e_{n}=e_{n-1}$ for $n \geq 1$, then λB is hypercyclic for any complex number λ such that $|\lambda|>1$. This can be seen very easily using the Hypercyclicity Criterion, which is the most useful tool for proving that a given operator is hypercyclic. We recall it here in the version of Bès and Peris [2]:

Hypercyclicity Criterion. - Suppose that there exist a strictly increasing sequence $\left(n_{k}\right)$ of positive integers, two dense subsets V and W of X and a sequence $\left(S_{k}\right)$ of maps (not necessarily linear nor continuous) $S_{k}: W \rightarrow W$ such that:

1. for every $x \in V, T^{n_{k}} x \rightarrow 0$
2. for every $x \in W, S_{k} x \rightarrow 0$

2000 Mathematics Subject Classification. - 47A16, 47B37.
Key words and phrases. - Hypercyclic operators, bilateral weighted shifts.

The first two authors were partially supported by ANR-Projet Blanc DYNOP. The third author was partially supported by grant No. 201/06/0128 of GA CR. The main part of the paper was written during the stay of the authors in Oberwolfach, Germany, under the MFO-RiP ("Research in Pairs") programme. We would like to thank the Mathematisches Forschungsinstitut Oberwolfach for excellent working conditions.
3. for every $x \in W, T^{n_{k}} S_{k} x \rightarrow x$.

Then the operator T is hypercyclic.
Despite its somewhat involved aspect, the Hypercyclicity Criterion follows directly from a simple Baire Category argument, using the fact that T is hypercyclic if and only if it is topologically transitive (i.e. for every pair (U, V) of non empty open subsets of X there exists an integer n such that $\left.T^{-n}(U) \cap V \neq \emptyset\right)$. The "legitimity" of the Hypercyclicity Criterion comes from the fact $[\mathbf{2}]$ that $T \in \mathcal{B}(X)$ satisfies the Hypercyclicity Criterion if and only if $T \oplus T$ is hypercyclic on $X \oplus X$. Until very recently it was unknown whether every hypercyclic operator satisfied the Hypercyclicity Criterion or not: the answer is no, see [3].
Let $T \in B(X)$ satisfy the Hypercyclicity Criterion. Note that for any $0<t<1$ the operator $t T$ satisfies condition (1) (for the same sequence $\left(n_{k}\right)$ and set V). Similarly, the operator $t T$ for $t>1$ satisfies conditions (2) and (3) (for the same set W and for the mappings $t^{-n_{k}} S_{k}$). Therefore in many concrete examples the set $\{t>0 ; t T$ is hypercyclic $\}$ is convex. This motivates the following question of Prajitura [6], see also [5] about multiples of hypercyclic operators:

Question 1.1. - Let T be a bounded operator on X. Suppose that there exist two positive numbers t_{1} and $t_{2}, 0<t_{1}<t_{2}$, such that $t_{1} T$ and $t_{2} T$ are hypercyclic. Is it true that $t T$ is hypercyclic for every $t \in\left[t_{1}, t_{2}\right]$?

We give a negative answer to this question, and prove the following stronger result:
Theorem 1.2. - Let M be a subset of $(0,+\infty)$. The following assertions are equivalent:
(1) M is a G_{δ} subset of $(0,+\infty)$ which is bounded and bounded away from zero;
(2) there exists an invertible operator T acting on a Hilbert space such that

$$
M=\{t>0 ; t T \text { is hypercyclic }\} .
$$

Remark that as soon as M coincides with the set of positive t 's such that $t T$ is hypercyclic, M must be bounded away from zero, since $t T$ is a contraction for small enough t. As a corollary we obtain for instance:

Corollary 1.3. - There exists an operator T acting on a Hilbert space such that T and $3 T$ are hypercyclic but $2 T$ is not.

Note that by [4], if T is a hypercyclic operator in a complex Banach space and $\theta \in \mathbb{R}$, then $e^{i \theta} T$ is hypercyclic (with the same set of hypercyclic vectors as T). Thus the set $M=\{\lambda \in \mathbb{C} ; \lambda T$ is hypercyclic $\}$ is circularly symmetric (if λ belongs to $M, e^{i \theta} \lambda$ belongs to M for any $e^{i \theta}$ in the unit circle). We thus obtain the following variant of Theorem 1.2:

Theorem 1.4. - Let M be a subset of the complex plane \mathbb{C}. The following assertions are equivalent:
(i) there exists an invertible operator T acting on a Hilbert space such that

$$
M=\{\lambda \in \mathbb{C} ; \lambda T \text { is hypercyclic }\} ;
$$

(ii) M is circularly symmetric and $M \cap(0,+\infty)$ is a G_{δ} subset of $(0,+\infty)$ which is bounded and bounded away from zero.

The operators constructed in Theorem 1.2 are bilateral weighted shifts on the space $\ell_{2}(\mathbb{Z})$, and for these shifts the Hypercyclicity Criterion takes a particularly simple form (see [7] for a necessary and sufficient condition for a general bilateral weighted shift to be hypercyclic):

Fact 1.5. - Let T be an invertible bilateral weighted shift on the space $\ell_{2}(\mathbb{Z})$ endowed with its canonical basis $\left(e_{n}\right)_{n \in \mathbb{Z}}$. Then T is hypercyclic if and only if there exists a strictly increasing sequence $\left(n_{k}\right)_{k \geq 0}$ of positive integers such that $\left\|T^{n_{k}} e_{0}\right\|$ and $\left\|T^{-n_{k}} e_{0}\right\|$ tend to zero as k goes to infinity.

Multiples of the shifts constructed in the proof of Theorem 1.2 are not mixing (recall that T is said to be mixing if for every pair (U, V) of non empty open subsets of X there exists an integer N such that $T^{-n}(U) \cap V \neq \emptyset$ for every $\left.n \geq N\right)$: this is coherent with the next result, which implies that the answer to Question 1.1 is affirmative for a large class of operators.

Theorem 1.6. - Let $T \in \mathcal{B}(X)$ be such that for some $0<t_{1}<t_{2}, t_{1} T \oplus t_{2} T$ is hypercyclic. Then $t T$ is hypercyclic for every $t \in\left[t_{1}, t_{2}\right]$. This holds true in particular if either $t_{1} T$ or $t_{2} T$ is mixing.

2. Proofs of Theorems 1.2 and 1.6

The proof of the implication $(2) \Rightarrow(1)$ in Theorem 1.2 is quite standard: suppose that $T \in B(X)$ is invertible. Let $M=\{t>0 ; t T$ is hypercyclic $\}$, and we can suppose that M is non empty. As it was previously mentioned, $\|t T\| \leq 1$ for $0<t \leq\|T\|^{-1}$ and so $t T$ is not hypercyclic in this case. Hence M is bounded away from zero. Since T is invertible, the same argument applied to T^{-1} shows that M must be bounded above. Let $\left(U_{j}\right)_{j \geq 1}$ be a countable basis of open subsets of X (which is separable). Clearly

$$
M=\{t>0 ; t T \text { is hypercyclic }\}=\bigcap_{i \geq 1} \bigcap \bigcup_{j \geq 1}\left\{t>0 ;(t T)^{n} U_{i} \cap U_{j} \neq \emptyset\right\}
$$

which is a G_{δ} set.
The first step in the proof of the reverse implication $(1) \Rightarrow(2)$ of Theorem 1.2 is the following proposition, which proves the result when M is an open set. One of its interests is that it shows the existence of common subsets V and W in the Hypercyclicity Criterion for all operators $t T$ with t belonging to this open set.

Proposition 2.1. - Let G be an open subset of an interval of the form $\left(K^{-1}, K\right)$ for some $K>1$. Then
(i) there exists an invertible bilateral weighted shift on $\ell_{2}(\mathbb{Z})$ such that $\|T\| \leq K^{3}$ and $G=\{t>0 ; t T$ is hypercyclic $\} ;$
(ii) write G as a (finite or countable) union

$$
G=\bigcup_{\lambda \in \Lambda}\left(a_{\lambda}, b_{\lambda}\right)
$$

of open intervals. For each $\lambda \in \Lambda$ let A_{λ} be an infinite subset of \mathbb{N}. Then for each $\lambda \in \Lambda$ there exists an increasing sequence $\left(m_{\lambda, k}\right)_{k \geq 1}$ of integers belonging to A_{λ} such that for every $t \in\left(a_{\lambda}, b_{\lambda}\right),\left\|(t T)^{m_{\lambda, k}} e_{0}\right\|$ and $\left\|(t T)^{-m_{\lambda, k}} e_{0}\right\|$ tend to zero as k tends to infinity (where $\left\{e_{n} ; n \in \mathbb{Z}\right\}$ is the standard orthonormal basis in $\ell^{2}(\mathbb{Z})$).

Proof. - The statement is trivial if G is empty, so suppose that G is non empty. Order the intervals $\left(a_{\lambda}, b_{\lambda}\right)$ into a sequence $\left(a_{k}, b_{k}\right)$ in which every interval $\left(a_{\lambda}, b_{\lambda}\right)$ appears infinitely many times. Then fix a function $f: \mathbb{N} \rightarrow \Lambda$ such that $\left(a_{k}, b_{k}\right)=\left(a_{f(k)}, b_{f(k)}\right)$ and for each $\lambda \in \Lambda, f(k)=\lambda$ for infinitely many k 's.
Set formally $n_{0}=1$ and choose inductively a sequence $\left(n_{k}\right)_{k \geq 1}$ such that $n_{k} \in A_{f(k)}$ and $n_{k} \geq 4 n_{k-1}$ for each $k \geq 1$.
The operator T will be the weighted bilateral shift defined on $\ell_{2}(\mathbb{Z})$ by

$$
T e_{i}=c_{i+1} e_{i+1} \text { and } T^{-1} e_{-i}=\widetilde{c}_{i+1} e_{-i-1} \text { for } i \geq 0
$$

i.e. $T e_{i}=\left(1 / \widetilde{c}_{-i}\right) e_{i+1}$ for $i<0$. The weights c_{i} and \widetilde{c}_{i} are defined for $i \geq 1$ in the following way:

- $c_{1}=c_{2}=\widetilde{c}_{1}=\widetilde{c}_{2}=K ;$
- for $k \in \mathbb{N}$ and $2 n_{k-1}<j \leq n_{k}$,

$$
c_{j}=\left(\frac{1}{K^{2 n_{k-1}} b_{k}^{n_{k}}}\right)^{\frac{1}{n_{k}-2 n_{k-1}}} \quad \text { and } \quad \widetilde{c}_{j}=\left(\frac{a_{k}^{n_{k}}}{K^{2 n_{k-1}}}\right)^{\frac{1}{n_{k}-2 n_{k-1}}}
$$

- for $k \in \mathbb{N}$ and $n_{k}<j \leq 2 n_{k}$,

$$
c_{j}=K^{2} b_{k} \quad \text { and } \quad \widetilde{c}_{j}=\frac{K^{2}}{a_{k}}
$$

For $n \in \mathbb{N}$ write the products of the n first coefficients c_{i} or \widetilde{c}_{i} as $w_{n}=\prod_{i=1}^{n} c_{i}$ and $\widetilde{w}_{n}=\prod_{i=1}^{n} \widetilde{c}_{i}$. It is easy to show by induction that for every $k \in \mathbb{N}$,

$$
w_{2 n_{k}}=\widetilde{w}_{2 n_{k}}=K^{2 n_{k}}, w_{n_{k}}=b_{k}^{-n_{k}} \text { and } \widetilde{w}_{n_{k}}=a_{k}^{n_{k}}
$$

Since $1 / K<a_{k}<b_{k}<K$ for every k, we have for every k and every j such that $n_{k}<j \leq 2 n_{k}$,

$$
K \leq c_{j} \leq K^{3} \text { and } K \leq \widetilde{c}_{j} \leq K^{3}
$$

Then since $n_{k} \geq 4 n_{k-1}$, we have for $2 n_{k-1}<j \leq n_{k}$

$$
\begin{gathered}
\frac{1}{c_{j}}=\left(K^{2 n_{k-1}} b_{k}^{n_{k}}\right)^{\frac{1}{n_{k}-2 n_{k-1}}} \leq K^{\frac{2 n_{k-1}+n_{k}}{n_{k}-2 n_{k-1}}} \leq K^{3} \\
\frac{1}{\widetilde{c}_{j}}=\left(\frac{K^{2 n_{k-1}}}{a_{k}^{n_{k}}}\right)^{\frac{1}{n_{k}-2 n_{k-1}}} \leq K^{\frac{2 n_{k-1}+n_{k}}{n_{k}-2 n_{k-1}}} \leq K^{3} \\
\widetilde{c}_{j} \leq K^{\frac{n_{k}-2 n_{k-1}}{n_{k}-2 n_{k-1}}} \leq K
\end{gathered}
$$

and similarly, $c_{j} \leq K$. Hence $K \leq c_{j} \leq K^{3}$ and $K \leq \widetilde{c}_{j} \leq K^{3}$ for every j, and this proves that T is bounded and invertible with $\|T\| \leq K^{3}$ and $\left\|T^{-1}\right\| \leq K^{3}$. Note that for $t \in\left(a_{k}, b_{k}\right)$ we have

$$
\left\|(t T)^{n_{k}} e_{0}\right\|=t^{n_{k}} b_{k}^{-n_{k}}=\left(t / b_{k}\right)^{n_{k}} \text { and }\left\|(t T)^{-n_{k}} e_{0}\right\|=t^{-n_{k}} a_{k}^{n_{k}}=\left(a_{k} / t\right)^{n_{k}}
$$

where $t / b_{k}<1$ and $a_{k} / t<1$.
Let now $\lambda \in \Lambda$. Since the interval $\left(a_{\lambda}, b_{\lambda}\right)$ appears in the sequence $\left(a_{k}, b_{k}\right)$ infinitely many times, let $\left(m_{\lambda, i}\right)_{i \geq 1}$ be the increasing sequence consisting of the integers of the set $\left\{n_{k}\right\}$ for which $f(k)=\lambda$. Then each $m_{\lambda, i}$ belongs to A_{λ} since $n_{k} \in A_{f(k)}$ for every k.
Let t belong to the interval $\left(a_{\lambda}, b_{\lambda}\right)$. Then by the computation above $\left\|(t T)^{m_{\lambda, i}} e_{0}\right\|$ and $\left\|(t T)^{-m_{\lambda, i}} e_{0}\right\|$ tend to zero as i tends to infinity, and, by Fact $1.5, t T$ is hypercyclic. Since this is true for every $\lambda \in \Lambda$ this shows that $G \subseteq\{t>0 ; t T$ is hypercyclic $\}$.
Conversely, suppose that t does not belong to G. In order to show that $t T$ is not hypercyclic, it suffices to prove that for each $j \in \mathbb{N}$, $\max \left\{\left\|(t T)^{j} e_{0}\right\|,\left\|(t T)^{-j} e_{0}\right\|\right\} \geq 1$. Let $2 n_{k-1}<j \leq 2 n_{k}$ for some $k \geq 1$. Since $t \notin G$, either $t \leq a_{k}$ or $t \geq b_{k}$.

- If $n_{k}<j \leq 2 n_{k}$ and $t \geq b_{k}$ then

$$
\left\|(t T)^{j} e_{0}\right\|=t^{j}\left\|T^{j} e_{0}\right\| \geq b_{k}^{j}\left\|T^{n_{k}} e_{0}\right\| \cdot\left(K^{2} b_{k}\right)^{j-n_{k}}=b_{k}^{j-n_{k}}\left(K^{2} b_{k}\right)^{j-n_{k}}=\left(K b_{k}\right)^{2\left(j-n_{k}\right)} \geq 1
$$

- if $n_{k}<j \leq 2 n_{k}$ and $t \leq a_{k}$, then

$$
\left\|(t T)^{-j} e_{0}\right\| \geq a_{k}^{-j}\left\|T^{-n_{k}} e_{0}\right\| \cdot\left(\frac{K^{2}}{a_{k}}\right)^{j-n_{k}}=a_{k}^{-\left(j-n_{k}\right)}\left(\frac{K^{2}}{a_{k}}\right)^{j-n_{k}}=\left(\frac{K}{a_{k}}\right)^{2\left(j-n_{k}\right)} \geq 1
$$

- if $2 n_{k-1}<j \leq n_{k}$ for some $k \geq 1$, and $t \geq b_{k}$, then

$$
\begin{aligned}
\left\|(t T)^{j} e_{0}\right\| & \geq b_{k}^{j}\left\|T^{j} e_{0}\right\|=b_{k}^{j}\left\|T^{n_{k}} e_{0}\right\| \cdot\left(K^{2 n_{k-1}} b_{k}^{n_{k}}\right)^{\frac{n_{k}-j}{n_{k}-2 n_{k-1}}} \\
& =b_{k}^{j-n_{k}}\left(K^{2 n_{k-1}} b_{k}^{n_{k}}\right)^{\frac{n_{k}-j}{n_{k}-2 n_{k-1}}}=\left(K^{2 n_{k-1}} b_{k}^{2 n_{k-1}}\right)^{\frac{n_{k}-j}{n_{k}-2 n_{k-1}}} \geq 1
\end{aligned}
$$

since $K b_{k} \geq 1$.

- Finally if $2 n_{k-1}<j \leq n_{k}$ and $t \leq a_{k}$ then

$$
\begin{aligned}
\left\|(t T)^{-j} e_{0}\right\| & \geq a_{k}^{-j}\left\|T^{-j} e_{0}\right\|=a_{k}^{-j}\left\|T^{-n_{k}} e_{0}\right\| \cdot\left(\frac{K^{2 n_{k-1}}}{a_{k}^{n_{k}}}\right)^{\frac{n_{k}-j}{n_{k}-2 n_{k-1}}} \\
& =a_{k}^{n_{k}-j}\left(\frac{K^{2 n_{k-1}}}{a_{k}^{n_{k}}}\right)^{\frac{n_{k}-j}{n_{k}-2 n_{k-1}}}=\left(\frac{K^{2 n_{k-1}}}{a_{k}^{2 n_{k-1}}}\right)^{\frac{n_{k}-j}{n_{k}-2 n_{k-1}}} \geq 1
\end{aligned}
$$

since $K / a_{k} \geq 1$ this time.
Hence $\max \left\{\left\|(t T)^{j} e_{0}\right\|,\left\|(t T)^{-j} e_{0}\right\|\right\} \geq 1$ for all j, and consequently, $t T$ is not hypercyclic for $t \notin G$. This shows that $G=\{t>0 ; t T$ is hypercyclic $\}$ and finishes the proof of Proposition 2.1.

We are now ready for the proof of Theorem 1.2.

Proof of Theorem 1.2. - Let $K>1$ be such that $M \subseteq(1 / K, K)$. Write $M=\bigcap_{j \geq 1} G_{j}$ where $\left(G_{j}\right)_{j \geq 1}$ is a decreasing sequence of non empty open sets. Then each G_{j} can be decomposed as a disjoint union $G_{j}=\bigcup_{\lambda \in \Lambda_{j}}\left(a_{\lambda}, b_{\lambda}\right)$ of open intervals, where Λ_{j} are suitable finite or infinite sets. By Proposition 2.1, there exists a bilateral weighted shift T_{1} such that $\|T\| \leq K^{3}$ and $G_{1}=\left\{t>0 ; t T_{1}\right.$ is hypercylic $\}$. Moreover, for each $\lambda \in \Lambda_{1}$ there is an increasing sequence $\left(m_{\lambda, i}^{(1)}\right)_{i \geq 1}$ such that $t T_{1}$ satisfies the Hypercyclicity Criterion with respect to this sequence for each $t \in\left(a_{\lambda}, b_{\lambda}\right)$.
We then define a sequence of weighted bilateral shifts $T_{j}, j \geq 2$, in the following way. For each $j \geq 2$ define a (uniquely determined) function $g_{j}: \Lambda_{j} \rightarrow \Lambda_{j-1}$ such that $\left(a_{\lambda}, b_{\lambda}\right) \subseteq$ $\left(a_{g_{j}(\lambda)}, b_{g_{j}(\lambda)}\right)$ for every $\lambda \in \Lambda_{j}$. By Proposition 2.1 we can define inductively weighted bilateral shifts T_{j} such that

- $\left\|T_{j}\right\| \leq K^{3}$;
- $G_{j}=\left\{t>0 ; t T_{j}\right.$ is hypercyclic $\}$;
- for each $\lambda \in \Lambda_{j}$ there is an increasing sequence $\left(m_{\lambda, i}^{(k)}\right)_{i \geq 1}$ of integers such that $t T_{j}$ satisfies the Hypercyclicity Criterion with respect to this sequence for each $t \in\left(a_{\lambda}, b_{\lambda}\right)$, $\lambda \in \Lambda_{j}$. Moreover, we may assume that

$$
\left\{m_{\lambda, i}^{(j)} ; i \geq 1\right\} \subseteq\left\{m_{g_{j}(\lambda), i}^{(j-1)} ; i \geq 1\right\}
$$

Consider now the direct sum $T=\bigoplus_{j=1}^{\infty} T_{j}$ acting on $\bigoplus_{j=1}^{\infty} \ell_{2}(\mathbb{Z})$. Clearly $\|T\| \leq K^{3}$. Suppose that $t T$ is hypercyclic for some $t>0$. Then $t T_{j}$ is hypercyclic for each $j \geq 1$ and thus $t \in G_{j}$ for every $j \geq 1$. Hence t belongs to M.
Conversely, let t belong to M. For each j choose the (uniquely determined) element $\lambda^{(j)}$ of Λ_{j} such that $t \in\left(a_{\lambda^{(j)}}, b_{\lambda^{(j)}}\right)$. Consider then the sequence $m_{k}=m_{\lambda^{(k), k}}^{(k)}, k \geq 1$. Then it is easy to check that $t T$ satisfies the Hypercylicity Criterion with respect to the sequence $\left(m_{k}\right)_{k \geq 1}$, and Theorem 1.2 is proved.

The proof of Theorem 1.6 is a straightforward application of the Hypercyclicity Criterion:
Proof of Theorem 1.6. - Let $t \in\left(t_{1}, t_{2}\right)$. In order to show that $t T$ satisfies the Hypercyclicity Criterion, it suffices to prove that for all nonempty open subsets U, V of X and for any open neighborhood W of 0 there exists an $n \in \mathbb{N}$ such that $T^{n}(W) \cap V$ and $T^{n}(U) \cap W$ are non empty. Let $\varepsilon>0$ be such that the open ball of radius ε is contained in W. Since $t_{1} T \oplus t_{2} T$ is hypercyclic, there exists a vector $x \oplus y$ with $\|x\|<\varepsilon$ and $y \in U$ which is hypercyclic for $t_{1} T \oplus t_{2} T$. Thus there exists an $n \in \mathbb{N}$ such that $\left(t_{1} T\right)^{n} x \in V$ and $\left\|\left(t_{2} T\right)^{n} y\right\|<\varepsilon$. Then $\left\|t_{1}^{n} t^{-n} x\right\| \leq\|x\|<\varepsilon$, so $t_{1}^{n} t^{-n} x \in W$, and $(t T)^{n} t_{1}^{n} t^{-n} x=\left(t_{1} T\right)^{n} x \in V$. Hence $(t T)^{n}(W) \cap V \neq \emptyset$. Furthermore, $\left\|(t T)^{n} y\right\| \leq\left\|\left(t_{2} T\right)^{n} y\right\|<\varepsilon$, and so $(t T)^{n}(U) \cap W \neq \emptyset$. Hence $t T$ is hypercyclic.

In view of Theorem 1.6, one may wonder whether the condition $t_{1} T \oplus t_{2} T$ hypercyclic is necessary for $t T$ to be hypercyclic whenever t belongs to $\left[t_{1}, t_{2}\right]$. This is not the case, as shown by the following example:

Example 2.2. - There exists a bilateral weighted shift T on $\ell_{2}(\mathbb{Z})$ such that $t T$ is hypercyclic for every $t \in(1,4)$ but $2 T \oplus 3 T$ is not hypercyclic.

Proof. - We define T using the notation of the proof of Proposition 2.1 with $M=$ $\left(a_{1}, b_{1}\right) \cup\left(a_{2}, b_{2}\right)$, where $\Lambda=\{1,2\},\left(a_{1}, b_{1}\right)=(1,3)$ and $\left(a_{2}, b_{2}\right)=(2,4)$. Then we define the function f as $f(k)=1$ if k is odd and $f(k)=2$ if k is even. Let $K=5$ and construct a sequence $\left(n_{k}\right)$ and the operator T as in Proposition 2.1. The proof of Proposition 2.1 shows that $t T$ is hypercyclic if and only if $t \in(1,3) \cup(2,4)=(1,4)$. Furthermore, it is easy to check that $2 T \oplus 3 T$ is not hypercyclic. Indeed if k is odd, then:

- if $2 n_{k-1}<j \leq n_{k}$,

$$
w_{j}=5^{2 n_{k-1}}\left(\frac{1}{5^{2 n_{k-1}} 3^{n_{k}}}\right)^{\frac{j-2_{n_{k-1}}}{n_{k}-n_{k-1}}}
$$

Hence $\left\|(3 T)^{j} e_{0}\right\|=3^{j} w_{j}=(15)^{2 n_{k-1}}\left(\frac{1}{15^{2 n_{k-1}}}\right)^{\frac{j-2 n_{k-1}}{n_{k}-2 n_{k-1}}}=15^{\frac{2 n_{k-1}\left(n_{k}-j\right)}{n_{k}-2 n_{k}-1}} \geq 1$.

- if $n_{k}<j \leq 2 n_{k},\left\|(3 T)^{j} e_{0}\right\|=3^{j} w_{j}=15^{2\left(j-n_{k}\right)} \geq 1$.

If k is even, then

- if $2 n_{k-1}<j \leq n_{k}$,

$$
\left\|(2 T)^{-j} e_{0}\right\|=2^{-j} \widetilde{w}_{j}=(5 / 2)^{2 n_{k-1}}\left(\frac{1}{(2 / 5)^{2 n_{k-1}}}\right)^{\frac{j-n_{k-1}}{n_{k}-2 n_{k-1}}} \geq 1
$$

- if $n_{k}<j \leq 2 n_{k},\left\|(2 T)^{-j} e_{0}\right\|=2^{-j} \widetilde{w}_{j}=(5 / 2)^{2\left(j-n_{k}\right)} \geq 1$.

Hence there is no sequence $\left(m_{j}\right)$ such that both $\left\|(2 T)^{m_{j}} e_{0} \oplus(3 T)^{m_{j}} e_{0}\right\|$ and $\|(2 T)^{-m_{j}} e_{0} \oplus$ $(3 T)^{-m_{j}} e_{0} \|$ tend to zero as j tends to infinity, and $2 T \oplus 3 T$ is not hypercyclic.

References

[1] F. Bayart, É. Matheron, Dynamics of linear operators, Cambridge University Press, book to appear.
[2] J. BÈs, A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), pp 94 112.
[3] M. De La Rosa, C. Read, A hypercyclic operator whose direct sum $T \oplus T$ is not hypercyclic, to appear in J. Operator Th..
[4] F. Leon, V. MüLler, Rotations of hypercyclic and supercyclic vectors, Int. Eq. Op. Th. 50 (2004), pp 385-391.
[5] V. MüLler, Three problems, in Oberwolfach Reports 37 (2006), p. 2272.
[6] G. Prajitura, personal communication.
[7] H. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), pp 993 - 1004.

[^0]Sophie Grivaux, Laboratoire Paul Painlevé, UMR CNRS 8524, Université des Sciences et Technologies de Lille, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France E-mail : grivaux@math.univ-lille1.fr
Vladimir Müller, Institute of Mathematics AV CR, Zitna 25, 11567 Prague 1, Czech Republic E-mail : muller@math.cas.cz

[^0]: Catalin Badea, Laboratoire Paul Painlevé, UMR CNRS 8524, Université des Sciences et Technologies de Lille, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France E-mail : badea@math.univ-lille1.fr

