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EQUIVALENCE OF NORMS OF RIESZ POTENTIAL AND
FRACTIONAL MAXIMAL FUNCTION IN MORREY-TYPE
SPACES

A. GOGATISHVILI, R. MUSTAFAYEV

ABSTRACT. In this paper we find the condition on the w which ensures the
equivalency of norms of the Riesz potential and the fractional maximal function
in generalized Morrey space M, ,(R™).

1. INTRODUCTION

For x € R™ and r > 0, let B(xz, ) denote the open ball centered at = of radius
r and EB(:E, r) denote the set R™\ B(x,r).
Let f € LY°(R™). The fractional maximal operator M, and the Riesz potential
1, is defined by

Maf () = sup [ Ba.r)| 5 [ Ty 0<a<n
B(z,r

r>o

Iaf(a:):/R Ady, 0<a<n,

" ’.T _ y’nfa
where |B(x,t)| is the Lebesgue measure of the ball B(x,t).

By A < B we mean that A < ¢B with some positive constant ¢ independent
of appropriate quantities. If A < B and B < A, we write A &~ B and say that A
and B are equivalent.

Recall that, for 0 < a < n,

Mo f(x) S La([f])(2). (1.1)

In the theory of partial differential equations, together with weighted L, ,,

spaces, Morrey spaces M, \ play an important role. They were introduced by C.

Morrey in 1938 [9] and defined as follows: For A > 0,1 < p < oo, f € M, if
f e L(R") and

= — —)\/p
170ty = 1 sty = 500 7y < o
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holds .

These spaces appeared to be quite useful in the study of local behaviour of the
solutions of elliptic partial differential equations.

If in place of the power function 7=*/? in the definition of M, y we consider any
positive weight function w defined on (0, 00), then it becomes the Morrey-type
space M, .

Definition 1.1. Let 1 < p < 00, w be a positive weight function w defined on
(0,00). feM,,if f e L(R") and

1, = 1 llaty @y = sup - W) fllL, sy < o0
x€ER™, r>0

In the paper [2] D.R.Adams and J.Xiao have proved the following Theorem.

Theorem 1.2 (Theorem 4.2, [2]). Let 1 <p <oo,0<a<n,0<\X<n. If
fe Lot (R"), then

Haflla, s ~ 1Mo a5 (1.2)

The proof of this Theorem is not correct, because the non-correct estimation
(see (4.8) in [2]) was used. In this work we show that the estimation (4.8) in [2]
is wrong by giving the counterexample and we present right formulation of such
estimation (see the inequality (4.3)).

We find sufficient condition on the w which ensures the equivalency of M, -
norms of the Riesz potential and the fractional maximal function. As Corollary
7.5, we obtain a correct proof of the Theorem 1.2. Our main result is presented
in section 7.

2. PRELIMINARIES

In this section we present some preliminary results on the Fefferman-Stein
sharp maximal and local sharp maximal functions.

Let us denote by f# and fg the Fefferman-Stein sharp and local sharp maximal
functions. Recall that fg denotes the mean value fr = (1/|E|) [, f(y)dy of an
integrable function f over a set E of positive finite measure.

Definition 2.1. For f € L°°(R") the sharp function f# of f is defined by

f*(x) = sup / f(y) — fBldy, (2.1)
B>z ’B |

where the supremum is taken over all balls B containing x.

Definition 2.2. If f is integrable over fixed cube @)y in R", the local sharp

function fgo of f relative to )y is defined by

f% (@) = sup ﬁ / () — foldy, (x € Qo). (2.2)
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where the supremum extends over all cubes () that contains x and are contained

in Qo.

Proposition 2.3. ([1], Proposition 3.3) For 0 < a < n and any f such that I, f
15 locally integrable,

(Inf)"(z) < cMq f(x), all z, (2.3)
¢ independent of f and x.

Proposition 2.4. ([5], Proposition 7.4) If f is integrable over a cube Qq, then

|Qol s 0
(= faval 0 <c [ (2@, (0<e< B )

From this Proposition immediately follows next Corollary.

Corollary 2.5. If f is integrable over a cube QQq, then

I1f = foollr,@o) < el fa - (2.5)

Proof. By Proposition 2.4

ds

|Qol
[(f = fao)Xao] (1) < C/t (FF)7 ()= (0.<t < |Qol/6). (2.6)

Since

(/06 ([(f - fQo)XQo]* (t)>p dt)
|Qol |Qol S P
gc< / ( / <fz§0>*<s>d;> dt)
|Qol L [1Qol s b »
:c< / (#—p’ / <fz;>*<s>d;) %) ,

applying Hardy’s inequality ([5], III (3.19)), we get

1Qol

( / T = foxal" ) dt)

<o ( [ (<f§0>*<t>)”dt) A
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But by monotonicity of [(f — fo,)xq,)" (t)

=

|Qol
If = faollz,@o) = (/0 ([(f = fao)xqo) (t))pdt>

3=

[Qol

< (/0 6 ([(f—fQo)XQo]*(t))pdt>

|Qol
" (/ al (I(f = fao)xqo™ ()" dt)

gc(/o °‘

rellf = favad” (120) ul

3=

a m‘@
(=]
SC

([(f = foo)xQu]™ (1)) dt)

6

3 =

1Qol

<c (/0 " - faoxanl" @) dt)

O
Corollary 2.6. If f is integrable over a cube QQq, then
1
1£11zoiao) < el 51z, + €lQol 7| flqs- (2.7)
Proof. Since
1f 1|z < 11 = faollza@o) + 1faoll 2,0
By Corollary 2.5
1
11l zpt@0) < ell £ 1p@0) + €lQol | flo-
O

Remark 2.7. Corollary 2.6 shows that in the inequality (7.13) in Corollary 7.5
in [5] multiplier |Qo|*/? in front of | f|g, had been lost.

The following Proposition is true
Proposition 2.8. If f is integrable over a cube (), then

ds

|Qol
(= foval" ) < [ (E) (65 + 78 (0. 0 <t< Q). (28)



Proof. Indeed, taking into account monotonicity of [(f — fo,)x.]™(t), for ¢ :
|Qo]/6 <t < |Qo] we have

[(f = fQo)XQO]**(t) <[(f - fQO>XQO]** (|Q_60|)

6 |Qol
<o / ((F = foo)xau ] (£)dt
6 .
=100l o, |f = faol < Cxleano 5, ().

Since

£() = sup in |f(z)
LEES
(see [8]), we arrive at

(7 = Fava™ () < (7 1@, 3

6 <t < Qo (2.9)

Definition 2.9. For f € L°*(R") the local sharp function f§0 of f relative to
By is defined by

fh(x)= sup — [ |f(y) — feldy, (z € By), (2.10)

where the supremum extends over all balls B that contains z and are contained
in QBO

The following Proposition is true

Proposition 2.10. If f € LI°°(R"), then for any ball By in R"

| Bo| s
[(F = Fan)xm] ™ (8) < c / (P () +e(F) (1Bol), (0 <1 <|Bol). (210

Proof. Let t : 0 < t < |Bp| and Qg be the cube concentric with By, such that
BO C QO C QBO Then

((f = fBo)xBo) ™ (t) < [(f — fao)xBo)™ () + [(foo, — [Bo)XBo) (1)
< [(f - fQo)XBo]**(t) + |fBo - fQ0|
<0~ Janxa" )+ gy [ 1F
< [(f — fa)xoo)= () + 19l [y o)
Bol Jo,

el(f = Jao)xqol™ (t) + ¢ inf (fQ )(@)
< c[(f = Jao)xqol ™ (t )+C(fQ0) (t)-
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By Proposition 2.8 and monotonicity of ( fgo)*(t)
|Qol

(= Faxa)™ (@) < [ ) ©)T + ) (@)

t

|Bol S |Qol g
< [T [ OT et e

By

|Bol S
< [ O + el 1Bab + 271

| Bol s
< [T + b))

Since fgo (x) < cfgé0 (x), x € By, we arrive at (2.11). O

In the same way, as it has been done in the proof of Corollary 2.5, we can prove
the following Corollary.

Corollary 2.11. If f € LY°(R™), then any ball By in R"
Proof. Since by Proposition 2.10

|Bol s
(= om0 < [ (LY T + ) (B, 0 <t <|B]).

applying Hardy’s inequality ([5], III (3.19)), we get

| Bol P
1f = fBollL,(B0) = </O ([(f_fBo>XBo]*(t))pdt)

|Bol P
<c (/0 (f]i)*(t))pdt) = cll 1, (8o)-

3. L,-ESTIMATES OF RIESZ POTENTIAL OVER CUBES

Let us denote by Li*“(R") the set of non-negative functions from Ly¢(R™).
Let l<p<oo, f€ LLOC*(]R”). Denote by 2Q = Q(xo,2r). For any @ C R" we
have

Hafllzy@ < [Hal(fXxee) L@ + HalFXepg)ll@ (3.1)
It’s clear that z € Q, y € G(QQ) implies |y — x| ~ |y — xo|. Therefore
1 [/ (W)l
I(fxe (@) =@ P/ ———dy. 3.2
H ( (QQ))“L (Q) ’ ‘ R™\(20) |y _ x0|n_a ( )
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Corollary 3.1. Let 1l <p<oo,0<a<mn, f € L;;OC’*(]R”). Then for any cube
Q = Q(zg,7) CR"

1 /()
o flzi@ ~ Ml frxao) e + 101 [ W dy (3)
R™\(2Q) ly — o
holds.
Let us estimate [|1o(fx(2q))|lz,,(@)- The following lemma is true

Lemma 3.2. Let 0 < a < n, 0 < py < 00 and f € L;,Olc(R”). Moreover, let
1 <222 < pp<oo, or 22 <1 <p <oo, or 22 =1<p <oo. Then for

n+aps n—+ap2 n+apz
any cube Q@ C R"
1o Fxeo) i@ < 1Q1F G5 1711, 00 (3.4)
Proof. Suppose that 1 < _1;27; < p; < 00. Then by Sobolev’s theorem we have

o (f X)) L@ SIFIL pon 20)-

n+apg

pan p2n
n+apz n+aps’

inequality (with exponents ’% and (z%sm)) ) we get (3.4).
Assume that m” < 1 < p; < oo. Since

= p1, then we arrive at (3.4). If p; > then applying Holder’s

1< i .
[ o) ar < [* [(utrxan) @]
Q 0

el (3:5)

< [ sup t (Ia(fX(QQ)))*(t)] / t = P2t

0<t<|Q)| 0

Using the boundedness of I,, from L;(R") to WL_»_(R") we have

/Q (ol Fx20) (@) di < (117 1y Q17 . (3.6)
Therefore
a_ (1L

Mol xe) i@ S Q101 f Lo, (37)

If p; = 1, then we arrive at (3.4). If p; > 1, then applying Holder’s inequality
(with exponents p; and p;” we get (3.4).

Suppose that ;220 =1 < p; < oco. Let py > p1 be defined by n (p—l - p%) = a.

Then by Holder’s inequality (with exponents 22 and (£2)') we have

11
1o (X)L, @ S 1R o l[la(fX @)Ly @)- (3.8)
Then by Sobolev’s theorem we arrive at (3.4). O

The statement of the following lemma follows from (3.1), (3.2) and Lemma 3.2.
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Lemma 3.3. Let 0 < o < n, 0 < py < oo, f € Lp°(R™). Moreover, let

pan pa2n p2n
1< P <p <o, or o < 1 <p1 <oo, or raps = 1 <py <oo. Then for

any cube Q = Q(zg,7) C R™

1T fllz,, ) < clQ|72 / /()|

R\ (2Q) Y — To|" ™

1

a 1
dy +clQ)* ) | £l oy (3.9)

where constant ¢ does not depend on |Q).

Remark 3.4. Note that statement of Lemma 3.3 for balls had been proved in
3]-
Let us recall the following Theorem proved in [3]

Theorem 3.5. Let 0 <a <n, 0 <p<oo, B <1 and f € L“(R™). Then

ol Moy o8 [ Ly gent) [l (a0

R\ B(ar) Y7 B(zr)

4. RELATION BETWEEN ||/, f||z,@) AND || M. fll1,@)

By means of properties of Riesz potential and fractional maximal function
obtained in previous two sections we are able to prove the following Theorem.

Theorem 4.1. Let 1 < p < 00 and f € L;JOC’J“(R”). Then for any cube Q) =
Q('x[hTO)

1 d
el = Mo sy + 11 [ Sy (4.1)

rRm\Q |Y — To|"

Proof. Let us assume that f > 0 a.e.. By Corollary 2.5 and Proposition 2.3 we
obtain

o f — (Inf)ollr,@ < clTaf) 2@ < cllMafllr,@)- (4.2)
Since

1
Hafllz,@ < [Hof = (Tafall@ + 1@ Laf)e;
by (4.2) we arrive at

1
HafllL,@ < cllMafllL,@ + QP (Laf)e-
Applying Lemma 3.3 for p; = 1, po = 1, we get

1o fllz,@ < cllMafllLy@ + QP QI 1 f ]|z, o
1 f(y)dy
+c|Ql> (/ Sy n_ady)
R™\2Qo Iy - $0|

1, 1 f(y)dy
< lQl ng M. f(o) + el ([ )

"\2Qo |y - x0|n_a
o)

’IL\2Q0 ’y - wo‘nia

< el Maflleer + QI ( /
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The reverse eatimate is clear from (1.1) and (3.2). O

In view of Corollary 2.11 and Remark 3.4 it is clear that the following Lemma
is true.

Lemma 4.2. Let 1 < p < 0o and f € L*(R™). Then for any ball B = B(xo,70)

1 f(y)dy
||Iaf||Lp(B) ~ ||Maf||Lp(B) + |B|p / . n—a
R"\B ly — o

Remark 4.3. Since for finite functions from Ly (R")
(Iof)* (@) ~ Mo f(w), for any z € R"

(see [1], Proposition 3.3 and 3.4), then the inequality (4.3) could be written in
the following form
fly)dy

1
oSl Lp@ = 1(Tad)* |y + !Q\”/ e
R7\Q |y — x|

This inequality suggests to us that inequality (4.8) in [2] hardly to hold. Next
example proves our doubt: For 0 < r < R/4 consider the finite function

(4.3)

(4.4)

fW) = lyl™*xB0.r)\BO:2) (Y)-
It is easy to calculate that

1Mo fllz,m0m) =77
and B
[ a1 L,(B0m) ~7””1n?
Thus
Hafllz, 0. # 1MaflLy@om = 1T f) L,mon-
Lemma 4.4. Let 1 <p < oo and f € L}DOC’*(R"). Then for any cube Q C R™

Ho(fxee)ll,@ = [Ma(fX@)lL,@- (4.5)
Proof. Let Q = Q(xq,rp). In view of (1.1) we need to show that
Ho(fxee)ll,@ S 1Ma(fX @)@ (4.6)

By Theorem 4.1 we have

1 d
1o (fx20) L@ S IMa(fX20) L@ + \Qyp/ _fydy

— (4.7)
2\q Y — o[

But if y € 2Q\Q, then |y — xy| «~ r9. Hence
1 f(y)dy 1
@ [ S 10 s [ 1
s0\q [y — Tl ‘Q|1

<|QlF ;gcg Mo (fx20)() S IMa(fXe@)llL, @)
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Remark 4.5. The same statement is true with balls instead of cubes.

5. LP—ESTIMATES OF FRACTIONAL MAXIMAL FUNCTION OVER BALLS

Theorem 5.1. Let 1 < p < oo, and f € LY“"(R"). Then for any ball B =
B(z,r) in R

1 1
b S W 198 (s [ i)
| Maofllz,8) S IMa(fXxeB)llL,3) + |B| t2217)~|B(x,t)|1_W B(a;,t)f(y)y
(5.1)

Proof. 1t is obvious that for any ball B = B(x,r)

||Maf||Lp(B) < ||Ma(.fX(2B))||Lp(B) + Ma(fXR"\(2B))||Lp(B)-

Let y be an arbitrary point from B. If B(y, t)N{R"\(2B)} # 0, then ¢ > r. Indeed,
if z € B(y,t) N{R"\(2B)}, thent > |z —y| > |z — 2| — |z —y| > 2r —r =1.
On the other hand B(y,t) N {R"\(2B)} C B(z,2t). Indeed, z € B(y,t) N
{R™\(2B)}, then we get |z —z| < |z —y|+ |y —z| <t +r <2t
Hence

1
Mo (fxrn\@2B))(Y) = sup —————= / f(y)dy
\2B) >0 |B(y, )| Jponma\@n)
1
SSUp s / fy)dy
t>r |B(l’, 2t)|1_; B(x,2t)

o .
=Sup ——————= f(y>dy
>2r |B(z, )" Jpas
Thus

1 1
M, < M, L BJF (s —/ d )
| Mafllz,8) S IMa(fxe)llz,B) + |B| (;15 Bt e B(m)f(?/) Yy

[
Theorem 5.2. Let 1 < p < oo, and f € LJIDOC*(]R”). Then for any ball B =
B(z,r) in R"

1Mo fll,m) 2 1B 0 sy

it (st [ gww)
PASUPp —— T —a y)ay
r [Bz, )7 Ja
Proof. Since B(z,%) C B(y,t), t > 2r, then

1 1

Mo f(y) Z sup —a/ = sup —a/ f(y)dy,
>2r [B(x, §)' 7 Sy e B, )]0 S

thus

1 1
M, > B]» (su —/ d). 5.3
Il 21815 (s e [ st 53
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It is clear that

Mo fllL,3) 2 IMalfXeB) L, B)
hence

1 1
Mo fll 2 1Mol Frxom) o + 1Bl (sup—la / f(y)dy) |
t>r ’B(ﬂf,t)l " J B(z,t)

On the other hand, if y € B(z,r), then B(z,t) C B(y,t) for t > 2r, then

1
Mao(fxes) () 2 Sup—a/ fly)dy 2 |B|=~ /f
t>2r |B<ya )| " JB(y,t)N2B(z,r)

Hence

IMa(fxem)lom 2 1BIF )| flln.m)-
]

From Remark 4.5, Theorem 5.1 and Lemma 3.1 in [3] follows next statement.

Lemma 5.3. Let 0 < o < n, 0 < py < oo, f € Lp°(R™). Moreover, let

pan p2n p2n
1<n+ap2_p < 00, or +ap2<1<p1<oo 07"n+ap2—1<p1<oo. Then for

any ball B = B(xz,r) C R"

a1 1
|Moflle o) < clBI (p— / |f(y)|dy)
2 R BEO T S 5.4)

+el B G3)  £,, a
where constant ¢ does not depend on | B).

Lemma 5.4. Let 0 < o < n, 0 < py < oo, f € Lp(R™). Moreover, let

_p2n_ pan pan
1< mrap, < P1 <00, or 2 < 1<p < o0, or P =1<p; <oo. Then for

any ball B = B(xz,r) C R"

1 o
1Mtz < Bl [ sup——— (/ |f(y)|”1dy) . (55)
= (Bl p)n b

where constant ¢ does not depend on | B).

Proof. Denote by

= 1
M= 1B e B o dy ),
1= B <t>£|B(;C Hs /B(m)lf(y)l y)

g,(L, )
M, : = |B|" \pi 22 /|| |1, (28)-
Applying Holder’s inequality, we get

1 1 o
My S [BJez | sup ——— (/ If(y)lpldy) :
t>2r |B(m t)|p1 n B(x,t)
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On the other hand

1 1 %
Bl (sup ———— < / If(y)|p1dy)
t>2r |B(x t)|1’1 n B(z,t)

> |B|% (sup|B<x ks ) 1l o) =~ Mo,

Since by Lemma 5.3

Mo fllL,, ) < M + Ms,

we arrive at (5.5).

Remark 5.5. Inequality (5.5) improves the inequality (22) in [4]

00 dt \r
n r1
o p1
Pfiogaon <% ([ [, ) )

This follows since

1

1 P1
sup —————— ( / 1 (y>|”1dy>
=r |B(0,1)|7 7+ \JBon

([ ([, o) )

Indeed, by easy calculation and the Fubini theorem, we get

1

1 o
b ( / |f(y)|”1dy)
t>r |B<O7 t) | P n B(0,t)

1
1 T
S sup ————— (/ |f(y)|p1dy)
t2r |B(0,t)|»1 ™ \JB(Or)

1 z
+sup ——— (/ |f(3/)’pld3/>
t>r ’B(ijpl n B(0,t)\B(0,r)

\B( )\ " (/ / (y)|p1dy)pll " </1RW\B(0,T ||:{’<” )O|‘: dx

1

o) —4 "
r B(Or tn—opitl
1
( oo 169702) )
B(0,)\B(0 r) tn—opitl

1

U 707 )

+

1
)pl



13

The following Theorem is true.

Theorem 5.6. Let 0 < a<n, 0 <p < oo, nﬁ’;p <1,and f € L}SC’*(R”). Then
for any ball B = B(x,r) C R"

n 1
Mo fll i ~ (sup—a / f(y)dy)
) > [B(a, 1) % S

(5.6)
roen(1-3) dy.
+ /B W)f(y) y

Proof. In view of the Theorem 5.2 we need only to prove that

n 1
M, <re | su —Q/ d )
ol 7 (90 5 s [, S0
+r0) [ - fgay
B(z,r)

By Theorem 5.1 and Lemma 4.4, we have

1 1
M, < || +Bp(su —/ d).
| Mafllz, ) S IHalfXe@B)2,8) + | Bl AT B(m)f(y) y

Taking into account Lemma 3.1 in [3], we get

o 1 1 1
1M afllm <1815 Dl es + 18] (p— / f<y>dy).
(B) (2B) t>2r |B(:zc,15)|1 " J B

Then

o 1 1 1
M, < Bl (9| fL., +Bp(su —/ d)
I¥a Sl % B3 sy + 1B (s o [ sy

1 1
+ |B|» (sup — / / y)dy)
1B z2r | B2, 8)|""» S (

a 1 1 ].
~ B[+~ (13) +Bp(su —/ d).
’ | ”fHLl(B) ’ | tZ'Ir) ’B(I"t”l_z B(xi) f(y) y

O

6. A NOTE ON SOME HARDY-TYPE INEQUALITIES

In this section we present some results about Hardy inequality, which is needed
to prove main theorem.

Lemma 6.1. Let f > 0, 6 > 0 and w be a positive weight function defined on
(0,00). Then the following inequality

supw(r)r? / TI b < up () (supt—5 /0 t g(s)ds) (6.1)

>0 to >0 t>r
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holds for any non-negative measurable g on (0,00) if and only if

/00 t0 7 () dt < el (W), >0, (6.2)

where
Y(z) = sup s° sup w(r)7.

r<s<00 0<r<s

Proof. Denote by

5 0 g(t) d

su w(r)r t

A :=sup Pr>0 f

920 sup, ., w(r)r? (supt>rt 5f0 ds)

Whenever F, G are non-negative functions on (0,00) and F is non-increasing,
then

esssup F'(t)G(t) = esssup F'(t) esssup G(s), t € (0, 00); (6.3)

te(0,00) te(0,00) s€(0,t)

likewise, when F' is non-decreasing, then

esssup F'(t)G(t) = esssup F'(t) esssup G(s), t € (0,00). (6.4)

te(0,00) te(0,00) s€(t,00)

By standart duality argument, the Fubini theorem and (6.3), we have for A
f()Oo (froo %do @(r)dr 1
A =supsup —=—— =5 :
620 o0 Jo W (r)r~Pp(r)dr SUP,0 170 (SUPgcgey w(S)s?) (fo g(s)ds)

Joot (fotgp r dr) g(t)dt
= SUP =5 sup
020 Jo w N (r)rPe(r)dr g>o SUP;sq tOW (t (fo )

—_

where W (t) = supy. ., w(s)s’. By Theorem 5.4 in [6]

I t5<f0 r) ) (t)dt

sup

920 sup,. o tOW (¢ (fo )
00 s -1
z/ sup <3_5/ gp(r)dr) d( sup s_‘sW(s)) .
0 t<s<oo 0 t<s<oo
Thus
0 _ _ -1
A~ fo Supt<8<oo( Jfo ) (Supt<s<oo (SW( ))

Jo w‘l( Jr=Pep(r)dr
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Applying Theorem 4.1 in [7], we get

x —1
A sup (w‘;/ d ( sup 35W(5))
x>0 0 t<s<oo

+ /:O t‘5d< sup 5‘5W(s)) _1> sup w(t)t’ < oo.

t<s<oo o<t<x

Applying (6.4), we get

. -1
supx_‘s/ d( sup 3_5W(s)> sup w(t)t’
0

x>0 t<s<oo O<t<x

>0 \r<s<oo 0<t<s r<s<00 0<t<s

-1
= Sup( sup s° sup w(t)tﬁ> sup 50 sup w(t)t’ = 1.

Hence A < oo if and only if

o -1
sup (/ t‘sd( sup s ° sup w(7)75> ) sup w(t)t? < oo,
>0 T t<s<oo 0<r<s o<t<x

Integrating by part, we obtain

0 -1
sup / t_‘sd( sup s~ sup w(7)7'5> sup w(t)t?
>0 T t<s<oo 0<7<s o<t<zx

00 -1
< csup (/ o1 ( sup s~ sup w(T)TB) dt) sup w(t)t?

>0 t<s<oo 0<r<s o<t<z

= csupa’ (/:O t0 7 (1) dt) 270 sup w(t)t?

>0 0<t<z

It is easy to see that ( f;o ot (w(t))f1 dt) is non-decreasing function, then
by (6.4) we get

>0 o<t<zx

supa ([T i) i) wio)

>0

sup ° (/:O t= () dt) 7% sup w(t)t? =

Consequently, the condition

/ T () dt < et (), 7> 0

is necessary and sufficient for A < oo. O
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7. EQUIVALENCE OF NORMS OF RIESZ POTENTIAL AND FRACTIONAL
MAXIMAL FUNCTION IN MORREY SPACE

In this section we find the condition on the w which ensures the equivalency of
norms of the Riesz potential and the fractional maximal function in generalized
Morrey space M, ,,(R™).

From Lemma 4.2 follows the next statement.

Theorem 7.1. Let 1 < p < o0, 0 < a < n, w be a positive weight function
defined on (0,00) and f € LY (R"). Then

||[afHMp,uJ ~ HMafHMp,w

if and only if

aw ooyt [ I s e (/;umqﬁwa(yﬁpdy>p

z€R™, r>0 "\ B(z,r) |.T - y|"_a z€R™, r>0

By Theorem 3.5 and Theorem 5.6, we conclude that for small p the statement
is true.

Theorem 7.2. Let 0 < a <n, 1 <p < = w be a positive weight function
defined on (0,00) and f € Lt (R"). Then

||[OéfHMp,w ~ ”MO‘fHMp,w
if and only iof
o o) [ I s wtond (swe [ pwan).
zER™, r>0 R”\ B(z,r) |z —y[re T€R™, r>0 t>r B(z,t)

The next Theorem is true.

Theorem 7.3. Let 1 < p < o0, 0 < a < n, w be a positive weight function
defined on (0,00) and f € LYt (R"). If

/00 T () T dE < e ()T, x>0, (7.1)
where
Y(xr) = sup s*" sup w(T)T%7
r<s<00o 0<r<s
then
oS My ~ (1 Maflr,.- (7.2)

Proof. In view of (1.1) we need only to prove

Haf My S 1 Maf |y, (7.3)
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With regard to Lemma 4.2 and Theorem 5.1, it will suffice to show that

sup  w(r)re /R &dy

veR™, >0 M\Blag) [y = 2[*70 (7.4)
n 1 ’
< osup wrrp(sup—a/ fydy).
Z€R™, 150 (r) >r |B(x, )" Jpasy (@)
Passing to spherical coordinates, we obtain
sup w(?‘)rz/ (/ f(33+p€)d€) p*~tdp
zeR™, r>0 r > (7 5)

t
< sup w(r)re (Supta‘”/ (/ f(x+p€)d§) p”‘ldp) ,
zeR™, r>0 t>r 0 by

where X denotes unit sphere in R"™.
Let us reduce this task to more simply, but equivalent one:

sup w(r)r / "I 4y < sup )t (Supto‘_” /0 tg(s)ds) (16

r>0 tn— r>0 t>r

for all non-negative measurable functions g on (0,00). But then the statement
of Theorem immediately follows from Lemma 6.1. U

Theorem 7.2 and the preceding Theorem imply the following statement.

Theorem 7.4. Let 0 < o < n, 1 < p < "=, w be a positive weight function
defined on (0,00) and f € Lyt (R"). Then

Moty ~ 1Mo llag,. &
if and only if (7.1) holds.
From the Theorem 7.3 follows the following Corollary.
Corollary 7.5. Let 1 <p<oo,0<a<n,0<AX<n. Iff€ LLOC’JF(R”), then
[ afllatyn ~ 1 Mafllat,x- (7.8)

Proof. 1t’s easy see that if « —n + ”T? < 0, then the statement immediately
follows from Theorem 7.3. But if « — n + ”p%)‘ > 0, then
_2

sup 7 ? | Mo f |1, (B(0,) = o0

r>0
Indeed, since

Mof@) st [ pyyz e [ )y, o€ B)
t>2r B(0,t) B(0,r)

then

| Mafllz,B0r) 2 TZM"/ f(y)dy.
B(0,r)
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Thus
Mo flisy s 2 1Mafllag,, = supr 3 Mafllz, 500
> supr®” ”+/ = 00,
r>0 B(0,r)
or f=0a.e. on R". In both cases (7.8) holds. O
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