
Newman-Penrose formalism in higher dimensions:
vacuum spacetimes with a non-twisting multiple
Weyl aligned null direction

A. Pravdová, V. Pravda
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Abstract. Vacuum spacetimes admitting a non-twisting multiple Weyl aligned
null direction (WAND) are analyzed in arbitrary dimension using recently
developed higher-dimensional Newman-Penrose (NP) formalism. We determine
dependence of the metric and of the Weyl tensor on the affine parameter r
along null geodesics generated by the WAND for type III and N spacetimes and
for a special class of type II and D spacetimes, containing e.g. Schwarzschild-
Tangherlini black holes and black strings and branes.

For types III and N, all metric components are at most quadratic polynomials
in r while for types II and D the r-dependence of the metric as well as of the Weyl
tensor is determined by an integer m corresponding to the rank of the expansion
matrix Sij . It is shown that for non-vanishing expansion, all these spacetimes
contain a curvature singularity.

As an illustrative example, a shearing expanding type N five-dimensional
vacuum solution is also re-derived using higher-dimensional NP formalism. This
solution can be however identified with a direct product of a known four-
dimensional type N metric with an extra dimension.

1. Introduction

The null frame Newman-Penrose (NP) formalism [1, 2] is a very useful tool for
constructing exact solutions of the four-dimensional general relativity. Although the
number of equations is considerably larger than in the standard coordinate approach
(note, however, that many equations in the NP formalism are redundant, see e.g. [3]
and references therein), all differential equations in this formalism are of the first order.
Another advantage is that one can also use gauge transformations of the frame in order
to simplify the field equations. This is why the formalism is especially powerful when
studying algebraically special solutions according to Petrov classification, since in this
case some frame components of the Weyl tensor can be set to zero by choosing an
appropriate frame.

In recent years solutions to the higher-dimensional Einstein field equations have
attracted a lot of interest. Lot of effort went into generalizing basic concepts,
properties and results of the four-dimensional general relativity to higher dimensions
and there is growing awareness that higher-dimensional gravity contains qualitatively
new physics (see e.g. [4] and references therein).
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Generalization of the Petrov classification and of the NP formalism to higher
dimensions was developed in [5, 6], [7, 8], respectively. Using these methods, it
can be shown that in contrast with four dimensions, Goldberg-Sachs theorem is not
valid in higher dimensions since multiple Weyl aligned null direction (WAND) in
higher-dimensional vacuum algebraically special spacetimes can be shearing [7, 8].
For example, while in four dimensions expanding vacuum type N and III spacetimes
are never shearing, in higher dimensions they are always shearing [7]. This presence
of shear in higher dimensions can substantially complicate the process of solving the
field equations.

In the present paper we apply the higher-dimensional NP formalism to the
study of vacuum spacetimes admitting a non-twisting and (possibly) shearing multiple
WAND and thus belonging to Weyl types II, D, III or N [5, 6]. After introductory
remarks and necessary definitions, in Sec. 3 we study dependence of the metric of the
above mentioned classes of spacetimes on the affine parameter r along null geodesics
generated by the multiple WAND. It is also pointed out that in fact main results of this
section apply also to a special subclass I(a) of the type I. In appropriate coordinates,
the r-dependence of all components of the metric except of the component g00 turns
out to be at most quadratic in r. The component g00 is again quadratic in r for types
III and N and more complicated for types II and D. These two cases are thus studied
separately.

In Sec. 4 the r-dependence of g00 and of the Weyl tensor for types III and N is
determined. It is also shown that when expansion θ 6= 0 these spacetimes are singular.
In type N the second order curvature invariant I = Cabcd;rsCamcn;rsC

tmun;vwCtbud;vw

diverges in arbitrary dimension at a point which can be set to r = 0. Similarly, a first
order curvature invariant is used for type III expanding spacetimes.

In Sec. 5 we determine the r-dependence of g00 and of the Weyl tensor for types II
and D. Since the problem of solving corresponding differential equations in arbitrary
dimension seems to be too complex, we focus on a special case with all non-vanishing
eigenvalues of Sij being equal and ‘antisymmetric’ part of the Weyl tensor ΦA

ij being
zero. These assumptions are satisfied for example for all non-twisting Kerr-Schild
spacetimes [9], in particular for Schwarzschild-Tangherlini black holes or corresponding
black strings/branes. It also seems to be reasonable to expect that the Weyl tensor
in the case with distinct eigenvalues of Sij and ΦA

ij = 0 will have the same behaviour
in the leading order asymptotically thanks to (3.1).

It turns out that the r-dependence of g00 for Weyl types II and D is determined by
an integer m corresponding to the rank of the expansion matrix Sij . In the expanding
case, apart from a quadratic polynomial in r, g00 also contains a term proportional
to r1−m for m 6= 1 and ln r for m = 1. ‡ Using similar arguments as in [9] it can
be shown that in the expanding case the Kretschmann curvature invariant RabcdR

abcd

diverges for r = 0 and that it is regular there in the non-expanding case. We also
briefly discuss the shear-free case which occurs for m = 0 (Kundt spacetimes) and for
m = n − 2 (Robinson-Trautman spacetimes). In contrast with the four-dimensional
general relativity, in the m = n− 2 > 2 case, boost weight −1 and −2 components of
the Weyl tensor necessarily vanish and the spacetime is thus of type D in agreement
with [10].

In sec. 6, in order to provide an illustrative example of the use of the higher-

‡ Note that since we do not employ all field equations of the NP formalism, it may in fact turn out
that solutions corresponding to the case m = 1 do not exist. In four dimensions the case m = 1 is
forbidden by the Goldberg-Sachs theorem.
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dimensional NP formalism, we focus on solving the full set of the field equations
for type N. To considerably simplify resulting equations, we make several additional
assumptions on the metric and we arrive to an exact vacuum solution. However,
after a coordinate transformation it can be found that the resulting solution could be
obtained as a direct product of a four-dimensional type N Robinson-Trautman metric
with an extra dimension.

The higher-dimensional vacuum Ricci [8] and Bianchi [7] equations, extensively
used throughout this paper, are given in a parallelly propagated frame with a multiple
WAND in Appendix A and Appendix B, respectively.

2. Preliminaries

2.1. Algebraic classification of the Weyl tensor and Newman-Penrose formalism in
higher dimensions

For convenience, let us briefly summarize basic aspects of algebraic classification of
the Weyl tensor and the Newman-Penrose formalism in higher dimensions needed in
the following sections. More information can be found in original references [5, 6]
(classification) and [7, 8] (NP-formalism). Algebraic classification of the Weyl tensor
in higher dimensions was also reviewed in [11].

We introduce a null frame with two null vectors m(1) = m(0) = `, m(0) = m(1) =
n, and n− 2 orthonormal spacelike vectors m(i) = m(i) subject to

`a`a = nana = `am(i)
a = nam(i)

a = 0, `ana = 1, m(i)am(j)
a = δij . (2.1)

The metric reads

gab = 2`(anb) + δijm
(i)
a m

(j)
b . (2.2)

Indices a, b, . . . take values from 0 to n−1, while i, j, . . . from 2 to n−1. Note also that
since indices i, j, . . . are raised/lowered by δij there is no need to distinguish between
subscripts and superscripts of this type.

Lorentz transformations are generated by null rotations
ˆ̀= `, n̂ = n + zimi− 1

2z
2`, m̂(i) = m(i) − zi`, (2.3)

with z2 ≡ ziz
i, spins

ˆ̀= `, n̂ = n, m̂(i) = Xi
jm

(j), (2.4)

with Xi
j being orthogonal matrices and boosts

ˆ̀= λ`, n̂ = λ−1n, m̂(i) = m(i). (2.5)

If a quantity q transforms under a boost (2.5) as q̂ = λbq we say that q has a
boost weight b.

The Ricci rotation coefficients Lab, Nab and
i

Mab are defined by [7]

`a;b = Lcdm
(c)
a m

(d)
b , na;b = Ncdm

(c)
a m

(d)
b , m

(i)
a;b =

i

M cd m
(c)
a m

(d)
b (2.6)

and their transformation properties under (2.3)-(2.5) are given in [8]. These quantities
satisfy constraints

L0a = N1a = 0, (2.7)

N0a + L1a = 0,
i

M0a +Lia = 0,
i

M1a +Nia = 0,
i

M ja +
j

M ia= 0. (2.8)
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In four dimensions, Lab, Nab and
i

Mab are equivalent to standard complex NP spin
coefficients κ, σ, ρ, etc. (see [8] for the correspondence).

Covariant derivatives along the frame vectors are defined by

D ≡ `a∇a, 4 ≡ na∇a, δi ≡ m(i)a∇a. (2.9)

By introducing notation

T{pqrs} = 1
2 (T[ab][cd] + T[cd][ab]), (2.10)

we can decompose the Weyl tensor and sort its components by boost weight [6]

Cabcd =

2︷ ︸︸ ︷
4C0i0j n{am

(i)
b ncm

(j)
d }

+

1︷ ︸︸ ︷
8C010i n{a`bncm

(i)
d } + 4C0ijk n{am

(i)
b m

(j)
c m

(k)
d }

+4C0101 n{a`bnc` d } + 4C01ij n{a`bm
(i)
c m

(j)
d }

+8C0i1j n{am
(i)
b `cm

(j)
d } + Cijkl m

(i)
{am

(j)
b m

(k)
c m

(l)
d }

}0

+

−1︷ ︸︸ ︷
8C101i `{anb`cm

(i)
d } + 4C1ijk `{am

(i)
b m

(j)
c m

(k)
d }

+

−2︷ ︸︸ ︷
4C1i1j `{am

(i)
b `cm

(j)
d },

where boost weight of various components is indicated by integers (-2,. . . ,2). Note
that frame components of the Weyl tensor are subject to constraints [7] following
from symmetries of the Weyl tensor

C0[i|0|j] = 0,
C0i(jk) = C0ijk + C0kij + C0jki = 0,
Cijkl = C{ijkl}, Cijkl + Ciljk + Ciklj = 0, C01ij = 2C0[i|1|j],

C1i(jk) = C1ijk + C1kij + C1jki = 0,
C1[i|1|j] = 0 (2.11)

and from its tracelessness

C0i0i = C1i1i = 0,
C010i = C0jij , C101i = C1jij ,

2C0i1j = C01ij − Cikjk, C0101 = − 1
2Cijij . (2.12)

We obtain following numbers of independent Weyl tensor frame components of various
boost weights [7]

2,−2︷ ︸︸ ︷
2

(
n(n− 3)

2

)
+

1,−1︷ ︸︸ ︷
2

(
(n− 1)(n− 2)(n− 3)

3

)
+

0︷ ︸︸ ︷
(n− 2)2(n− 1)(n− 3)

12
+

(n− 2)(n− 3)
2

,

which is in agreement with number of independent components of the Weyl tensor
being (n+ 2)(n+ 1)n(n− 3)/12.

We define boost order of a tensor T to be boost weight of its leading term. It
turns out that boost order of a tensor depends only on vector `, being independent
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on the choice of n and m(i) [6]. Therefore, given a tensor T , preferred null directions
may exist for which boost order of T is less then for a generic choice of `. Algebraic
classification of tensors in higher dimensions [6] is based on existence (and multiplicity)
of these preferred null directions in a given spacetime. In case of the Weyl tensor,
we call them Weyl aligned null directions (WANDs) and spacetime is said to be of
principal type G (general) if there are no WANDs, and of principal type I, II, III and
N if there are WANDS of multiplicity 1, 2, 3, 4, respectively. Therefore in type I, II,
III and N spacetimes all Weyl tensor components with boost weight higher or equal
to 2, 1, 0, -1, respectively can be transformed away by an appropriate choice of the
frame vector `. In some cases one can also set trailing frame components to zero,
and this is the basis of the secondary classification. For instance in type D (principal
type II, secondary type ii), only boost weight zero components are non-vanishing in an
appropriately choosen frame. In four dimensions principal and secondary classification
reduce to the well known Petrov classification.

In agreement with [7] we introduce notation appropriate for type III and N
spacetimes

Ψi ≡ C101i, Ψijk ≡ 1
2C1kij , Ψij ≡ 1

2C1i1j , (2.13)

where from (2.11), (2.12) Ψi, Ψijk and Ψij satisfy

Ψi = 2Ψijj , Ψijk = −Ψjik, Ψijk + Ψkij + Ψjki = 0, Ψij = Ψji, Ψii = 0. (2.14)

Thus e.g. in type N spacetimes, the Weyl tensor is given by

Cabcd = 8Ψij `{am
(i)
b `cm

(j)
d } (2.15)

and is determined by n(n−3)
2 components of the symmetric traceless (n− 2)× (n− 2)

matrix Ψij .
For describing boost weight zero components of the Weyl tensor we will introduce

real matrix Φij as in [12]

Φij ≡ C0i1j . (2.16)

Then from (2.11), (2.12)

C01ij = 2C0[i|1|j] = 2ΦA
ij , C0(i|1|j) = ΦS

ij = − 1
2Cikjk, C0101 = − 1

2Cijij = Φ, (2.17)

with ΦS
ij , ΦA

ij , and Φ ≡ Φii being the symmetric and antisymmetric parts of Φij and
its trace, respectively. Boost weight zero components of the Weyl tensor are thus
determined by Φij and Cijkl.

2.2. Spacetimes admitting non-twisting WANDs

We consider an n-dimensional vacuum spacetime admitting a non-twisting null
congruence generated by a multiple WAND `. Thus ` is normal and tangent to null
hypersurfaces u =const (gabu,a u,b = 0, a, b = 0 . . . n− 1) and the WAND `a = gabu,b
is necessarily geodetic and affinely parameterized, `a;b `b = 0.

Similarly as in [1, 10], we choose a coordinate x0 ≡ u, a coordinate x1 ≡ r, where r
is an affine parameter along null geodesics generated by `, and ‘transverse’ coordinates
xα (α = 2 . . . n − 1) labeling the null geodesics on hypersurfaces u =const and being
constant along each geodesic. For the contravariant components of the metric tensor it
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follows that g01 = 1, g00 = 0 = g0α. Then the frame `, n, and m(i) = m(i) satisfying
(2.1) can be given as

`a = [0, 1, 0, . . . , 0], `a = [1, 0, . . . , 0], (2.18)
na = [1, U,Xα], na = [V, 1, Yα], (2.19)
ma

(i) = [0, ωi, ξ
α
i ], m(i)

a = [Ωi, 0, ηi
α]. (2.20)

Eqs. (2.1) implies

0 = U + V +XαYα, (2.21)
0 = ωi + ξα

i Yα, (2.22)
0 = Ωi + ηi

αX
α, (2.23)

δj
i = ξα

i η
j
α. (2.24)

By multiplying (2.24) by ηi
β we get δj

i η
i
β = ηj

β = (ηi
βξ

α
i )ηj

α which gives

δα
β = ξα

i η
i
β . (2.25)

Since ` is geodetic and affinely parameterized, Li0 = 0 = L10. Let us choose a

frame that is parallelly propagated, i.e. Ni0 = 0 =
i

M j0. For geodetic `, Lij can be
decomposed [7] (cf also [8]) into shear σij (trace-free symmetric part), expansion θ
(trace) and twist Aij (antisymmetric part) as

Lij = σij + θδij +Aij . (2.26)

We will also often denote symmetric part of Lij as expansion matrix Sij . Obviously
Sij = σij + θδij .

When acting on a function f , the operators (2.9) and their commutators [13] can
be expressed as

D = ∂r, 4 = ∂u + U∂r +Xα∂α, δi = ωi∂r + ξα
i ∂α (2.27)

and

(4D −D4)f = L11Df + Li1δif, (2.28)
(δiD −Dδi)f = L1iDf + Ljiδjf, (2.29)

(δi 4−4 δi)f = Ni1Df + (Li1 − L1i)4 f + (Nji−
i

M j1)δjf, (2.30)

(δiδj − δjδi)f = (Nij −Nji)Df + (Lij − Lji)4 f + (
j

Mki −
i

Mkj)δkf. (2.31)

Apart from Bianchi equations [7] and Ricci equations [8] we need relations between
metric components and the Ricci rotation coefficients. Such relations may be obtained
by applying the commutators (2.28)–(2.31) on coordinates u, r, xα. For f = u, (2.30)
and (2.31) imply

0 = Li1 − L1i, (2.32)
0 = Lij − Lji. (2.33)

For f = r, (2.28)–(2.31) lead to

−DU = L11 + Li1ωi, (2.34)
−Dωi = L1i + Ljiωj , (2.35)

δiU −4ωi = Ni1 + (Nji−
i

M j1)ωj , (2.36)

δiωj − δjωi = Nij −Nji + (
j

Mki −
i

Mkj)ωk, (2.37)
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and for f = xα, (2.28)–(2.31) give

−DXα = Lj1ξ
α
j , (2.38)

−Dξα
i = Ljiξ

α
j , (2.39)

δiX
α −4ξα

i = (Nji−
i

M j1)ξα
j , (2.40)

δiξ
α
j − δjξ

α
i = (

j

Mki −
i

Mkj)ξα
k . (2.41)

2.3. Indices

For convenience let us summarize types of the indices used throughout this paper.
Apart from indices a, b, . . . = 0, . . . , n−1, and i, j, . . . = 2, . . . , n−1 introduced in Sec.
2.1, we also introduce indices α, β = 2, . . . , n− 1 numbering spacelike coordinates and
corresponding components in Sec. 2.2.

In four dimensions, expansion matrix Sij is of rank 2 in the expanding case due to
Goldberg-Sachs theorem. However, in higher dimensions m ≤ n− 2, where m is rank
of Sij . In next sections we will often need to distinguish between indices corresponding
to non-vanishing (o, p, q, s = 2, . . . ,m+1) and vanishing (v, w, y, z = m+2, . . . , n−1)
eigenvalues of Sij .

In following calculations it also turns out to be practical to modify Einstein’s
summation convention for indices o, p, q, s: in an expression there is summation over
repeated indices if there are two indices without brackets among them (thus e.g. in
ηp0

α ηp0
β Xβ0(r + a(p))2 there is summation over p while in Φpqs(p) we do not sum over

p).

3. Radial integration for non-twisting vacuum Weyl type II, D, III, N
spacetimes

In the present paper we study r-dependence of the metric functions, the Ricci rotation
coefficients and the Weyl tensor, which, however, is in general different for various
algebraic types. In order to avoid repetition, in this section we focus on those metric
functions and Ricci rotation coefficients that have the same r-dependence for all
algebraic types studied. Note that in contrast with sec. 5, here we do not assume that
all non-vanishing eigenvalues of the expansion matrix Sij are equal.

Without loss of generality we choose the frame (2.18)–(2.20) in such a way that
Sij is diagonal, Sij =diag{s(2), . . . , s(m+1), 0, . . . , 0}, where m denotes number of
non-zero eigenvalues of Sij . As is shown in [14], this assumption is compatible with
the frame being parallelly transported. As mentioned in sec. 2.3, indices o, p, q, s
corresponding to non-vanishing eigenvalues of Sij run from 2 to m+ 1 and indices v,
w, y, z corresponding to vanishing eigenvalues of Sij run from m+ 2 . . . n− 1.

In our case, from Ricci eqs. (A.7) for non-vanishing eigenvalues of Sij , s(p) 6= 0,
it follows

s(p) =
1

r + a0
(p)

, (3.1)

where a0
(p) is an arbitrary function of u and xα, independent on r. Similarly,

throughout the paper, the superscript 0 will suggest that the function under
consideration does not depend on r.
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Ricci eqs. (A.2)=(A.5), DL1i = −L1is(i), lead to

L1p =
l01p

r + a0
(p)

, L1w = l01w. (3.2)

There is still freedom to perform a null rotation with fixed ` (2.3). To preserve
parallel propagation of the frame, zi is subject to

Dzi = 0. (3.3)

Choosing zp = −l01p, we can set L1p to zero by (see [8])

L̂1p = L1p + zjLji = 0. (3.4)

In what follows we omit the hat symbol. Note that parameters zw can be used to
further simplify the metric, e.g. one can set ω0

w to zero as in sec. 5.2.1 and sec. 6.

From Ricci eqs. (A.14), reduced to D
j

Mki= −
j

Mki s(i), (2.39) and (2.35), we
obtain

j

Mkp =
j
mkp

0

r + a0
(p)

,
j

Mkw =
j
mkw

0, (3.5)

ξα
p =

ξα0
p

r + a0
(p)

, ξα
w = ξα0

w , (3.6)

ωp =
ω0

p

r + a0
(p)

, ωw = −l01wr + ω0
w, (3.7)

respectively and from (2.38)

Xα = −l01wξ
α0
w r +Xα0. (3.8)

To compute the covariant components of the metric one has to solve (2.21)–(2.24)
for ηi

α, Yα, Ωp, V . From (2.21)–(2.24) using also (2.25) and (3.6)–(3.8), it follows

ηp
α = ηp0

α (r + a(p)), ηw
α = ηw0

α , (3.9)

Yα = − ηi
αωi = l01wη

w0
α r − (ηp0

α ω0
p + ηw0

α ω0
w), (3.10)

Ωp = − ηp
αX

α = −ηp0
α Xα0(r + a(p)), (3.11)

Ωw = − ηw
αX

α = l01wr − ηw0
α Xα0, (3.12)

V = − U + l01wl
0
1wr

2 − (ω0
w + ηw0

α Xα0)l01wr +Xα0(ηp0
α ω0

p + ηw0
α ω0

w). (3.13)

As will be discussed below, the r-dependence of the function U has to be studied
separately for types II, D and III, N.

The covariant components of the metric tensor (cf (2.2)) thus read

g11 = 0, g01 = 1, g1α = 0, (3.14)
g00 = 2V + ΩiΩi = 2V + ηp0

α Xα0ηp0
β Xβ0(r + a(p))2

+ (l01wr − ηw0
α Xα0)(l01wr − ηw0

β Xβ0), (3.15)

g0α = Yα + Ωjηj
α

= − ηp0
α ηp0

β Xβ0(r + a(p))2 + 2l01wη
w0
α r − (ηp0

α ω0
p + ηw0

α ω0
w + ηw0

α ηw0
β Xβ0)

= γ2
αr

2 + γ1
αr + γ0

α, (3.16)
gαβ = ηk

αη
k
β = ηp0

α ηp0
β (r + a(p))2 + ηw0

α ηw0
β = γ2

αβr
2 + γ1

αβr + γ0
αβ , (3.17)
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therefore the vacuum metric with a non-twisting multiple WAND has the form

ds2= g00du2+2dudr+2
(
γ2

αr
2 + γ1

αr + γ0
α

)
dudxα+

(
γ2

αβr
2 + γ1

αβr + γ0
αβ

)
dxαdxβ ,(3.18)

where functions γN
αβ and γN

α , N = 0, 1, 2, introduced in (3.16), (3.17) do not depend
on r.

Differentiating eq. (2.34) with respect to r and using (2.35), (3.13) and the Ricci
equation (A.1) for L11, we arrive to

C0101 = −V,rr. (3.19)

Consequently, for type III and N spacetimes (where C0101 has to vanish) V is linear
in r, while for type II and D spacetimes the r-dependence of V (and hence of U)
can be more complicated. Types II, D and III, N will be thus discussed separately
in the following sections. Note that for deriving the metric (3.18) only assumptions
C0i0j = C010i = 0 on the Weyl tensor are necessary and it was not necessary to
assume C0kij = 0. Therefore the metric (3.18) applies also to the special class of type
I spacetimes with C010i = 0 denoted by I(a) in [5]. As for the Ricci tensor, in fact up
to now we have assumed only R00 = R0i = 0.

Note that it was shown that for type III and N expanding vacuum spacetimes
m = 2 in arbitrary dimension and that s(2) = s(3) [7]. If all non-vanishing eigenvalues
of Sij are equal, i.e. from (3.1) s(p) = 1/(r + a0(u, xα)) for all p, one can perform
a coordinate transformation [10] that leaves unchanged null hypersurfaces u =const
and preserves the affine character of the parameter r

r̃ = r + a0(u, xα). (3.20)

Then from Ricci eqs. (A.11) (for i = k = q, j = p)

ω0
p = 0. (3.21)

In the following, for simplicity we omit the tilde symbol over r and over absolute
terms, such as ω0

w, Xα0, l011, U
0,

i
mj1

0, n0
i1.

4. Type III, N

In this section, vacuum type III and N spacetimes are considered and r-dependence of

the remaining metric component g00, the Ricci rotation coefficients L11, Nij , and
i

M j1

and the Weyl tensor is determined. These spacetimes are either non-expanding (Kundt
class) with m = 0 or expanding with m = 2 [7], where, in appropriate coordinates
s(2) = s(3) = 1/r, as mentioned above.

From Ricci eqs. (A.1) and (2.34) it follows

L11 = − l01wl
0
1wr + l011, (4.1)

U = l01wl
0
1wr

2 − (l011 + l01wω
0
w)r + U0. (4.2)

For future reference let us note that one can still perform a null rotation with
fixed ` (2.3) with zp = 0 for p = 2, 3, zw arbitrary and subject to (3.3)

L̂1p = 0, L̂1w = L1w, (4.3)
ω̂p = 0, ω̂w = −l01wr + ω0

w − zw = −l01wr + ω̂0
w, (4.4)

j

M̂ki =
j

Mki +2z[kLj]i, (4.5)

ξ̂α
i = ξα

i , (4.6)



Vacuum spacetimes with a non-twisting multiple WAND 10

L̂11= L11+ zi(L1i + Li1) + zizjLij = −l01wl
0
1wr + l011 + 2zwl

0
1w = −l01wl

0
1wr + l̂011 (4.7)

Û = l01wl
0
1wr

2 −
[
l011 + l01w(ω0

w + zw)
]
r + U0 + zwω

0
w − 1

2zwzw

= l01wl
0
1wr

2 − (l̂011 + l01wω̂
0
w)r + Û0. (4.8)

By choosing appropriate zw, w = 4, · · ·n − 1, one can simplify ωw, U or l11 (see sec.
5.2.1 and 6).

From Ricci eqs. (A.10), (A.13)

Nip =
n0

ip

r
, Niw = n0

iw, (4.9)

i

M j1= − i
mjw

0l01wr+
i
mj1

0. (4.10)

Let us conclude this section by writing down the metric for the Weyl types III,
N. From (3.13), using (4.2), we arrive at

V = (l011 − l01vη
v0
α Xα0)r − U0 +Xα0ηw0

α ω0
w. (4.11)

Substituting the metric component

g00 = 2V + ΩiΩi = (ηp0
α ηp0

β Xα0Xβ0 + l01wl
0
1w)r2 + 2r[l011 − 2l01vη

v0
α Xα0]− 2U0

+ 2Xα0ηw0
α ω0

w + ηw0
α ηw0

β Xα0Xβ0 = γ2r2 + γ1r + γ0, (4.12)

into (3.15), from (3.18) we find that vacuum type III or N metric with non-twisting
multiple WAND has the form

ds2=(γ2r2+γ1r+γ0)du2+2dudr+2(γ2
αr

2+γ1
αr+γ

0
α)dudxα+(γ2

αβr
2+γ0

αβ)dxαdxβ ,(4.13)

where the functions γN , γN
α and γN

αβ, N = 0, 1, 2, are introduced in (4.12), (3.16) and
(3.17), respectively.

In fact to derive the metric (4.13) only the following assumptions on the Ricci
tensor have been made: R00 = R0i = 2R01 −R/(n− 1) = 0.

Note that in the non-expanding case, i.e. form = 0, γ2
α and γ2

αβ vanish (see (3.16),
(3.17)) and the metric (4.13) is compatible with higher-dimensional Kundt metrics
given in [15, 16]. In the expanding case, i.e. m = 2, the metric (4.13) is compatible
with four-dimensional vacuum type III and N Robinson-Trautman solutions (see e.g.
[2]) and with direct products of these metrics with a flat space.

In the following sections we study r-dependence of the Weyl tensor separately for
types N and III.

4.1. The Weyl tensor for type N

In this section r-dependence of the remaining quantities entering the Ricci and
Bianchi equations is derived for vacuum type N spacetimes. In an appropriately
chosen frame there are only Weyl components of boost weight −2, Ψij ≡ 1

2C1i1j .
As was shown in [7], Ψij can be diagonalized together with Sij and admits a form
Ψij =diag.{p, −p, 0, · · · 0}. Similarly as in [14], it can be shown that the condition
of both Ψij and Sij being diagonal is compatible with the frame being parallelly
propagated.

Eqs. (A.6) and (B.4) lead to

Ni1 = −(n0
iwl

0
1w)r + n0

i1, (4.14)

p = p0

r . (4.15)
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As was shown in [13] the curvature invariant

IN ≡ Ca1b1a2b2;c1c2Ca1d1a2d2;c1c2C
e1d1e2d2;f1f2Ce1b1e2b2;f1f2 (4.16)

reduces for non-twisting type N vacuum spacetimes to

IN = 36(n− 2)8θ8(ΨijΨij)2. (4.17)

IN clearly diverges at r = 0 in the expanding case and therefore a curvature singularity
is located there. The non-expanding (Kundt) case belongs to VSI spacetimes [13], i.e.
spacetimes with vanishing curvature invariants of all orders, and therefore curvature
invariants cannot be used for locating possible singularities.

4.2. The Weyl tensor for type III

Now let us examine r-dependence of the Weyl tensor for type III vacuum spacetimes.
In an appropriately chosen frame, there are only Weyl tensor components of boost
weight −1 and −2, i.e. Ψi, Ψijk and Ψij , respectively (see (2.13), (2.14)).

Bianchi eqs. (B.1), (B.9), and (B.4) read (note that in our case (B.6) is equivalent
to (B.9))

DΨi = −2ΨeLei = −2Ψis(i), (4.18)
DΨjki = ΨkeiLej −ΨjeiLek = −Ψjki(s(j) + s(k)), (4.19)

2DΨij − δjΨi = 2ΨjeiLe1 − 2ΨieLej + Ψe

e

M ij . (4.20)

Equations (4.18), (4.19) imply

Ψp =
Ψ0

p

r2
, Ψw = Ψ0

w, (4.21)

Ψwvi = Ψ0
wvi, Ψpwi =

Ψ0
pwi

r
, Ψpri =

Ψ0
pri

r2
. (4.22)

From (4.21), (4.22) and (2.14) it follows

Ψprw = Ψwvp = 0, Ψwrp = Ψwpr, Ψpvw = Ψpwv, Ψpww = 0 = Ψwpp. (4.23)

Note that some of the Bianchi identities reduce to algebraical equations, studied
in detail in [7]. Here we use results of [7] to simplify the Weyl tensor (4.21), (4.22).
Namely, eqs. (54) in [7] for (i = w, j = v, k = p) lead to

Ψpwv = 0 (4.24)

and for i, j, k = v, w, z in the expanding case θ 6= 0 eqs. (58) in [7] give

Ψvwz = 0 ⇒ Ψw = 0. (4.25)

To summarize: non-vanishing boost weight −1 Weyl tensor components for θ 6= 0
are (cf (C.20) in [7])

Ψ2 = 2Ψ233 = Ψ0
2

r2 , Ψ3 = 2Ψ322 = Ψ0
3

r2 ,

Ψw22 = −Ψw33 = Ψ0
w22
r , Ψw23 = Ψw32 = Ψ0

w23
r ,

while for the non-expanding case Ψw = Ψ0
w and Ψwvz = Ψ0

wvz.
From eqs. (4.20) in the non-expanding case θ = 0 the boost weight−2 components

of the Weyl tensor are

Ψwv = r
2

(
ξα0
v Ψ0

w,α + 2Ψ0
vzwl

0
1z + Ψ0

z

z
mwv

0
)

+ Ψ0
wv, (4.26)
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while in the expanding case with (4.25)

Ψwv = Ψ0
wv − 1

2r Ψ0
p

p
mwv

0, (4.27)

Ψwp = 1
r Ψ0

wp − 1
2r2 Ψ0

q

q
mwp

0

= Ψpw = Ψ0
pw − 1

2r (2l01wΨ0
p + ξα0

w Ψ0
p,α + Ψ0

q

q
mpw

0) + 1
2r2ω

0
wΨ0

p,(4.28)

Ψpq = −Ψ0
wqpl

0
1w + Ψ0

pq

r − 1
2r2 (Ψ0

o

o
mpq

0 + ξα0
q Ψ0

p,α). (4.29)
Considering Ψij = Ψji, we get

Ψ0
wv = Ψ0

vw, Ψ0
pw = 0, Ψ0

pq = Ψ0
qp, (4.30)

Ψ0
wp = − 1

2 (2l01wΨ0
p + ξα0

w Ψ0
p,α + Ψ0

q

q
mpw

0), (4.31)

Ψ0
p

p
mwv

0 = Ψ0
p

p
mvw

0, (4.32)

Ψ0
q

q
mwp

0 = −ω0
wΨ0

p, (4.33)

Ψ0
o

o
mpq

0 + ξα0
q Ψ0

p,α = Ψ0
o

o
mqp

0 + ξα0
p Ψ0

q,α. (4.34)
From (A.6) one can also determine the remaining Ricci rotation coefficients

Nw1 = (−n0
wvl

0
1v + Ψ0

wδm0)r + n0
w1, Np1 = −n0

pvl
0
1vr + n0

p1 −
Ψ0

p

r . (4.35)
As was shown in [13], the curvature invariant

IIII = Ca1b1a2b2;e1Ca1c1a2c2;e1C
d1c1d2c2;e2Cd1b1d2b2;e2 (4.36)

can be expressed as (74,[13])S
IIII = 64S4

[
9ψ4 + 27ψ2(OPP +OPF ) + 28(OPP +OPF )2

]
(4.37)

= 4(n− 2)4θ4
[
9ψ4 + 27ψ2(Ψw22

2 + Ψw23
2) + 28(Ψw22

2 + Ψw23
2)2

]
, (4.38)

where ψ2 = ΨiΨi. Note that all terms entering (4.38) are non-negative and thus
singularity in one of these terms implies that the curvature invariant IIII is singular.
For non-vanishing expansion this is always the case for r = 0 and thus a curvature
singularity is located there. For type III Kundt spacetimes, the invariant IIII (and in
fact all curvature invariants of all orders) identically vanishes [13].

5. Type D and II

5.1. Type D

In an adapted frame, type D Weyl tensor has only boost weight zero components
determined by Φij and Cijkl, see (2.16), (2.17).

For vacuum type D spacetimes with a parallelly propagated frame and with the
matrix Sij set to a diagonal form, Bianchi eqs. (B.3), (B.5) and (B.12) can be rewritten
using (2.16), (2.17), cf also eqs. (24), (25) in [12]

2DΦA
ij = − 3ΦA

ij(s(i) + s(j))− ΦS
ij(s(j) − s(i)), (5.1)

2DΦS
ij = 3ΦA

ij(s(i) − s(j))− ΦS
ij(s(j) + s(i))− 2Φs(i)δij , (5.2)

DCijkm = − Φkjs(i)δim − Φmis(j)δjk + Φkis(j)δjm

+ Φmjs(i)δik − Cijkm(s(m) + s(k)). (5.3)

S Eq. (4.37) is expressed using notation of [13], while in (4.38) it is rewritten in terms of the quantities
introduced in the present paper. Note also there is a misprint in eq. (74) in [13]. It was obtained
in Maple using definition ψ = ΨiΨi, while standard definition, used also in [13] and in the present
paper, is ψ2 = ΨiΨi. Therefore ψ in eq. (74) from [13] has to be replaced by ψ2.
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Eqs. (5.1) imply ΦA
wv = ΦA0

wv. For simplicity let us assume ΦA
ij = 0 and in what

follows we thus identify Φij with ΦS
ij . Note that for Kerr-Schild spacetimes Aij = 0

⇒ ΦA
ij = 0 [9], however, this implication need not hold for general spacetimes. Then

eqs. (5.1) yield

Φpw = 0, (5.4)
Φpq(s(q) − s(p)) = 0, (5.5)

thus Φpq = 0 for s(q) 6= s(p).
From eqs. (5.2), (5.5), for p 6= q and s(q) = s(p)

2DΦwv = 0 ⇒ Φwv = Φ0
wv, (5.6)

2DΦpq = − Φpq(s(p) + s(q)) = −2Φpqs(p)

⇒ Φpq =
Φ0

pq

r + a0
(p)

for p 6= q, s(q) = s(p). (5.7)

Trace of eqs. (5.2) together with (5.6) leads to

DΦ = DΦpp = −ΦSii − Φiis(i) = −(Φpp + Φ0
ww)Sii − Φpps(p), (5.8)

while diagonal terms of (5.2) read

DΦ(p)(p) = − (Φpp + Φ0
ww + Φ(p)(p))s(p). (5.9)

From now on we assume that s(p) = 1/r for all p ‖. Then eq. (5.8) reduces to

DΦ = DΦpp = −
(
Φpp + Φ0

ww

) m
r
− Φpp

1
r

⇒ Φpp =
Φ0

rm+1
− mΦ0

ww

m+ 1
(5.10)

and thus

Φ =
Φ0

rm+1
+

Φ0
ww

m+ 1
. (5.11)

Then eqs. (5.9) imply

DΦ(p)(p) = −
(

Φ0

rm+1
+

Φ0
ww

m+ 1
+ Φ(p)(p)

)
s(p)

⇒ Φ(p)(p) =
Φ0

mrm+1
+

Φ0
(p)(p)

r
− Φ0

ww

m+ 1
. (5.12)

Comparing (5.12) with (5.10) yields

Φ0
pp = 0. (5.13)

Now we can combine (5.12) with (5.7) in

Φpq =
Φ0

pq

r
+ δpq

(
Φ0

mrm+1
− Φ0

ww

m+ 1

)
. (5.14)

‖ In fact under this assumption from eqs. (5.1) ΦA
pq = ΦA0

pq /r
3, however, in what follows we still

assume ΦA
ij = 0.
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From eqs. (5.3) for various combinations of indices we get

Cijwv = C0
ijwv, (5.15)

Cijwq =
C0

ijwq

r
, i, j 6= q, (5.16)

Cp(q)w(q) =
C0

p(q)w(q)

r
, (5.17)

Cv(q)w(q) =
C0

v(q)w(q)

r
+ Φ0

wv, (5.18)

Cwvpq =
C0

wvpq

r2
, (5.19)

Cwopq =
C0

wopq

r2
, (5.20)

Csopq = − 2(δspδoq − δopδsq)
(

Φ0Fm(r)
r2

+
Φ0

ww

2(m+ 1)

)
+
C0

sopq

r2
+

1
r
(Φ0

psδoq + Φ0
qoδsp − Φ0

poδsq − Φ0
qsδop), (5.21)

where

Fm(r) = − ln r for m = 1, Fm(r) =
1

m(m− 1)rm−1
for m 6= 1. (5.22)

Note that some of the equations (5.15)–(5.21) are not compatible with symmetries of
the Weyl tensor unless corresponding components vanish, thus

Cwpvz = Cvzwp = 0, (5.23)
Cwvpq = Cpqwv = 0, (5.24)
Cwopq = Cpqwo = 0 (5.25)

and from eqs. (2.11) and (5.24)

C0
vpwq = C0

vqwp. (5.26)

Let us point out that for expanding type D (and in general not for type II)
spacetimes, Bianchi eqs. (B.6), with Φ0 6= 0, lead to

l01w = 0. (5.27)

However, we will not use this relation further in this section in order to obtain
expressions valid also for type II.

Using the identity Φij = − 1
2Cikjk (2.12) for the Weyl tensor we arrive to

C0
vpwp = 0, (5.28)

C0
wzvz = − (m+ 2)Φ0

wv, (5.29)
C0

poqo = 0 for m 6= 1, (5.30)

Φ0 = 0 for m = 1, (5.31)
C0

wpwq = −mΦ0
pq. (5.32)

Note that when m = n − 2 (i.e. there are no ‘w-type’ indices), then C0
pwqw = 0 and

thus from (5.32) Φ0
pq = 0.
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To summarize: non-vanishing boost weight zero components of the Weyl tensor
for type D (and II, see sec. 5.2) vacuum spacetimes with non-twisting multiple WAND
under assumption ΦA

ij = 0 are Φwv and Φpq given in (5.6), (5.14), respectively,

Cvwyz = C0
vwyz, (5.33)

Cvpwq =
C0

vpwq

r
+ Φ0

wvδpq, (5.34)

and Csopq given in (5.21) with (5.22), subject to (5.13), (5.26), (5.28)–(5.32).
From Ricci eqs. (A.1) and (2.34) with (5.11)

L11 = −
(
l01wl

0
1w + 1

m+1Φ0
ww

)
r +

Φ0

mrm
+ l011, (5.35)

U =
(
l01wl

0
1w + 1

2(m+1)Φ
0
ww

)
r2 − (l011 + l01wω

0
w)r + Φ0Fm(r) + U0 (5.36)

and from (3.13)

V = − 1
2(m+1)Φ

0
wwr

2 + r(l011 − l01wη
w0
α Xα0)− Φ0Fm(r)− U0 +Xα0ηw0

α ω0
w. (5.37)

Then the metric component g00 (3.15) read

g00 = (− 1
(m+1)Φ

0
ww + ηp0

α Xα0ηp0
β Xβ0 + l01wl

0
1w)r2 + 2r(l011 − 2l01wη

w0
α Xα0)

− 2Φ0Fm(r)− 2U0 + 2Xα0ηw0
α ω0

w + ηw0
α Xα0ηw0

β Xβ0

=
(
γ2 − 1

(m+1)Φ
0
ww

)
r2 + γ1r + γ0 − 2Φ0Fm(r), (5.38)

where γN , N = 0, 1, 2 are defined in (4.12). The metric for type D vacuum spacetimes
with a non-twisting multiple WAND then has the form (3.18) with (5.38), (3.16),
(3.17) with a0

(p) = 0 and l01w = 0. Note that (5.38) is valid for type II spacetimes as
well (see sec. 5.2).

Let us now examine the Kretschmann scalar in vacuum

RabcdR
abcd = 4R2

0101 +RijklRijkl + 8R0j1iR0i1j − 4R01ijR01ij

= 4Φ2 + CijklCijkl + 8ΦS
ijΦ

S
ij − 24ΦA

ijΦ
A
ij. (5.39)

As was pointed out in [9], under the assumption ΦA
ij = 0, it reduces to a sum of

squares. Thus if any term Φ0, Φpq
0, C0

vpwq or C0
nopq is non-zero, then there is a scalar

curvature singularity at r = 0.
Note also that for asymptotically flat spacetimes the Kretschmann scalar vanishes

for r → ∞ and thus in this case

Φ0
wv = 0 = C0

wvyz. (5.40)

5.2. Type II

Apart from boost weight zero components of the Weyl tensor, in type II spacetimes
boost weight −1 components, Ψi, Ψijk, and boost weight −2 components, Ψij , also
appear (see (2.13), (2.14)). However, these negative boost weight components do not
enter Bianchi equations (5.1)–(5.3) and thus assuming again s(p) = 1/r for all p and
ΦA

ij = 0 all results obtained in sec. 5.1 for type D spacetimes except of (5.27) are valid
for type II spacetimes as well.
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In order to determine r-dependence of negative boost weight components of the
Weyl tensor, we analyze Bianchi equations (B.1), (B.6), (B.9) and (B.4), which can
be rewritten as

DΨi − δiΦ = −2Ψis(i) − ΦLi1 − ΦS
ikLk1, (5.41)

−2DΨijk = 2Ψijks(k) + 2Ψ[iδj]ks(k) + 2ΦS
k[iLj]1 − CklijLl1, (5.42)

2DΨjki + 2δ[kΦS
j]i = 2Ψkjis(j) − 2Ψjkis(k) + 2ΦS

[k|l
l

M i|j] −2ΦS
li

l

M [jk], (5.43)

2DΨij −∆ΦS
ij − δjΨi = −2Ψijs(j) + 2ΨjliLl1 + Ψl

l

M ij +ΦNij

+ ΦS
liNlj + ΦS

jl

l

M i1 +ΦS
li

l

M j1 . (5.44)

Using previous results, from (5.41)

Ψw = r
[

1
m+1 (ξα0

w Φ0
vv,α−l01wΦ0

vv)− Φ0
wvl

0
1v

]
+ Ψ0

w

− (l01wΦ0m+ ξα0
w Φ0,α ) 1

mrm + 1
rm+1ω

0
wΦ0, (5.45)

Ψp = 1
2(m+1)ξ

α0
p Φ0

ww,α + 1
r2 Ψ0

p − ξα0
p Φ0,α

mFm(r)
r2 (5.46)

and from (5.42)

Ψpqw = Ψ0
pqw, (5.47)

Ψvpw = Ψ0
vpw, (5.48)

Ψvzw = 1
2 (Φ0

wzl
0
1v − Φ0

wvl
0
1z + C0

wyvzl
0
1y)r + Ψ0

vzw, (5.49)

Ψvwp = 1
r Ψ0

vwp, (5.50)

Ψwpq = − r
4(m+1)ξ

α0
w Φ0

vv,α δpq + 1
2 (Φ0

pql
0
1w + C0

qzwpl
0
1z −Ψ0

wδpq) + 1
r Ψ0

wpq

− δpq

2 [l01wΦ0(m+ 1) + ξα0
w Φ0,α ]Fm(r)

r + δpq

2mrm+1ω
0
wΦ0, (5.51)

Ψoqp = 1
4(m+1)Φ

0
ww,α (δopξ

α0
q − δpqξ

α0
o ) + Ψ0

oqp
1
r + 1

2r2 (δpqΨ0
o − δpoΨ0

q)

+ Φ0,α
Fm(r)
2r2 (δpoξ

α0
q − δpqξ

α0
o ). (5.52)

The Weyl components Ψi and Ψijk as given in (5.45)–(5.52) are subject to (2.14) and
therefore

Ψ0
wvp = 0, Ψ0

pqw = 0, Ψ0
pwv = Ψ0

pvw, Ψ0
wpq = Ψ0

wqp, (5.53)

0 = Ψ0
vwz + Ψ0

zvw + Ψ0
wzv, (5.54)

0 = Ψ0
pqo + Ψ0

opq + Ψ0
qop, (5.55)

C0
vywvl

0
1y = m+2

2(m+1)ξ
α0
w Φ0

zz,α− m+2
(m+1) l

0
1wΦ0

zz, (5.56)

2Ψ0
wzz = l01zC

0
zpwp + Ψ0

w(m+ 1), (5.57)

Ψ0
wpp = 1

2 l
0
1wΦ0 and 2l01wΦ0 + ξα0

w Φ0,α = 0 for m = 1,(5.58)

Ψ0
wpp = 0 and 2ml01wΦ0 + ξα0

w Φ0,α = 0 for m > 1, (5.59)

Ψ0
pww = m

4(m+1)ξ
α0
p Φ0

ww,α , (5.60)

Ψ0
pqq = 0, (5.61)

Ψ0
p = 0 and ξα0

p Φ0,α = 0 for m = 1, (5.62)

Ψ0
p(m− 2)= 0 and (m− 2)ξα0

p Φ0,α = 0 for m > 1. (5.63)



Vacuum spacetimes with a non-twisting multiple WAND 17

In order to determine r-dependence of Ψij from eqs. (5.44), first we need to find
i

M j1 and Nij . Note that for ΦA
ij = 0, the Ricci eqs. (A.13) reduce to those of the Weyl

type III with solution given in (4.10). From Ricci eqs. (A.10),

Npw = n0
pw, Nvw = −Φ0

wvr + n0
vw, Nwp = n0

wp

r , (5.64)

Npq = − Φ0
pq + n0

pq

r + δpq

[
r

Φ0
ww

2(m+1) + Φ0 Fm(r)
r

]
. (5.65)

Now r-dependence of Ψij can be determined from eqs. (5.44)

Ψvw = r2ΨA
vw + rΨB

vw + ΨC
vw −

p
mvw

0Ψ0
p

2r −
p
mvw

0ξα0
p Φ0,α

ln r+1
2r δ1m

+mFm(r)ΨD
vw + 1

rm ΨE
vw + 1

rm+1 ΨF
vw, (5.66)

Ψpw = r2ΨA
pw + rΨB

pw + ΨC
pw ln r + ΨD

pw + ln r
r δ1mΨE

pw + 1
r ΨF

pw

+ ln r
r2 δ1mΨG

pw + 1
r2 ΨH

pw + 1
rm−1 ΨI

pw + 1
rm ΨJ

pw + 1
rm+1 ΨK

pw, (5.67)

Ψpq = r2ΨA
pqδpq + rΨB

pq + ln rδ1mΨC
pq + ΨD

pq + ln r
r ΨE

pq + ΨF
pw

1
r + ln r

r2 δ1mΨG
pq

− 1
r2 ΨH

pq + 1
rm−1 ΨI

pq + 1
rm ΨJ

pq + 1
rm+1 ΨK

pq, (5.68)

where ΨA
ij , ΨB

ij , . . . ΨK
ij do not depend on r. Since in this paper we are mainly

interested in the r-dependence of the metric and the Weyl tensor we do not give here
quite complicated explicit expressions for ΨA

ij , ΨB
ij , . . . ΨK

ij .

5.2.1. The case with L1i = 0 When (5.27) is satisfied (for type D and special cases of
other Weyl types considered here) then ωw can be transformed away by null rotation
with fixed ` (2.3) with zw = ω0

w (4.4) and thus (assuming all s(p) are same) ωi = 0 for
all i. Since now g1α = Xα0, we introduce x̃α = x̃α(xβ , u) as in [10], leaving unchanged
null hypersurfaces u =const and preserving the affine character of the parameter r, to
set g̃1α = 0, i.e. (omitting the tilde symbol)

Xα0 = 0. (5.69)

Then from (3.10)–(3.13) and (5.37) we get

V = −U = − 1
2(m+1)Φ

0
wwr

2 + rl011 − Φ0Fm(r)− U0, Ω(i) = 0, Yα = 0. (5.70)

Eqs. (3.14)–(3.17) now reduce to

g11 = 0, g01 = 1, g1α = 0, g00 = 2V, g0α = 0, (5.71)
gαβ = ηk

αη
k
β = ηp0

α ηp0
β r2 + ηw0

α ηw0
β = γ2

αβr
2 + γ0

αβ , (5.72)

and thus the metric of vacuum spacetimes with a non-twisting multiple WAND (i.e.
types II, D, III or N) with L1i = 0 can be set into the form

ds2 = 2V du2 + 2dudr +
(
γ2

αβr
2 + γ0

αβ

)
dxαdxβ , (5.73)

where functions γN
αβ, N = 0, 2, introduced in (5.72) do not depend on r and V is given

in (5.70).

5.2.2. Shearfree case Let us now briefly discuss the shear-free case which occurs for
m = 0 (Kundt spacetimes) and for m = n− 2 (Robinson-Trautman spacetimes [10]).

Kundt spacetimes in vacuum are necessarily of type II or more special [8] and
they thus form m = 0 subclass of spacetimes studied in the present paper. Note that
in contrast with the expanding case, the components of the metric (3.18), including
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g00, are at most quadratic polynomials in r. Similarly as in four dimensions boost
weight 0, -1 and -2 components of the Weyl tensor are independent on r, linear and
quadratic in r, respectively.

In the m = n − 2 case in four dimensions, eqs. (5.63) are identically satisfied
and consequently the corresponding class of Robinson-Trautman spacetimes is very
rich and includes e.g. radiative type N and III spacetimes as well as type D C-
metric describing uniformly accelerated black holes emitting gravitational radiation.
However, in higher dimensions eqs. (5.63) imply Ψ0

p = 0 and using (2.25) Φ0,α = 0.
From (5.32) Φ0

pq = 0 and then from (A.12) or (5.43) we get Ψ0
oqp = 0. Therefore all

components of the Weyl tensor with boost weight −1 vanish. Similarly it can be shown
that boost weight −2 components of the Weyl tensor vanish as well. Thus in higher
dimensions vacuum shear-free spacetimes admitting non-twisting multiple WAND are
necessarily of type D in agreement with [10]. The Weyl tensor is now given by

Φpq = δpq
Φ0

(n− 2)rn−1
, Csopq = −2(δspδoq − δopδsq)Φ0F(n−2)(r)

r2
+
C0

sopq

r2
. (5.74)

Note that in four dimensions eq. (5.30) implies C0
sopq = 0, while in higher dimensions

this term, corresponding essentially to the curvature of the spatial part of the metric
γ2

αβ [10], in general does not vanish. Therefore the r-dependence of the Weyl tensor
and thus also the asymptotic behaviour of gravitational field in higher dimensions is
more complex than in four dimensions¶. This is, however, beyond the scope of the
present paper and will be studied elsewhere.

6. Construction of an explicit expanding type N solution in five
dimensions with l014 = 0

Apart from usual motivation coming from higher-dimensional general relativity, there
is an additional reason for studying type N vacuum spacetimes. For these spacetimes
all curvature invariants involving metric, the Riemann tensor and its first covariant
derivatives vanish. Such solutions thus belong to VSI1 class of spacetimes [17], which
are solutions of various field theories to all orders with a specific effective action
containing only certain higher order correction terms (see [17]).

Let us explicitly mention the Einstein-Gauss-Bonnet equations

Rab − 1
2Rgab = α

(
1
2LGBgab − 2RRab + 4RacR

c
b + 4RacbdR

cd − 2RacdeR
cde

b

)
, (6.1)

where LGB = R2−4RabR
ab+RabcdR

abcd and α is the Gauss-Bonnet coupling constant.
It can be seen directly that vacuum type N solutions to the Einstein equations solve
vacuum Einstein-Gauss-Bonnet equations (6.1) as well since for these spacetimes
RacdeR

cde
b = 0 = RabcdR

abcd.
In this section, we attempt to derive an expanding non-twisting type N vacuum

solution and we limit ourselves to a five-dimensional case with an additional
assumption l014 = 0. Since resulting metrics we have obtained so far can be obtained
by taking a direct product of four-dimensional type N vacuum metrics with an
extra dimension, the main purpose of this section is thus to illustrate use of the
higher-dimensional NP formalism for constructing exact vacuum solutions. Note that
corresponding Bianchi and Ricci equations are quite complex and thus at several
points of the calculation we make various assumptions in order to simplify them.

¶ Note that in boost weight zero Weyl components in the m < n − 2 case terms proportional to r0

and r−1 also appear.
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This, however, obviously comes with the price of possibly reducing the resulting class
of solutions.

For explicit calculations it turns out to be more convenient to relax the assumption
of diagonal Ψij from sec. 4.1 and so now there are two independent components of
the Weyl tensor Ψ33 = −Ψ22, Ψ32 = Ψ23 with the rest of the components vanishing.
Therefore we cannot use the form of the Weyl tensor obtained in (4.15) and instead
from the Bianchi eqs. (B.4)

Ψ22 = −Ψ33 =
p0

r
, Ψ23 = Ψ32 =

Π0

r
, Ψpw = 0 = Ψwv. (6.2)

Assuming l014 = 0, NP equations simplify considerably and are given in Appendix
C. In fact the following quantities vanish

2
m43

0 =
3
m42

0 =
2
m44

0 =
3
m44

0 = 0, (6.3)

n0
24 = n0

34 =
2
m41

0 =
3
m41

0 = n0
23 = n0

32 = ω0
2 = ω0

3 = 0. (6.4)

Similarly as in sec. 5.2.1 we transform away ω0
4 . However, here we do not

transform away the functions Xα0. Then from eqs. (C.9)

ω0
4 =

4
m22

0 =
4
m33

0 = 0, (6.5)

and from (C.30)–(C.32) and (C.36)

n0
42 = n0

43 = n0
44 = n0

41 = 0. (6.6)

From (C.4) we get U0 = n0
22 = n0

33 and then eqs. (C.45)–(C.47) (now identical with
(C.15)–(C.17)) imply

U0 = n0
22 = U0(u). (6.7)

Let us assume U0 = n0
22 =const.

Apart from l014 = 0 we make the following simplifying assumptions
2
m34

0 = 0, (6.8)
ξ33 = − ξ22 6= 0, ξ44 6= 0, all other ξα

k = 0. (6.9)

Note that
2
m34

0 always vanishes for diagonal Ψij , see (C.51).
Under the assumptions (6.9) from (C.38), (C.39) (C.14), (C.23), (C.26), (C.27),

(C.28), (C.35), (C.42), (C.50), (C.51) we obtain that ξ202 = −ξ303 , l011, n
0
21, n

0
31,

3
m22

0,
2
m33

0,
2
m31

0, X20, X30, p0, Π0 do not depend on x3 = z. From (C.38)–(C.41) it also
follows that ξ404 = ξ404 (u, z), X40 = X40(u, z) are functions of u, z only.

Eqs. (C.37), (C.29) can be rewritten using (6.9)

ξ202 ,3 =
3
m22

0, (6.10)

ξ202 ,2 = − 2
m33

0, (6.11)
ξ202 (ξ202 ,22 +ξ202 ,33 )− (ξ202 ,2 )2 − (ξ202 ,3 )2 = 2n0

22. (6.12)

Assuming ξ202 to have a form of a polynomial in x2 = x and x3 = y, after an appropriate
translation in x, y, we arrive at

ξ202 =A0P (x, y), P (x, y)=(1+ ex2 + ey2),
2
m33

0 = −2A0ex,
3
m22

0 = 2A0ey, (6.13)
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where we set A0 = 1/
√

2 and e = n22 is assumed to be independent on u. From (C.40)
and (C.41) it follows

X20,2 = X30,3 , X30,2 = −X20,3 , (6.14)

with the integrability condition X20,22 +X20,33 = 0 and from (C.40)

l011 = −2e(xX20 + yX30)
P (x, y)

+X20,x . (6.15)

Then (C.12), (C.13) determine n0
21, n

0
31

n21 = −
√

2
2 P (x, y)X20,xx +

√
2e(X20 + xX20,x−yX20,y )− 2

√
2exxX20+yX30

P (x,y) , (6.16)

n31 =
√

2
2 P (x, y)X20,xy −

√
2e(X30 + xX20,y +yX20,x ) + 2

√
2ey xX20+yX30

P (x,y) . (6.17)

From eq. (C.21) or (C.25) and from (C.22) or (C.24) we get

p0 = − 1
2X

20,xxx P (x, y)2, (6.18)

Π0 = 1
2X

20,xxy P (x, y)2. (6.19)

Eqs. (3.10)–(3.13) lead to V = −U , Yj = 0, Ωi = −η(i)
(i)X

(i)0 = −X(i)/ξ
(i)
(i) . The

contravariant frame vectors now read

`a = [0, 1, 0, 0, 0], (6.20)

na =
[
1,−

(
− 2e(xX20+yX30)

P (x,y) +X20,x

)
r + e,X20, X30, X40

]
, (6.21)

ma
(2) = A0P (x, y) 1

r [0, 0, 1, 0, 0], (6.22)

ma
(3) = −A0P (x, y) 1

r [0, 0, 0, 1, 0], (6.23)

ma
(4) = ξ404 [0, 0, 0, 0, 1]; (6.24)

and the covariant frame vectors are

`a = [1, 0, 0, 0, 0], (6.25)

na =
[(
− 2e(xX20+yX30)

P (x,y) +X20,x

)
r − e, 1, 0, 0, 0

]
, (6.26)

m(2)
a = r

A0P (x,y) [−X
20, 0, 1, 0, 0], (6.27)

m(3)
a = − r

A0P (x,y) [−X
30, 0, 0, 1, 0], (6.28)

m(4)
a =

[
−X40

ξ40
4
, 0, 0, 0, 1

ξ40
4

]
, (6.29)

where ξ404 , X40 are subject to (C.42), i.e.

−ξ404 ,u−X40ξ404 ,4 +ξ404 X40,4 = 0. (6.30)

The metric thus reads

ds2 =
[
2l011r − 2e+

(
r

ξ20
2

)2(
(X20)2+(X30)2

)
+

(
X40

ξ40
4

)2
]

du2+2dudr

−2du
[(

r
ξ20
2

)2

(X20dx+X30dy)+
(

1
ξ40
4

)2

X40dz
]
+

(
r

ξ20
2

)2

(dx2+dy2)+
(

1
ξ40
4

)2

dz2. (6.31)

Introducing z̃ =
∫

1/ξ404 dz and using (6.30) the metric (6.31) reduces to

ds2 =
[
2l011r − 2e+

(
r

ξ20
2

)2 (
(X20)2 + (X30)2

)]
du2 + 2dudr

− 2du
(

r
ξ20
2

)2

(X20dx+X30dy) +
(

r
ξ20
2

)2

(dx2 + dy2) + dz̃2, (6.32)
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where

dz̃ = 1
ξ40
4

dz − X40

ξ40
4

du. (6.33)

So the metric (6.32) represents a direct product of a four-dimensional Robinson-
Trautman type N vacuum solution with an extra dimension.
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Appendix A. Ricci identities

The Ricci equations, i.e. contractions of the Ricci identities va;bc − va;cb = Rsabcv
s

with the frame vectors (2.1), in higher dimensions, given in full generality in eqs.
(11a)–(11p) in [8], are rewritten here for vacuum spacetimes with a geodetic multiple
WAND (Weyl types II, D, III or N) in a parallelly propagated frame

DL11 = −L1iLi1 − C0101 , (A.1)
DL1i = −L1jLji , (A.2)

4L1i − δiL11 = L11(L1i − Li1)− 2Lj[1|Nj|i] − L1j(Nji+
j

M i1) + C101i , (A.3)

δ[j|L1|i] = −L11L[ij] − L1k

k

M [ij] −Lk[j|Nk|i] + 1
2C01ij , (A.4)

DLi1 = −LijLj1 , (A.5)
−DNi1 = NijLj1 − C101i , (A.6)
DLij = −LikLkj , (A.7)
4Nij − δjNi1 = −L11Nij −Ni1(−2L1j + Lj1)

+ 2Nk[1|
k

M i|j] −Nik(Nkj+
k

M j1)− C1i1j , (A.8)

4Lij − δjLi1 = L11Lij − Li1Lj1 + 2Lk[1|
k

M i|j] −Lik(Nkj+
k

M j1)− C0i1j , (A.9)
DNij = −NikLkj − C0j1i , (A.10)

δ[j|Li|k] = L1[j|Li|k] + Li1L[jk] + Lil

l

M [jk] +Ll[j|
l

M i|k] , (A.11)

δ[j|Ni|k] = −L1[j|Ni|k] +Ni1L[jk] +Nil

l

M [jk] +Nl[j|
l

M i|k] − 1
2C1ijk , (A.12)

D
i

M j1 = −
i

M jk Lk1 − C01ij , (A.13)

D
i

M jk = −
i

M jl Llk , (A.14)

4
i

M jk −δk
i

M j1 = 2Nj[1|Li|k] + 2Lj[1|Ni|k]+
i

M j1 (L1k − Lk1) + 2
i

M l[1|
l

M j|k]

−
i

M jl (Nlk+
l

Mk1)− C1kij , (A.15)

δ[k|
i

M j|l] = Ni[l|Lj|k] + Li[l|Nj|k] + L[kl]

i

M j1

+
i

Mp[k|
p

M j|l] +
i

M jp

p

M [kl] − 1
2Cijkl . (A.16)
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Appendix B. Bianchi equations

We present here Bianchi identities projected onto a parallelly propagated null frame
(2.1) for vacuum spacetimes with a geodetic multiple WAND. General form of these
identities can be found in Appendix B in [7].

DC101i − δiC0101 = −C0101Li1 − C01isLs1 − 2C101sLsi − C0i1sLs1, (B.1)
−4 C01ij + 2δ[j|C101|i] = 2C101[j|L1|i] + 2C101[i|L|j]1 + 2C1[i|1sLs|j] + C1sijLs1

+2C0101N[ji] + 2C01[i|sNs|j] + 2C0s1[j|Ns|i] + 2C01[i|s
s

M |j]1 +2C101s

s

M [ji], (B.2)
−DC01ij = 2C0101L[ij] + 2C01[i|sLs|j] + 2C0[i|1sLs|j], (B.3)
DC1i1j −4C0j1i − δjC101i = 2C101iL[1j] + 2C1i[j|sLs|1] + C0101Nij

−C01isNsj + C0s1iNsj + C0j1s

s

M i1 +2C0s1i

s

M j1 +C101s

s

M ij , (B.4)
DC0i1j = −C0101Lij − C0i1sLsj − C01isLsj , (B.5)
−DC1kij − δkC01ij = −C01ijLk1 + 2C0k1[iLj]1 + 2C101[iLj]k

+2C[1|sijLs|k] + 2C01[i|s
s

M |j]k, (B.6)
2δ[k|C0i1|j] = 2C0i1[j|L|k]1 − C01jkLi1 + 2C101[j|Li|k] + 2C1[k|isLs|j]

−CisjkLs1 + 2C0i1s

s

M [kj] +2C0s1[k|
s

M i|j], (B.7)
0 = 0, (B.8)

DC1ijk + 2δ[k|C0|j]1i =2C101iL[jk] + 2C1i[k|sLs|j] + 2C0[k|1s

s

M i|j] −2C0s1i

s

M [jk], (B.9)
4C1ijk + 2δ[k|C1i1|j] = 2C1i1[jLk]1 + 4C1i1[k|L1|j] − C1ijkL11 + C01jkNi1

+2C0[j|1iN|k]1 + 2C101[k|Ni|j] + 2C101iN[kj] + 2C1i[k|sNs|j] + 2C1[k|isNs|j]

−CisjkNs1 − 2C1i1s

s

M [jk] +2C1[k|1s

s

M i|j] +2C1i[k|s
s

M |j]1 −C1sjk

s

M i1, (B.10)
−δ{i|C01|jk} = C101{iLjk} − C101{iLkj} + C1s{ij|Ls|k}

+C01{i|s
s

M |jk} −C01{i|s
s

M |kj}, (B.11)
−DCijkm =2C01ijL[km] + 2C0[k|1jLi|m] + 2C0[m|1iLj|k] + 2Cij[k|sLs|m], (B.12)
−4 Cijkm + 2δ[k|C1|m]ij = 2C1i[1|mLj|k] + 2C1[j|1kL|i]m + 2C1j[k|mLi|1] + 2C1kijL[1m]

+2C1mijL[k1] − 2C01ijN[km] + 2C0[i|1mN|j]k + 2C0[j|1kN|i]m + 2Cij[k|sNs|m]

+2C1k[i|s
s

M |j]m +2C1m[j|s
s

M |i]k +2C1sij

s

M [km] +2Cij[k|s
s

M |m]1 +2C[i|skm

s

M |j]1, (B.13)
δ{j|C1i|mk} = C1i1{jLmk} − C1i1{jLkm} + C1i{jk|L1|m} + C01{jm|Ni|k} − C0{j|1iN|km}

+C0{j|1iN|mk} + Cis{jk|Ns|m} − C1i{j|s
s

M |mk}+C1i{j|s
s

M |km}+C1s{jk|
s

M i|m}, (B.14)
0 = C01{jk|Li|m} − C0i1{jLkm} + C0i1{jLmk} + Cis{jk|Ls|m}, (B.15)
δ{k|Cij|nm} = C1j{km|Li|n} − C1i{km|Lj|n} − C1{k|ijL|mn} + C1{k|ijL|nm}

+Cij{k|s
s

M |mn} −Cij{k|s
s

M |nm} +Cis{km|
s

M j|n} −Cjs{km|
s

M i|n} . (B.16)
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Appendix C. The Ricci and Bianchi equations for five-dimensional type
N spacetimes with all L1i = 0

Ricci eqs. (A.4)

n0
32 = n0

23, (C.1)
n0

24 = 0, (C.2)
n0

34 = 0, (C.3)

Ricci eqs. (A.9)

U0 = n0
22 = n0

33, (C.4)
n0

23 = 0 = n0
32, (C.5)

0 = n0
24+

2
m41

0, (C.6)

0 = n0
34+

3
m41

0. (C.7)

Ricci eqs. (A.11)

ω0
2 = 0 = ω0

3 , (C.8)

ω0
4 =

4
m22

0 =
4
m33

0, (C.9)
2
m43

0 = 0 =
3
m42

0, (C.10)
2
m44

0 = 0 =
3
m44

0. (C.11)

Ricci eqs. (A.3)

ξα0
2 l011,α = − n0

21, (C.12)
ξα0
3 l011,α = − n0

31, (C.13)
ξα0
4 l011,α = 0. (C.14)

Ricci eqs. (A.12) with n24 = n34 = 0 from (C.2), (C.3), with (6.8)

ξα0
2 n0

22,α = n0
42

4
m22

0, (C.15)

ξα0
3 n0

22,α = n0
43

4
m22

0, (C.16)

ξα0
4 n0

22,α = n0
44

4
m22

0, (C.17)

ξα0
3 n0

42,α−ξα0
2 n0

43,α = n0
42

2
m32

0 − n0
43

3
m23

0, (C.18)
ξα0
2 n0

44,α−ξα0
4 n0

42,α = 0, (C.19)
ξα0
3 n0

44,α−ξα0
4 n0

43,α = 0. (C.20)

Ricci eqs. (A.8), with n24 = n34 = 0,

n0
22,u +Xα0n0

22,α−ξα0
2 n0

21,α = − 2l011n
0
22 + n0

31

3
m22

0 − p0, (C.21)

ξα0
3 n0

21,α = n0
31

2
m33

0 + Π0, (C.22)
ξα0
4 n0

21,α = 0, (C.23)

ξα0
2 n0

31,α = n0
21

3
m22

0 + Π0, (C.24)

n0
22,u +Xα0n0

22,α−ξα0
3 n0

31,α = − 2l011n
0
22 + n0

41

4
m22

0 + n0
21

2
m33

0 + p0, (C.25)
ξα0
4 n0

31,α = 0. (C.26)
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Ricci eqs. (A.16)

ξα0
4

2
m32

0,α = 0, (C.27)

ξα0
4

2
m33

0,α = 0, (C.28)

ξα0
3

2
m32

0,α−ξα0
2

2
m33

0,α = 2n0
22 + (

4
m22

0)2 + (
2
m32

0)2 + (
2
m33

0)2, (C.29)

ξα0
2

4
m22

0,α = − n0
42, (C.30)

ξα0
3

4
m22

0,α = − n0
43, (C.31)

ξα0
4

4
m22

0,α = − n0
44. (C.32)

Ricci eqs. (A.15)
2
m32

0,u +Xα0 2
m32

0,α−ξα0
2

2
m31

0,α = − 2
m32

0l011 + n0
31+

2
m33

0 2
m31

0, (C.33)
2
m33

0,u +Xα0 2
m33

0,α−ξα0
3

2
m31

0,α = − 2
m33

0l011 − n0
21−

2
m32

0 2
m31

0, (C.34)

ξα0
4

2
m31

0,α = 0, (C.35)
2
m42

0,u +Xα0 2
m42

0,α = − 2
m42

0l011 + n0
41. (C.36)

Commutators (2.41)

ξβ0
2 ξα0

3 ,β −ξβ0
3 ξα0

2 ,β =
3
m22

0ξα0
2 − 2

m33
0ξα0

3 , (C.37)

ξβ0
2 ξα0

4 ,β −ξβ0
4 ξα0

2 ,β = ξα0
2

4
m22

0, (C.38)

ξβ0
3 ξα0

4 ,β −ξβ0
4 ξα0

3 ,β = ξα0
3

4
m22

0, (C.39)

commutators (2.40)

−ξα0
2 ,u−Xβ0ξα0

2 ,β +ξβ0
2 Xα0,β = ξα0

2 l011 + n0
42ξ

α0
4 − 2

m31
0ξα0

3 , (C.40)

−ξα0
3 ,u−Xβ0ξα0

3 ,β +ξβ0
3 Xα0,β = ξα0

3 l011 + n0
43ξ

α0
4 +

2
m31

0ξα0
2 , (C.41)

−ξα0
4 ,u−Xβ0ξα0

4 ,β +ξβ0
4 Xα0,β = ξα0

4 n0
44, (C.42)

commutators (2.37)

ξα0
2 ω0

4 ,α = − n0
42, (C.43)

ξα0
3 ω0

4 ,α = − n0
43, (C.44)

commutators (2.36)

ξα0
2 U0,α = n0

42ω
0
4 , (C.45)

ξα0
3 U0,α = n0

43ω
0
4 , (C.46)

−ω0
4 ,u−Xα0ω0

4 ,α +ξα0
4 U0,α = n0

44ω
0
4+

4
m22

0l011 + n0
41. (C.47)

Bianchi eqs. (B.10)

−ξα0
2 p0,α−ξα0

3 Π0,α = 2p0 2
m33

0 + 2Π0 3
m22

0, (C.48)

ξα0
3 p0,α−ξα0

2 Π0,α = 2p0 2
m32

0 + 2Π0 2
m33

0, (C.49)

ξα0
4 p0,α = 2Π0 2

m34
0, (C.50)

ξα0
4 Π0,α = − p0 2

m34
0, (C.51)

p0 4
m23

0 = p0 4
m32

0 = 0, (C.52)



Vacuum spacetimes with a non-twisting multiple WAND 25

Π0 4
m32

0 = Π0 4
m23

0 = 0, (C.53)

p0 2
m44

0 + Π0 3
m44

0 = − p0 3
m44

0 + Π0 2
m44

0 = 0. (C.54)
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