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Abstract. — We study in this paper some density properties of orbits of bounded linear
operators acting on a Banach space X. Let ε be a number in (0, 1). If x is a vector of X,
we say that x is ε-hypercyclic if for every non zero vector y ∈ X there exists an integer n
such that ||T nx − y|| ≤ ε||y||. We construct for any ε ∈ (0, 1) operators which admit an
ε-hypercyclic vector but which are not hypercyclic, thus answering a question of [8].

1. Introduction

The aim of this paper is to study some density properties of orbits of bounded linear
operators acting on a (real or complex) separable Banach space X. Such an operator
T ∈ B(X) is said to be hypercyclic if there exists a vector x ∈ X such that the orbit
Orb(x, T ) = {Tnx ; n ≥ 0} of x under the action of T is dense in X. Such a vector x

with dense orbit is called a hypercyclic vector for T . There is an important literature on
hypercyclicity properties and the dynamics of bounded linear operators, and we refer the
reader to the book [1] for more on this topic. It is natural in this context to investigate
which properties of the orbit of a vector, weaker than denseness, imply either that the
orbit itself is in fact dense, or that the operator is hypercyclic (i.e. some other orbit is
dense in X). Let us mention here some of the results in this direction:

– if the orbit Orb(x, T ) is somewhere dense in X, then it is dense in X [3]. This implies in
particular that if the union of finitely many orbits Orb(x1, T ), Orb(x2, T ), ..., Orb(xn, T )
is dense in X, then one of these orbits must already be dense. This result was proved
directly in [5] and [9].

– suppose that for some positive number d the orbit of x ∈ X meets every open ball B(y, d)
of radius d. Then Orb(x, T ) is not necessarily dense in X, but T must be hypercyclic [6].
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– if x is a frequently hypercyclic vector for T (i.e. for every non empty open subset U of
X, the set of positive integers n such that Tnx ∈ U has positive lower density; in other
words, for every non empty open subset U of X, there exists a sequence (nk)k≥0 with
nk = O(k) such that Tnkx ∈ U), then T ⊕ T must be hypercyclic on X ⊕X [7].

On the other hand, some conditions on the orbit, which may look strong enough at first
sight, do not imply that the operator is hypercyclic. For instance:

– there exist operators which are weakly hypercyclic, i.e. for which there exists a vector
x whose orbit is weakly dense in X, but still are not hypercyclic: examples of weighted
shifts having this property are given in [4].

– for every ε > 0, there exists an operator such that for every non empty open subset U

of X, there exists a sequence (nk)k≥0 with nk = O(k1+ε) such that Tnkx ∈ U , but T ⊕ T

is not hypercyclic [2]. This shows that the result of [7] that every frequently hypercyclic
operator satisfies the Hypercyclicity Criterion is in a sense optimal.

We investigate in this paper a weaker version of Feldman’s result [6] already mentioned
above: it states that if given a positive ε there exists a vector x such that for every y ∈ X

||Tnx− y|| ≤ ε for some integer n, then T is hypercyclic.

Definition 1.1. — Let ε be a number in (0, 1). If x is a vector of X, we say that x

is ε-hypercyclic if for every non zero vector y ∈ X there exists an integer n such that
||Tnx− y|| ≤ ε||y||. The operator T is ε-hypercyclic if it admits an ε-hypercyclic vector.

In particular, the orbit of x must intersect every cone of a fixed aperture. This is in a sense
a “scaled” version of the ε-density considered in Feldman’s work. It is obviously much
weaker, but in a sense much more natural in this context, and the following question was
proposed in [8]:

Question 1.2. — Suppose that T ∈ B(X) admits for some ε ∈ (0, 1) an ε-hypercyclic
vector. Is it true that T is hypercyclic?

The restriction ε ∈ (0, 1) comes from the fact the zero vector is trivially 1-hypercyclic for
any operator T .

The main result of this paper gives a negative answer to Question 1.2:

Theorem 1.3. — For every ε ∈ (0, 1) there exists an ε-hypercyclic operator on the space
`1 which is not hypercyclic.

Still:

Theorem 1.4. — If T is ε-hypercyclic for every ε > 0, then T must be hypercyclic.

Theorems 1.3 and 1.4 are proved in the next section. Surprisingly enough, our construction
for the proof of Theorem 1.3 really uses the `1-norm, and we are unable to adapt it to the
Hilbertian setting. Thus the following question is still open:

Question 1.5. — Let ε ∈ (0, 1) and suppose that T ∈ B(H) is an ε-hypercyclic operator
acting on a Hilbert space H. Must T be hypercyclic?
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2. Proofs of Theorems 1.3 and 1.4

2.1. Outline of the proof of Theorem 1.3. — Fix ε ∈ (0, 1) and a positive integer
a such that ε > 2−a+1. Let X be the space `1 endowed with the canonical basis (en)n≥0.
Our operator T will act on the `1-direct sum Y =

⊕∞
i=0 X of countably many copies of `1.

Let (y(k))k≥1 be a sequence of vectors of Y which has the following properties:
(i) the set {y(k) ; k ≥ 1} is dense in Y ;
(ii) each y(k) ∈ Y can be written as a sequence y(k) = (y(k)

1 , . . . , y
(k)
k−1, 0, . . .), where each

y
(k)
j is a vector of X = `1 which is in the linear span of the vectors ei, i ≤ k − 1;

(iii) 2−k ≤ ‖y(k)
j ‖ for every j = 0, . . . , k − 1, and ‖y(k)‖ ≤ 2k

1+2−a .

For each k ≥ 1 and each j ≤ k−1, define z
(k)
j = y

(k)
j +2−a‖y(k)

j ‖ek2+j : it is a perturbation

of the vector y
(k)
j obtained by adding to it a (not too small) multiple of the basis vector

ek2+j , which is far away from the support of y
(k)
j . We have 2−k ≤ ‖z(k)

j ‖ for each j ≤ k−1.

We then define z(k) ∈ Y by z(k) = (z(k)
0 , . . . , z

(k)
k−1, 0, . . .). Clearly ‖z(k)‖ ≤ 2k.

Set n0 = n′0 = 0. Our goal is to construct by induction a sequence (Sj)j≥1 of bounded
operators on X and two strictly increasing sequences of positive integers (nk)k≥1 and
(n′k)k≥1 such that n′k−1 ≤ n′k−1 + nk−1 ≤ nk < nk + k < n′k for every k ∈ N and the six
following properties hold true:

(a) each operator Sj is bounded and invertible with ‖S−1
j ‖ ≤ 2;

(b) Sje0 = e0 for every j ∈ N;
(c) ‖SjSj−1 . . . S1‖ ≤ 2a+1 for every j ∈ N;
(d) Sn′k

. . . S2S1 = I (the identity operator) for every k ∈ N;
(e) Sj = I for every k ∈ N and every j such that nk − nk−1 < j ≤ nk + k);
(f) ‖Snk

· · ·S2Sj+1z
(k)
j ‖ ≤ 2−2k−a for every k ∈ N and every j = 0, . . . , k − 1.

Suppose that (nk), (n′k) and (Sj) have been constructed so as to satisfy properties (a) to
(f). Consider on Y the operator T which is the backward shift with operator-weights S−1

j :
for any sequence (vj)j≥0 of Y ,

T (v0, v1, . . .) = (S−1
1 v1, S

−1
2 v2, . . .).

Clearly T is bounded on Y with ‖T‖ ≤ 2 by (a). For any n ∈ N we have

Tn(v0, v1, . . .) = (S−1
1 . . . S−1

n vn, S−1
2 . . . S−1

n+1vn+1, . . . , S
−1
j+1 . . . S−1

n+jvn+j , . . .).

For k ∈ N define x(k) ∈ Y by

x(k) = (0, . . . , 0︸ ︷︷ ︸
nk

, Snk
. . . S1z

(k)
0 , Snk

. . . S2z
(k)
1 , . . . , Snk

. . . Skz
(k)
k−1, 0, . . . ).

By (f), we have ‖x(k)‖ ≤ 2−2k−a‖z(k)‖ ≤ 2−k−a, and thus the vector

x =
∞∑

k=1

x(k)

belongs to Y .
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Fact 2.1. — The vector x is ε-hypercyclic for T .

Proof. — Let k ∈ N. Observe that by (e) we can rewrite x(k) as

x(k) = (0, . . . , 0︸ ︷︷ ︸
nk

, Snk
. . . S1z

(k)
0 , Snk+1 . . . S2z

(k)
1 , . . . , Snk+k−1 . . . Skz

(k)
k−1, 0, . . . ),

and so Tnkx(k) = z(k). Clearly Tnkx(m) = 0 for m < k, and for m > k we have Tnkx(m) =
x(m) by (e) again. Hence

‖Tnkx− z(k)‖ =

∥∥∥∥∥
( ∞∑

m=k+1

x(m)

)∥∥∥∥∥ ≤
∞∑

m=k+1

2−m−a = 2−k−a.

Let v be any non zero vector of Y . Choose k ∈ N such that ‖v − y(k)‖ < ε′‖v‖, where
ε′ > 0 satisfies (1 + ε′)21−a + ε′ < ε. Then ‖y(k)‖ < ‖v‖(1 + ε′) and

‖Tnkx− v‖ ≤ ‖Tnkx− z(k)‖+ ‖z(k) − y(k)‖+ ‖y(k) − v‖
≤ 2−k−a + 2−a‖y(k)‖+ ε′‖v‖ ≤ ‖y(k)‖2−a+1 + ε′‖v‖
≤ ‖v‖((1 + ε′)2−a+1 + ε′) ≤ ε‖v‖.

Hence x is an ε-hypercyclic vector for T .

Fact 2.2. — The operator T is not hypercyclic on Y .

Proof. — Suppose on the contrary that there is a vector v = (v0, v1, . . . ) ∈ Y hypercyclic
for T . Then there exists an increasing sequence (mj)j≥0 of integers such that ‖Tmjv −
(e0, 0, . . . )‖ tends to zero as j tends to infinity. In particular, reading this on the first
coordinate yields that ‖S−1

1 S−1
2 . . . S−1

mj
vmj − e0‖ tends to zero. Here assumptions (b) and

(c) come into play:

‖vmj − e0‖ = ‖vmj − Smj · · ·S1e0‖ ≤ ‖Smj · · ·S1‖ · ‖S−1
1 · · ·S−1

mj
vmj − e0‖

≤ 2a+1‖S−1
1 · · ·S−1

mj
vmj − e0‖

Hence ‖vmj − e0‖ tends to zero, thus ‖vmj || tends to 1, which contradicts the assumption
that v belongs to Y .

2.2. Construction of the sequences (nk)k≥0, (n′k)k≥0 and (Sj)j≥1. — Recall that
we set formally n0 = n′0 = 0. Define the numbers nk, n

′
k inductively by setting

nk = n′k−1 + 4k + 2a + 1 + nk−1

and
n′k = nk + 5k + 2a + 1.

We define the operators Sj by induction: at step k the operators Sj are constructed for
n′k−1 < j ≤ n′k. So let k ≥ 1 and suppose that Sj ∈ B(X) are already defined and
invertible for j ≤ n′k−1. For 0 ≤ i ≤ k − 1 write

w
(k)
i = S−1

1 · · ·S−1
i y

(k)
i

and
α

(k)
i = 2−a‖y(k)

i ‖ · ‖S−1
1 · · ·S−1

i ek2+i‖.



EPSILON-HYPERCYCLIC OPERATORS 5

Note that for k = 1 we have w
(1)
0 = y

(1)
0 and α

(1)
0 = 2−a‖y(1)

0 ‖.
At step k ≥ 2 we have already defined in particular the invertible operators S1, . . . , Sk−1,
since k − 1 ≤ n′k−1.

We define the operators Sj , n′k−1 < j ≤ n′k, by defining Sjei, depending on the values of i

and j:
• For i < k2, define
(1) Sjei = ei for n′k−1 < j ≤ n′k.

• For k2 ≤ i ≤ k2 + k − 1, define
(2a) Sjei = 2ei (n′k−1 < j ≤ n′k−1 + a);

(2b) Sjei = −
w

(k)

i−k2

2aα
(k)

i−k2

+ ei (j = n′k−1 + a + 1);

(2c) Sjei = 1
2ei (n′k−1 + a + 1 < j < n′k−1 + 2a + 4k + 1 = nk − nk−1);

(2d) Sjei = ei (nk − nk−1 < j ≤ nk + k);
(2e) Sjei = 2ei (nk + k < j ≤ nk + 5k + a);

(2f) Sjei =
w

(k)

i−k2

2aα
(k)

i−k2

+ ei (j = nk + 5k + a + 1);

(2g) Sjei = 1
2ei (nk + 5k + a + 1 < j ≤ nk + 5k + 2a + 1 = n′k).

• For i > k2 + k − 1, define
(3a) Sjei = 1

2ei (n′k−1 < j ≤ nk − nk−1);
(3b) Sjei = ei (nk − nk−1 < j ≤ nk + k);
(3c) Sjei = 1

2ei (nk + k < j ≤ n′k − 1);
(3d) Sjei = 2n′k−n′k−1−nk−1−k−1ei (j = n′k).
For k ∈ N let Mk = sp[ei ; i = 0 . . . k2 + k − 1] and Lk = sp[ei ; i > k2 + k − 1].

2.3. Boundedness and invertibility of the operators Sj. — We show first by in-
duction on k that the operators Sj , n′k−1 < j ≤ n′k, defined above are bounded, invertible
and upper triangular and their inverses S−1

j are also bounded and upper triangular.

As mentioned above, for k = 1 we have w
(1)
0 = y

(1)
0 ∈ C · e0, so the operators Sj , j ≤ n′1

are upper triangular. Moreover, for each j ≤ n′1 we have Sj(M1) ⊆ M1, Sj(L1) ⊆ L1. The
operator Sj |M1 is upper triangular with a positive main diagonal and Sj |L1 is a nonzero
scalar multiple of the identity operator. So Sj is bounded and invertible and its inverse
S−1

j is also bounded and upper triangular.

Suppose that k ≥ 2 and the operators Sj , S
−1
j , j ≤ n′k−1, are bounded, invertible and

upper triangular.

For 0 ≤ i ≤ k − 1, y
(k)
i belongs to the linear span of the vectors el, l = 0 . . . k − 1, and

so this is also the case for the vector w
(k)
i = S−1

1 · · ·S−1
k−1y

(k)
i . Hence the operators Sj ,

n′k−1 < j ≤ n′k defined by (1) – (3) are upper triangular. As above, we conclude that they
are also bounded and invertible, and that their inverses S−1

j are also bounded and upper
triangular.

We now have to show that the operators Sj satisfy conditions (a)–(f).
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2.4. Proof of properties (b), (e) and (d). — By definition, Sje0 = e0 for all j and
Sj is equal to the identity operator for nk − nk−1 < j ≤ nk + k. Hence conditions (b) and
(e) are satisfied trivially. Then we have to prove by induction on k that Sn′k

· · ·S1 = I,
i.e., that Sn′k

· · ·Sn′k−1+1 = I:
• for i < k2, clearly Sn′k

· · ·Sn′k−1+1ei = ei since all the operators Sj , n′k−1 + 1 ≤ j ≤ n′k,
act on ei as the identity operator by (1);
• for i > k2 + k − 1 it is also easy to check using property (3) that Sn′k

· · ·Sn′k−1+1ei = ei

(just multiply all coefficients together);
• for k2 ≤ i ≤ k2 + k − 1 we have

Sn′k
· · ·Sn′k−1+1ei = Sn′k

· · ·Sn′k−1+a+1(2
aei) = Sn′k

· · ·Sn′k−1+a+2

(
−

w
(k)
i−k2

α
(k)
i−k2

+ 2aei

)
by (2b). Then since w

(k)
i−k2/α

(k)
i−k2 is supported by the first k vectors el, l = 0, . . . , k− 1, by

(2c),(2d) and (2e) applied successively this quantity is equal to

Sn′k
· · ·Sn′k−1+2a+4k+2

(
−

w
(k)
i−k2

α
(k)
i−k2

+ 2−4kei

)
= Sn′k

· · ·Snk+k+1

(
−

w
(k)
i−k2

α
(k)
i−k2

+ 2−4kei

)

= Sn′k
· · ·Snk+5k+a+1

(
−

w
(k)
i−k2

α
(k)
i−k2

+ 2aei

)
.

Then the expression in (2f) destroys the quantity w
(k)
i−k2/α

(k)
i−k2 in this expression, and we

eventually get that

Sn′k
· · ·Sn′k−1+2a+4k+2

(
−

w
(k)
i−k2

α
(k)
i−k2

+ 2−4kei

)
= Sn′k

· · ·Snk+5k+a+2(2aei) = ei.

Hence Sn′k
· · ·Sn′k−1+1 = I and property (d) is proved.

2.5. Proof of property (a). — We now have prove by induction on k that ‖S−1
j ‖ ≤ 2

for every j with n′k−1 < j ≤ n′k. Let k ≥ 1 and suppose that ‖S−1
j ‖ ≤ 2 for every j ≤ n′k−1.

For 0 ≤ i ≤ k − 1 we have

S−1
1 · · ·S−1

i ek2+i = ‖S−1
1 · · ·S−1

i ek2+i‖ · ek2+i

since the operators S−1
1 , . . . , S−1

i just multiply the vector ek2+i by some coefficient. Thus

S−1
1 · · ·S−1

i z
(k)
i = S−1

1 · · ·S−1
i y

(k)
i + 2−a‖y(k)

i ‖S−1
1 · · ·S−1

i ek2+i = w
(k)
i + α

(k)
i ek2+i.

Let r = card {s ; 1 ≤ s ≤ i and Ss 6= I}. Then ‖S−1
i · · ·S−1

i y
(k)
i ‖ ≤ 2r · ‖y(k)

i ‖ by the
induction assumption and ‖S−1

1 · · ·S−1
i ek2+i‖ = 2r by (3a). Hence

α
(k)
i = 2−a||y(k)

i ||2r ≥ 2−a||S−1
i · · ·S−1

i y
(k)
i || ≥ 2−a‖w(k)

i ‖.

Clearly ‖S−1
j ‖ ≤ 2 for all j with n′k−1 < j ≤ n′k, j 6= n′k−1+a+1 and j 6= nk+5k+a+1. In

order to prove that ‖S−1
j ‖ ≤ 2 in these two cases, we only have to check that ‖S−1

j ei‖ ≤ 2
for every i ≥ 0: observe that at this point we use the `1-norm in a crucial way.
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• If i < k2 then , ‖S−1
n′k−1+a+1

ei‖ = ‖ei‖ ≤ 2 and ‖S−1
nk+5k+a+1ei‖ ≤ 2 by (1).

• Similarly, if i > k2 + k − 1 then ‖S−1
n′k−1+a+1

ei‖ ≤ 2 and ‖S−1
nk+5k+a+1ei‖ ≤ 2 by (3).

• Let k2 ≤ i ≤ k2 + k − 1. Then Sn′k−1+a+1Snk+5k+a+1eiSnk+5k+a+1Sn′k−1+a+1ei = ei. So

‖S−1
nk+5k+a+1ei‖ = ‖Sn′k−1+a+1ei‖ ≤ 1 and ‖S−1

n′k−1+a+1
ei‖ = ‖Snk+5k+a+1ei‖ ≤ 2.

This proves (a).

2.6. Proof of property (f). — Let k ∈ N and 0 ≤ i ≤ k − 1. Then

‖Snk
· · ·Si+1z

(k)
i ‖ = ‖Snk

· · ·S1(S−1
1 · · ·S−1

i )z(k)
i ‖

= ‖Snk
· · ·Sn1(w

(k)
i + α

(k)
i ek2+i)‖

= ‖Snk
· · ·Sn′k−1+1(w

(k)
i + α

(k)
i ek2+i)‖

= ‖Snk
· · ·Sn′k−1+a+1(w

(k)
i + 2aα

(k)
i ek2+i)‖

= ‖Snk
· · ·Sn′k−1+a+2(2

aα
(k)
i ek2+i)‖

= ‖Snk
· · ·Sn′k−1+2a+4k+2(2

−4kα
(k)
i ek2+i)‖

= ‖2−4kα
(k)
i ek2+i‖

= 2−4kα
(k)
i

Then (f) is proved by observing that

2−4kα
(k)
i = 2−4k2−a||y(k)

i || . ||S−1
1 · · ·S−1

i ek2+i|| ≤ 2−4k2−a2k · 2k = 2−2k−a.

2.7. Proof of property (c). — It remains to show that ‖Sj · · ·S1‖ ≤ 2a+1 for all j ∈ N.
By (d), it is sufficient to show that ‖Sj · · ·Sn′k−1

‖ ≤ 2a+1 for all k ∈ N and n′k−1 < j ≤ n′k.
Equivalently, using again the `1-norm, it must be proved that ‖Sj · · ·Sn′k−1+1ei‖ ≤ 2a+1

for every i ≥ 0 and n′k−1 < j ≤ n′k.

• For i < k2 this is clear since the operators Sj , n′k−1 < j ≤ n′k, act on ei as the identity
operator.
• For i > k2 + k − 1 this is also clear: ‖Sj · · ·Sn′k−1+1ei‖ ≤ 1 for all j, n′k−1 + 1 ≤ j ≤ n′k

(just multiply the coefficients, the worst case being when j = n
′
k).

• For k2 ≤ i ≤ k2 +k − 1, the sequence Sn′k−1+1ei, Sn′k−1+2Sn′k−1+1ei, . . . , Sn′k
· · ·Sn′k−1+1ei

is equal to 2ei, . . . , 2aei, −
w

(k)

i−k2

α
(k)

i−k2

+2aei, . . . , −
w

(k)

i−k2

α
(k)

i−k2

+2−4kei, . . . , −
w

(k)

i−k2

α
(k)

i−k2

+2−4kei, −
w

(k)

i−k2

α
(k)

i−k2

+

2aei, 2aei, . . . , ei. Hence

max
n′k−1+1≤j≤n′k

‖Sj · · ·Sn′k−1+1ei‖ =
∥∥∥−w

(k)
i−k2

α
(k)
i−k2

+ 2aei

∥∥∥ =
∣∣∣w(k)

i−k2

α
(k)
i−k2

∣∣∣+ 2a ≤ 2a+1.

This proves (c).

Thus the operators Sj (j ∈ N) satisfy all the properties (a) to (f), and consequently the
operator T defined here is ε-hypercyclic but not hypercyclic on Y =

⊕
`1

`1. This finishes
the proof of Theorem 1.3.
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2.8. A remark. — In the same way it is possible to construct a non-hypercyclic operator
T such that T ⊕T is ε-hypercyclic. Indeed, consider the space Y as in Theorem 1.3 and a
sequence of pairs of vectors (y(k), ỹ(k)) which is dense in Y ⊕ Y . In the same way one can
construct a vector x ⊕ x̃ ∈ Y ⊕ Y which is ε-hypercyclic for T ⊕ T . One can even have
that Tn = T ⊕ · · · ⊕ T︸ ︷︷ ︸

n

is ε-hypercyclic for each n ∈ N. Details are left to the reader.

2.9. Point spectrum of the adjoint of an ε-hypercyclic operator. — Our aim
here is to prove the following lemma, which is needed for the proof of Theorem 1.4:

Lemma 2.3. — Let 0 < ε < 1 and let T ∈ B(X) be an ε-hypercyclic operator. Then the
point spectrum σp(T ∗) of the adjoint of T is empty.

Proof. — Suppose on the contrary that α belongs to σp(T ∗). Let y∗ ∈ X∗ satisfy ‖y∗‖ = 1
and T ∗y∗ = αy∗, and let x ∈ X be an ε-hypercyclic vector for T . We distinguish two cases:
• let either 〈x, y∗〉 = 0 or |α| ≤ 1. Choose t > (‖x‖+ 1)/(1− ε) and y ∈ X with ‖y‖ = 1
and 〈y, y∗〉 > 1− ε/t. Since x is an ε-hypercyclic vector for T , there exists an n ≥ 0 such
that ‖Tnx− ty‖ ≤ ε‖ty‖ = tε. So |〈Tnx− y, y∗〉| ≤ tε. On the other hand,

|〈Tnx− ty, y∗〉| ≥ |〈ty, y∗〉| − |〈Tnx, y∗〉| ≥ t− ε− |α|n|〈x, y∗〉| ≥ t− 1− ‖x‖.

Thus t− 1− ‖x‖ ≤ tε and so t ≤ (1 + ‖x‖)/(1− ε), a contradiction.
• let |α| > 1. Choose y ∈ X such that 0 6= ‖y‖ < |〈x, y∗〉|/(1 + ε). There exists n ≥ 0
such that ‖Tnx− y‖ ≤ ε‖y‖, and thus |〈Tnx− y, y∗〉| ≤ ε‖y‖. On the other hand,

|〈Tnx− y, y∗〉| ≥ |〈Tnx, y∗〉| − |〈y, y∗〉| ≥ |αn| · |〈x, y∗〉| − ‖y‖ > |〈x, y∗〉| − ‖y‖.

Thus |〈x, y∗〉| − ‖y‖ < ε‖y‖, and so ‖y‖ > (|〈x, y∗〉|)(1 + ε), a contradiction again.

2.10. Proof of Theorem 1.4. — Lemma 2.3 shows that we can assume that X is
infinite dimensional. We are going to prove that T is topologically transitive, i.e. that for
every nonempty open subsets U and V of X there exists an integer n ∈ N such that Tn(U)∩
V is nonempty. Let u ∈ U and v ∈ V be two nonzero vectors of U and V respectively, and
let δ > 0 be so small that B(u, δ) ⊆ U , B(v, δ) ⊆ V and δ < min{‖u‖, ‖v‖}. Let x ∈ X be
an ε-hypercyclic vector for T , where ε < δ/(6 max{‖u‖, ‖v‖}). There exists n0 ≥ 0 such
that ‖Tn0x− u‖ ≤ ε‖u‖ < δ, and so Tn0x belongs to U . Let us now show that there exist
infinitely many n’s such that Tnx belongs to V . Suppose on the contrary that there are
only finitely many such integers n1, . . . , nk. As above, for each v′ ∈ X with ‖v′ − v‖ < 2δ

3

there exists an integer n(v′) which satisfies ‖Tn(v′)x − v′‖ ≤ ε‖v′‖ ≤ 2ε‖v‖ < δ/3. Since
‖Tn(t)x − v‖ ≤ ‖Tn(t)x − v′‖ + ‖v′ − v‖ < δ, we have n(v′) ∈ {n1, . . . , nk} and the
ball B(v, (2δ)/3) is covered by a finite number of balls B(Tn1x, δ/3), . . . , B(Tnkx, δ/3).
However, in an infinite dimensional space this is not possible. Hence there are infinitely
many n’s with ‖Tnx− v‖ < δ, and in particular, there exists n1 > n0 such that Tn1x is in
V . So Tn1−n0Tn0x = Tn1x ∈ V ∩ Tn1−n0(U), and consequently T is hypercyclic.
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