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Abstract

We give an exponential lower bound on number of proof-lines in intuitionistic
propositional logic, IL, axiomatised in the usual Frege-style fashion; i.e., we give
an example of IL-tautologies A1, A2, . . . s.t. every IL-proof of Ai must have a
number of proof-lines exponential in terms of the size of Ai. We show that the
results do not apply to the system of classical logic and we obtain an exponential
speed-up between classical and intuitionistic logic.

1 Introduction

One of the basic problems of proof complexity is to find lower bounds on sizes of proofs
in various proof systems. The general form of the problem is the following:
For a proof system S and a function g : ω → ω find a sequence of S-tautologies
(determine whether it exists) Ai, i ∈ ω s.t. every S-proof of Ai must have size at least
g(|Ai|).1

For weak proof systems, such as those formalising propositional logic, the problem
is interesting when g is an exponential or superpolynomial function. Recently, an
exponential lower bound on the number of proof-lines was reached in [5] for the system
K of modal logic. In this paper, we extend the result to the system of intuitionistic
propositional logic, IL. We will present examples of IL-tautologies A s.t. every IL-
proof of A must contain an exponential number of proof-lines. Exact axiomatisation
of IL will be given on page 6. The axiomatisation is a particular kind of a Frege
system for intuitionistic propositional logic. In [8] it has been shown that all such
systems are polynomially equivalent, and hence our proof is not sensitive to the choice
of axiomatisation, as far as it remains Frege-style.

The method of proof of this paper is simple. We show that there is a sound
translation of IL to K preserving the number of proof-lines.2 This enables us to
reduce the lower bound for IL to that of K. Since the basic tool of [5] was that
of monotone interpolation, here too we obtain a form of monotone interpolation for

∗The paper was written in Prague, Mathematical Institute of the Czech Academy of Sciences, with
support from the grant IAA1019401.

1|Ai| denotes the size of Ai. The size of a tautology or of a proof is the number of symbols it
contains.

2For exact formulation see Proposition 3.
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IL. For a better exposition of the concept see [5], or for example [6]. However, we
shall present two different types of hard IL-tautologies, the first having the traditional
interpolation style, the latter being based on the gap between monotone and non-
monotone circuits. The latter form is a formalisation of the assertion ”C(p) defines
a monotone function” for a general circuit C defining a monotone Boolean function
(see Section 5)3. I believed that such a tautology could give a lower bound even for
classical propositional systems. In Section 6 it is shown that this is in general not the
case.

It has been proved earlier by Pavel Pudlák [9] that intuitionistic propositional
calculus has an effective interpolation property. (See also [4].) This was based on
the result of Buss and Mints [3] who have shown that intuitionistic disjunction has
a constructive behaviour even in the sense of complexity of proofs, i.e., that from
an intuitionistic proof of a disjunction A ∨ B one can extract a proof of A or B in
a polynomial time. These results, though revealing a close connection between the
complexity of intuitionistic proofs and Boolean circuits, and illuminating a new aspect
of constructivity in intutionistic logic, are not sufficient to give a concrete lower bound
on sizes of IL proofs. This is because by means of effective interpolation we reduce
the problem of finding a proof size lower bound to that of finding a circuit lower
bound, a substantially more difficult problem. In this paper we show that IL has even
monotone effective interpolation property and hence we can apply the classical results
in monotone circuit complexity to IL.

2 A different form of monotone interpolation for K

The proof system K is obtained by adding the symbol 2 to the language of propo-
sitional logic. The underlying propositional logic is formalised by means of a Frege
system (the axiomatisation of classical logic given in Section 6 is adequate). In addi-
tion, K has the rule of generalisation and the distributivity axiom

A

2A
, 2(A → B) → (2A → 2B).

We are going to reduce monotone interpolation for IL to the monotone interpolation
for K. However, the form of monotone interpolation offered in [5] is not suitable for
this purpose, and we will first prove a different kind of monotone interpolation for K.
The following theorem can be found in [5]:

Theorem 0. Let α, β1 and β2 be propositional formulas. Assume that α is a monotone
formula (i.e., containing only the connectives ∧ and ∨) and that it contains only the
variables p, and that β1 resp. β2 contain only the variables p, s1 resp p, s2. Assume
that

α(2p) → 2β1 ∨2β2

3The lower bound was first reached for the tautologies in Section 5. It was Pavel Pudlák who
reminded the author that the same argument applies also to the more natural tautologies of Section
4.
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has a K-proof with n distributivity axioms. Then there exist monotone circuits C1(p)
and C2(p) of size O(n2) s.t. for any assignment σ of p

(1) if α is true then C1(p) = 1 or C2(p) = 1,

(2) if C1(p) = 1 then β1 is true (for any assignment of the variables s1), and if
C2(p) = 1 then β2 is true (for any assignment of the variables s2).

A propositional formula β will be called monotone in p if the formula, when trans-
formed to a DNF form, does not contain negation in front of any variable in p. If β is
a general propositional formula in variables p, r, p = p1, . . . pn and q = q1, . . . qn then
β(p/¬q, s) will denote the formula obtained by substituting ¬qi for pi, i = 1, . . . n, in
β. We may also write simply β(¬q, s) if the meaning is clear.

Lemma 1 Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formulas, p, q, r1, r2

disjoint. Let p = p1, . . . pn and q = q1, . . . qn. Assume that β1 is monotone in p or β2

is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology.

(1) Then
∧

i=1,...n(pi ∨ qi) → β1(p, r1) ∨ β2(q, r2) is a classical tautology.

(2) Let M,N be subsets of {1, . . . n} s.t. M ∪ N = {1, . . . n}. Then one of the
following is a classical tautology:

(a)
∧

i∈M pi → β1(p, r1) or

(b)
∧

i∈N qi → β2(q, r2).

Proof. (1). Assume that, for example, β2 is monotone in q. Then∧
i=1,...n

(pi → qi) → (β2(p, r2) → β2(q, r2))

is a tautology. Hence also∧
i=1,...n

(¬pi ∨ qi) → (β2(p, r2) → β2(q, r2))

and ∧
i=1,...n

(pi ∨ qi) → (β2(¬p, r2) → β2(q, r2))

are tautologies. From the assumption that

β1(p, r1) ∨ β2(¬p, r2)
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is a tautology we obtain that also∧
i=1,...n

(pi ∨ qi) → (β1(p, r1) ∨ β2(q, r2))

is a tautology.
(2). Let M and N be fixed. Clearly,∧

i∈M

pi ∧
∧
i∈N

qi →
∧

i=1,...n

(pi ∨ qi)

is a tautology and, by (1),∧
i∈M

pi ∧
∧
i∈N

qi → (β1(p, r1) ∨ β2(q, r2))

is a tautology. Since β1 and β2 contain no common variables, and β1, resp. β2 does not
contain the variables q, resp. p then either

∧
i∈M pi → β1(p, r1) or

∧
i∈N qi → β2(q, r2)

is a tautology. QED

Let α = α(p, r) and β = β(p, s) be propositional formulas, r, s disjoint. We will
say that a circuit C in variables p interpolates α and β if for every assignment σ of
the variables p

1. if for some assignment of r, α is true then C(p) = 1, and

2. if C(p) = 1 then for every assignment of s, β is true.

Theorem 2 Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formulas, p, q, r1, r2

disjoint. Let p = p1, . . . pk and q = q1, . . . qk. Assume that β1 is monotone in p or β2

is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology. Then∧
i=1,...k

(2pi ∨2qi) → (2β1(p, r1) ∨2β2(q, r2))

is K- tautology. Moreover, if the tautology has a K-proof with n distributivity axioms
then there exists a monotone circuit C(p) of size O(n2) which interpolates ¬β2(¬p, r2)
and β1(p, r1).

Proof. Let us first show that the formula is a tautology. The assumption
∧

i=1,...k(2pi∨
2qi) can be transformed to a disjunction of conjunctions of the form∧

i∈M

2pi ∧
∧
i∈N

2qi
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such that M ∪N = {1, . . . k}. Hence it is sufficient to show that for such M and N

(?)
∧

i∈M

2pi ∧
∧
i∈N

2qi → (2β1 ∨2β2)

is a tautology. By the previous Lemma either
∧

i∈M pi → β1 or
∧

i∈N qi → β2 is a
classical tautology. In the first case clearly

∧
i∈M 2pi → 2β1 is a tautology and hence

also (?) is. Similarly in the latter case.
From Theorem 0 there exist monotone circuits D1 and D2 in variables p, q of size

O(n2) s.t. for any assignment

(1) (D1(p, q) = 1) → β1,

(2) (D2(p, q) = 1) → β2

and if the assignment satisfies
∧

i=1,...k(pi ∨ qi) then

D1(p, q) = 1 ∨D2(p, q) = 1.

This in particular gives

(3) D1(p,¬p) = 1 ∨D2(p,¬p) = 1.

Let C(p) := D1(p, 1, . . . 1) and C ′(q) := D2(1, . . . 1, q). Since in (1) β1 does not contain
q, we have

(4) (C(p) = 1) → β1.

Similarly, by replacing q by ¬p in (2) we have

(5) (C ′(¬p) = 1) → β2(¬p, r2).

Since D1 and D2 are monotone, (3) gives

D1(p, 1, . . . 1) = 1 ∨D2(1, . . . 1,¬p) = 1

and hence

(6) C(p) = 1 ∨ C ′(¬p) = 1.

Let us show that the circuit C interpolates ¬β2(¬p, r2) and β1(p, r1). By (4) it is
sufficient to prove that if for some assignment ¬β2(¬p, r2) is true then C(p) = 1. But
if ¬β2(¬p, r2) is true then by (5) C ′(¬p) = 0 and, by (6), C(p) = 1. QED
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3 Translation of IL to K

The language of intuitionistic propositional logic, IL, contains the connectives →, ∨,
∧ and a fixed variable symbol ⊥. The only rule of inference is modus ponens

A, A → B

B

The axioms are the following:
Ax1 A → (B → A)
Ax2 (A → (B → C)) → ((A → B) → (A → C))
Ax3 ⊥→ A
Ax4, Ax5 A ∧B → B, A ∧B → A
Ax6 (A → (B → C)) → (A ∧B → C)
Ax7, Ax8 A → A ∨B, B → A ∨B
Ax9 (B → A) → ((C → A) → (B ∨ C → A))

We give a translation of intuitionistic logic to K s.t. for any intuitionistic tautology
A its translation At is K-tautology. The translation is not in general faithful, it may
happen that At is a tautology without A being so.4 Also, the translation is not
polynomial. However, there is a polynomial (linear) relation between the number
of proof-lines in an intuitionistic proof of A and number of distributivity axioms in
K-proof of At.

For an intuitionistic formula A of IL, its translation At to K will be defined as
follows5:

1. pt = 2p and ⊥t=⊥.

2. (A → B)t = 2A ∧At → 2B ∧Bt.

3. (A ∨B)t = (2A ∧At) ∨ (2B ∧Bt).

4. (A ∧B)t = At ∧Bt.

Note that At is always a formula of K of modal-depth one, i.e., At does not contain
nested modalities. We can think of the translation as a combination of three different
translations: a) the Gödel translation from IL to S4, b) the translation from S4 to
K4, i.e., (2A)t = 2At ∧At, and c) the translation from K4 to K which was employed
in [5], based on deleting all boxes which are in a scope of another 2. Routinely, but
labouriously, we can verify the following:

Proposition 3 (1) If A is IL-tautology then At is K-tautology.

(2) If A has IL-proof with n proof-lines then At has a K-proof with O(n) axioms of
distributivity.

4Consider the formula ¬¬p → p.
5Hence the symbol ⊥ is assumed also in K. If not, ⊥ can be simulated by any fixed contradiction

in K.
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Proof. We proceed by induction on the number of proof-lines in an IL-proof. Let us
first show that the translation of an axiom is K-tautology. It will be apparent that the
proofs do not require more than, say, five distributivity axioms. Note that we can use
a form of deduction theorem in K, i.e., in order to prove A → B it is sufficient to prove
B from the assumption A provided we do not apply generalisiation to a consequence
of A in the proof. For an IL-formula A, A? will be an abbreviation for 2A ∧At.

Ax1.
(A → (B → A))t = A? → 2(B → A) ∧ (B? → A?).

But 2A → 2(B → A) and hence A? → 2(B → A) is K-tautology and A? → (B? →
A?) is a propositional tautology.

Ax2. The translation of A2 is an implication s.t. on its left hand side we have
conjunction of

a) 2(A → (B → C))

and

b) A? → 2(B → C) ∧ (B? → C?),

and on the right hand side we have conjunction of

c) 2((A → B) → (A → C))

and

d) (2(A → B) ∧ (A? → B?) → (2(A → C) ∧ (A? → C?)).

By applying distributivity twice to the tautology

2((A → (B → C)) → ((A → B) → (A → C)))

we obtain that the following are K-tautologies:

(?) 2(A → (B → C)) → 2((A → B) → (A → C)),

(??) 2(A → (B → C)) → (2(A → B) → 2(A → C)).

Hence c) follows from a) by (?). In order to prove d) from a) and b), let us show that
2(A → C) and A? → C? follow from a), b),

e) 2(A → B)

and

f) A? → B?.

Again, from a), e) and (??) we obtain 2(A → C). b) implies, in particular,

A? → (B? → C?).
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This, together with f) gives A? → C? by means of propositional logic only.
Ax3, Ax4-5 and Ax7-8 are easy.
The translation of Ax6 is an implication which contains

a) 2(A → (B → C)),

b) A? → 2(B → C) ∧ (B? → C?)

on the left hand side and

c) 2(A ∧B → C),

d) 2(A ∧B) ∧At ∧Bt → C?

on the right hand side. c) follows from a) by applying distributivity to the tautology

2((A → (B → C)) → (A ∧B → C)).

In order to prove d) from b), let show that C? follows from b) and

e) 2(A ∧B) ∧At ∧Bt.

Since 2(A ∧B) implies 2A ∧2B, e) implies 2A ∧2B ∧At ∧Bt and hence A? ∧B?.
b) gives, in particular A? → (B? → C?) which together with A? ∧ B? implies C?, by
means of propositional logic only.

The translation of Ax9 is an implication with

a) 2(B → A)

b) B? → A?

on the left hand side, and

c) 2((C → A) → (B ∨ C → A)),

d)
2(C → A) ∧ (C? → A?) → 2(B ∨ C → A) ∧ (2(B ∨ C) ∧ (B? ∨ C?) → A?)

on the right hand side. By applying distributivity twice to the tautology

2((B → A) → ((C → A) → (B ∨ C → A)))

we obtain that the following are tautologies:

(?) 2(B → A) → 2((C → A) → (B ∨ C → A))

8



(??) 2(B → A) → (2(C → A) → 2(B ∨ C → A))

By means of (?), c) follows from a). In order to prove d) from a) and b), it is sufficient
to prove 2(B ∨ C → A) from a) and

e) 2(C → A),

and to prove A? from b) and

f) C? → A?,

g) B? ∨ C?.

But 2(B ∨ C → A) follows from a) and e) by means of (??) and A? follows from b),
f) and g) by means of propositional logic only.

Let us consider modus ponens. Assume that IL ` A and IL ` A → B. We
must show that K ` Bt. By the inductive assumption K ` At and K ` (A →
B)t = 2A ∧ At → 2B ∧ Bt. Since IL ` A then A is a classical tautology and
K ` 2A by generalisation. In the proof of 2A, no distributivity is required. But hence
K ` 2A ∧ At. Hence K ` 2B ∧ Bt and K ` Bt, using no additional distributivity
axiom. QED

Lemma 4 Let α(p) be a formula in CNF form of size k containing no negations.
Assume that

Γ := α(p) → β1 ∨ β2

has an intuitionistic proof with n proof-lines. Then

α(2p) → 2β1 ∨2β2

has a K-proof with O(n + k) distributivity axioms.

Proof. For simplicity, let us assume that α =
∧

i(p
i
1 ∨ pi

2). In the general case the
argument is similar. Then

αt = (
∧
i

(pi
1 ∨ pi

2))
t =

∧
i

(pi
1 ∨ pi

2)
t =

∧
i

((2pi
1 ∧ (pi

1)
t) ∨ (2pi

2 ∧ (pi
2)

t))

=
∧
i

((2pi
1 ∧2pi

1) ∨ (2pi
2 ∧2pi

2))

But
∧

i((2pi
1 ∧2pi

1)∨ (2pi
2 ∧2pi

2)) is, using no distributivity, equivalent to
∧

i(2pi
1 ∨

2pi
2). Hence α(p)t is equivalent to α(2p), using no distributivity. We have

Γt = (α → β1 ∨ β2)t

= 2α ∧ αt → (2(β1 ∨ β2) ∧ (β1 ∨ β2)t)
= 2α ∧ αt → (2(β1 ∨ β2) ∧ ((2β1 ∧ βt

1) ∨ (2β2 ∧ βt
2)))

9



Hence Γt is, using no distributivity, equivalent to

(?) 2α(p) ∧ α(2p) → 2(β1 ∨ β2) ∧ ((2β1 ∧ βt
1) ∨ (2β2 ∧ βt

2)).

Assume that Γ has an intuitionistic proof with n proof-lines. Hence Γt and (?) have
K-proofs with O(n) distributivity axioms. Hence also

2α(p) ∧ α(2p) → (2β1 ∨2β2)

has a K-proof with O(n) distributivity axioms. Since α is a monotone formula then
α(2p) → 2α(p) is provable with O(k) distributivity axioms. Therefore

α(2p) → (2β1 ∨2β2)

has a K-proof with O(n + k) distributivity axioms. QED

4 Monotone interpolation for IL

The formula Clas(p) will be the formula p∨¬p and Clas(p1, . . . pn) will be an abbre-
viation for ∧

i=1,...n

Clas(pi).

Theorem 5 Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formulas, p, q, r1, r2

disjoint. Let p = p1, . . . pk and q = q1, . . . qk and v := p, q, r1, r2. Assume that β1 is
monotone in p or β2 is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology. Then∧
i=1,...k

(pi ∨ qi) → (Clas(v) → β1) ∨ (Clas(v) → β2)

is IL-tautology. Moreover, if the tautology has an IL-proof with n proof lines then
there exists a monotone circuit C(p) of size O((n+k)2) which interpolates ¬β2(¬p, r2)
and β1(p, r1).

Proof. Let us first show that the formula is a tautology. The assumption
∧

i=1,...k(pi∨
qi) can be transformed to an intuitionistically equivalent disjunction of conjunctions
of the form ∧

i∈M

pi ∧
∧
i∈N

qi

such that M ∪N = {1, . . . k}. Hence it is sufficient to show that for such M and N

(?)
∧

i∈M

pi ∧
∧
i∈N

qi → (Clas(v) → β1) ∨ (Clas(v) → β2)

10



is an intuitionistic tautology. By Lemma 1 either
∧

i∈M pi → β1 or
∧

i∈N qi → β2 is a
classical tautology. In the first case

Clas(v) → (
∧

i∈M

pi → β1)

is an intuitionistic tautology, since the assumption Clas(v) enables to reproduce the
classical proof in IL. But then also∧

i∈M

pi → (Clas(v) → β1)

and hence (?) are IL tautologies. The latter case is similar.
Assume that the formula

Γ :=
∧

i=1,...n

(pi ∨ qi) → (Clas(v) → β1) ∨ (Clas(v) → β2)

has an intuitionistic proof with n proof-lines. By Lemma 4 the formula∧
i=1,...k

(2pi ∨2qi) → (2(Clas(v) → β1) ∨2(Clas(v) → β2))

has a K-proof with O(n + k) distributivity axioms. However, Clas(v) is a classical
tautology. Hence

2(Clas(v) → β1) → 2β1

and
2(Clas(v) → β2) → 2β2

can be proved in K using one axiom of distributivity each. Hence∧
i=1,...k

(2pi ∨2qi) → (2β1 ∨2β2)

has a K-proof with O(n + k) distributivity axioms. Hence, by Theorem 2 there exists
a monotone circuit of size O((n + k)2) which interpolates ¬β2(¬p, r2) and β1(p, r1).
QED

Let
Cliquek

n(p, r)

be the proposition asserting that r is clique of size k on the graph represented by p.6

Let
Colork

n(p, s)

be the proposition asserting that s is a k-coloring of the graph represented by p.

6An explicit formulation of Clique and Color can be found in [6], for example. However, the only
important feature of the formulas is that the formula Clique is monotone in variables p.
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Theorem 6 Let p = p1 . . . pn and q = q1, . . . qn and let p, q, r, s be disjoint, v :=
p, q, r, s. Let

Θk
n :=

∧
i=1,...n

(pi∨qi) → (Clas(v) → ¬Cliquek+1
n (p, s))∨(Clas(v) → ¬Colork

n(p/¬q, r)).

Then Θk
n is an IL-tautology. If k :=

√
n then every IL-proof of the tautology Θk

n

contains at least
2Ω(n

1
4 )

proof-lines.

Proof. We shall apply Theorem 5 on the formulas β1 := ¬Cliquek+1
n (p, s) and β2 :=

¬Colork
n(¬q, r). First, β2 is monotone in q since Color(p, r) is monotone in p. Second,

β1(p, s) ∨ β2(q/¬p, r) is a classical tautology, since β2(q/¬p, r) = ¬Colork
n(p/¬¬p, r)

is classically equivalent to ¬Colork
n(p, r) and

¬Cliquek+1
n (p, s) ∨ ¬Colork

n(p, r)

is a classical tautology. Hence Θk
n is an IL-tautology. Assume that it has an IL-

proof with m proof-lines. Then, by Theorem 5, there exists a monotone circuit C
in variables p of size O((m + n)2) which interpolates ¬β2(q/¬p), r) and β1. Since
¬β2(q/¬p), r) is classically equivalent to Colork

n(p, r), C interpolates Colork
n(p, r) and

¬Cliquek+1
n (p, s). By the result in [1] every such circuit must have size at least 2Ω(n

1
4 ).

Hence m ≥
√

2Ω(n
1
4 ) ∼ 2Ω(n

1
4 ). QED

An extension to ILHar

A formula A will be called a Harrop formula if every disjunction in A occurs in the
context

B ∨ C → D.

The system ILHar will be obtained by adding the axiom

¬¬A → A

to IL for any Harrop formula A. (¬A is an abbreviation for A →⊥.) Hence ILHar

restricted to Harrop formulas is equivalent to classical logic, in the sense that a Harrop
formula A is provable in ILHar iff A is a classical tautology. However, the disjunction
retains non-classical behaviour in ILHar and we can extend the lower bound to ILHar.
Recall the translation from intutionistic to K-formulas from Section 3.

Lemma 7 Let A be a Harrop formula. Then

¬2 ⊥→ (2A → At)

is a K-tautology. Moreover, the tautology has a K-proof with O(|A|) distributivity
axioms.

12



Proof. Straightforward induction on the size of A. The assumption ¬2 ⊥ is required
at the basis step 2 ⊥→⊥t. QED

Lemma 8 1. If A is ILHar-tautology then ¬2 ⊥→ At is K-tautology.

2. If A has ILHar-proof of size7 n then ¬2 ⊥→ At has a K-proof with O(n) axioms
of distributivity.

Proof. The proof would proceed by induction as in the proof of Proposition 3. It is
sufficient to show that for any Harrop formula A,

¬2 ⊥→ (¬¬A → A)t

is a K-tautology with a proof with O(|A|) distributivity axioms. But

(¬¬A → A)t = 2¬¬A ∧ (¬¬A)t → 2A ∧At

is, using two axioms of distributivity, equivalent to

2A ∧ (¬¬A)t → 2A ∧At

and hence it is sufficient to find a K-proof for

¬2 ⊥→ (2A ∧ (¬¬A)t → 2A ∧At),

resp. for
¬2 ⊥→ (2A → 2A ∧At),

with O(|A|) distributivity axioms. But that follows from the previous Lemma. QED

The following theorem implies an exponential lower bound on sizes of proofs in
ILHar:

Theorem 9 Let β1 = β1(p, r1) and β2 = β2(q, r2) be Harrop formulas, p, q, r1, r2

disjoint. Let p = p1, . . . pk and q = q1, . . . qk. Assume that β1 is monotone in p or β2

is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology. Then ∧
i=1,...k

(pi ∨ qi) → (β1 ∨ β2)

is ILHar- tautology. Moreover, if the tautology has an ILHar proof of size n then there
exists a monotone circuit C(p) of size O((n + k)2) which interpolates ¬β2(¬p, r2) and
β1(p, r1).

7Note that here size of a proof means the number of its symbols.
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Proof. The proof is similar to that of Theorem 5. Note that if we prove a tautology
of the form

¬2 ⊥→ (A → 2B ∨2C)

in K using n axioms of distributivity than we can prove

(A → 2B ∨2C)

using n + 1 axioms of distributivity. QED

Remark. Since the →,¬-fragment of ILHar is equivalent to classical logic formalised
using implication and negation, we also have a translation from a →,∧-fragment of
classical logic to K, where classical logic is axiomatised as a Frege system (e.g., the
system F offered in Section 6 restricted to →,¬-language.) However, the translation
cannot be used to find a lower bound on classical proofs. From Lemma 7 it follows
that for every Harrop formula A of size n, if A is a classical tautology then ¬2 ⊥→ At

has a K-proof with O(n) distributivity axioms.

5 Tautologies based on the gap between monotone
and general circuits

We are now going to present a different kind of a hard tautology in IL. The basis is
still the possibility of extracting a monotone circuit from an intutionistic proof, but
the construction no longer deserves the title ”monotone interpolation”. Assume that
we have a classical formula α(p) which defines a monotone Boolean function f , where
α itself is allowed to be non-monotone (i.e., may contain negations). In propositional
logic we can find a tautology asserting that α does indeed define a monotone function.
The most transparent formulation is the tautology

(?)
∧

i=1,...n

(pi → qi) → (α(p) → α(q)).

One might conjecture that a proof of (?) must have size at least Cm(f), the size
of a smallest monotone circuit C computing f . This seems likely because the first-
hand strategy for proving (?) is by constructing a monotone circuit computing f .
Furthermore, if NP 6= coNP then some tautologies of the form (?) are hard also in F ,
for the problem of deciding whether a circuit (or even a formula) defines a monotone
function is coNP -complete.8 Hence in order to obtain a hard tautology of the form
(?) it would be sufficient to find a formula α s.t. i) α defines a monotone Boolean
function f , ii) α has a polynomial size, and iii) Cm(f) is exponential. It should not
deter us that an example of such a formula is not known, for there are examples of
circuits with such properties, and it is only a technical detail to rephrase (?) for a
circuit. Whether this strategy can give hard tautologies for classical Frege systems
will be discussed in the next section. On the other hand, the approach is successful

8To see that the problem is in coNP is easy. For coNP -completeness note that the formula
¬p ∧A(q) is monotone iff A(q) is a contradiction.
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in intuitionistic logic. It is sufficient to formulate (?) with disjunctions rather than
implications and we obtain tautologies with exponential lower bounds on the number
of proof lines in IL.

The major difference between this approach and that of monotone interpolation is
the following: if we want to obtain a lower bound on proofs by means of monotone
interpolation, we need more than just the fact that a monotone function f cannot
be computed by a small monotone circuit. We must employ the full statement of
Razborov’s theorem that for given monotone functions g, h s.t. g ≤ h (i.e., g(x) ≤ h(x)
on every input) there is no small monotone circuit defining a function f s.t. g ≤ f ≤ h.9

In the setting of this section, it is sufficient to assume that f is not computable by
a small monotone circuit. The additional, also non-trivial, fact required is that f is
computable by a small general circuit.

Theorem 10 Assume that α(p) is a propositional formula which defines a monotone
Boolean function f(p). Let p = p1, . . . pk and q = q1, . . . qk, v := p, q. Then the formula∧

i=1,...k

(pi ∨ qi) → ((Clas(v) → α(p)) ∨ (Clas(v) → ¬α(¬q)))

is an IL-tautology. Moreover, if the tautology has an IL-proof with n proof-lines then
there exists a monotone circuit of size O((n + k)2) which computes f .

Proof. We shall apply Theorem 5. Let us check the assumptions of the Theorem
for β1 := α(p) and β2 := ¬α(p/¬q). Since α defines a monotone function then β1 is
monotone in p. (Recall that β1 is monotone in p if it can be transformed to a DNF
form with no negations attached to p.) Since

(?) β2(q/¬p) = ¬α(¬¬p)

then
β1(p) ∨ β2(q/¬p)) ≡ α(p) ∨ ¬α(p)

is a classical tautology. Hence Γ :=
∧

i=1,...k(pi ∨ qi) → ((Clas(v) → β1)∨ (Clas(v) →
β2) is IL-tautology and if Γ has a proof in IL with n proof-lines then then there exists
a monotone circuit C of size O((n+k)2) which interpolates ¬β2(q/¬p) and β1(p). But
since β1(p) = α(p) and from (?) ¬β2(q/¬p) is equivalent to α(p) then C interpolates
α(p) and α(p), and hence it computes f . QED

As remarked above, Theorem 10 does not yet give a lower bound for IL for we do not
have an example of a function f definable by a small Boolean formula but not by a
small monotone circuit. In order to avoid this obstacle, we will now code circuits with
formulas. Let C be a circuit in variables p s.t. the ∧- and ∨-gates have fan-in two. We
shall define a formula [C(p)] which asserts that C outputs 1 on variables p. For any
gate a of C let us have a variable ra. If a is a leaf (i.e., a variable in p) we let ra := a.
Otherwise we assume that the variables ra, a ∈ C and p are mutually different. The
condition for a will be the formula Ma s.t.

9On the other hand, note that if f ∈ NP ∩ coNP , as is the case of the perfect matching function,
then a bound on Cm(f) is indeed sufficient.
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1. if a = ¬b then Ma := (ra ≡ ¬rb),

2. if a = b ∧ c then Ma := (ra ≡ (rb ∧ rc)) and

3. if a = b ∨ c then Ma := (ra ≡ (rb ∨ rc))

Let c be the output gate of C. Then [C(p)] will be the formula∧
a∈C

Ma → rc,

where the conjunction ranges over the gates in C. When we write e.g. [¬C(¬q)] as
below, we mean the result of application of a similar procedure to the circuit ¬C(¬q)
(the gates being coded by different variables then those of C(p).)

Lemma 11 Let C(p) be a circuit defining a monotone Boolean function. Let p =
p1, . . . pn and q = q1, . . . qn. Let M,N be subsets of {1, . . . n} s.t. M ∪N = {1, . . . n}.
Then one of the following is a classical tautology:

1.
∧

i∈M pi → [C(p)] or

2.
∧

i∈N qi → [¬C(¬q)].

Proof. Let α(p) be a propositional formula defining f . As we have checked in the
proof of the previous Theorem, the formulas β1(p) := α(p) and β2(q) := ¬α(¬p) satisfy
the assumptions of Lemma 1. Hence either

∧
i∈M pi → α(p) or

∧
i∈N qi → ¬α(¬q) is

a tautology. Assume the first alternative. Let c be the output gate of C. Clearly∧
a∈C

Ma → (rc ≡ α(p))

is a tautology and hence also∧
i∈M

pi → (
∧

a∈C

Ma → rc) =
∧

i∈M

pi → [C(p)]

is a tautology. In the latter case the argument is identical. QED

Theorem 12 Assume that C(p) is a circuit which defines a monotone Boolean func-
tion f(p). Let p = p1, . . . pk and q = q1, . . . qk. Let v be the list of variables p, q plus
the variables occurring in [C(p)] or [¬C(¬q)]. Then the formula

Γ :=
∧

i=1,...k

(pi ∨ qi) → ((Clas(v) → [C(p)]) ∨ (Clas(v) → [¬C(¬q)])

is an IL tautology. Moreover, if the tautology has an IL proof with n distributivity
axioms then there exists a monotone circuit of size O((n + k)2) which computes f .
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Proof. To show that the formula is IL-tautology follows from Lemma 11 by an
analogous argument as in Theorem 5. Let us assume that Γ has an IL-proof S with n
proof-lines. Let α(p) be a formula defining f . For a gate a of C, let γa(p) be a formula
equivalent to the circuit Ca. Similarly for a formula δa(q) and a gate a of the circuit
D(q) := ¬C(¬q). If c resp. d are the output gates of C resp. D, we can assume that
γc = α(p) and δd = ¬α(¬q). Substituting throughout S γa for ra, a ∈ C, and δa for
ra, a ∈ D, we obtain an IL-proof of

∆ := Γ(ra/γa)a∈C(ra/δa)a∈D

with n proof-lines. Let
λ1(p) :=

∧
a∈C

Ma(ra/γa)a∈C

and
λ2(q) :=

∧
a∈D

Ma(ra/δa)a∈D.

Then ∆ is equal to∧
i=1,...k

(pi ∨ qi) → ((Clas(v) → (λ1 → α(p))) ∨ (Clas(v) → (λ2 → ¬α(¬q))).

Clearly, λ1 and λ2 are classical tautologies and hence the formulas

β1(p) := λ1 → α(p)

and
β2(p) := λ2 → ¬α(q)

satisfy the assumptions of Theorem 10. Hence there is a monotone circuit E(p) of
size O((n + k)2) which interpolates β1(p) and ¬β2(¬q). Since λ1 and λ2 are classical
tautologies then both β1(p) and ¬β2(¬q) are equivalent to α(p) and hence E computes
f .QED

Corollary There exists a sequence γn, n ∈ ω of IL tautologies of size n s.t. every
IL-proof of γn has at least 2Ω(n

1
4 ) proof-lines.

Proof. By [13] and [7] there exists a monotone function f computable by a polyno-

mial circuit C s.t. every monotone circuit computing f has at least the size 2Ω(n
1
4 ).

Apply the Theorem to the circuit C. QED

6 Classical logic

In this section we state what is now obvious, that there is an exponential speed-up
between classical and intuitionistic systems of propositional logic. This follows from
the fact that the tautology of Theorem 6 has a polynomial-size classical proof. We also
prove something less obvious, that the tautology of Theorem 12 has polynomial-size
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classical proofs, if C is taken as a particular circuit computing the perfect matching
function.

We will define the system of classical propositional logic, the Frege system F , as
the system IL plus the axiom

¬¬A → A,

where ¬A is understood as A →⊥.

Speed-up between classical and intuitionistic propositional cal-
culi

Theorem 13 Let Θk
n be the IL-tautology of Theorem 6. If k :=

√
n then very IL-

proof of the tautology Θk
n contains an exponential number of proof-lines but Θk

n has a
polynomial size classical proof.

Proof. In order to show that Θk
n has a polynomial size classical proof it is sufficient

to prove that
¬Cliquek+1

n (p, s) ∨ ¬Colork
n(p, r)

has a polynomial-size Frege proof. But that follows from [2]. QED

Remark. Now that we have an exponential lower bound for intuitionistic calculus, a
speed up between classical and intuitionistic logic could be trivially obtained as follows:
let Θi, i ∈ ω be any sequence of IL-tautologies s.t. Θi have only exponential proofs in
IL. Let us consider the sequence

Γi := (p ∨ ¬p) ∨Θi.

Then Γi have linear size classical proofs. Moreover, by [3] if IL ` A ∨B then IL ` A
or IL ` B, and the proof of A resp. B has a polynomial size with respect to the size
of the proof of A ∨B. Since IL 6` p ∨ ¬p then Γi have only exponential size proofs in
IL. (A similar argument can be found in [12].)

A quasi-polynomial speed-up between IL and F on tautologies of the form of
Theorem 12 will follow from the argument in the next part of this section.

Fuzzy logic. Gödel-Dummett logic is the system IL plus the axiom

(A → B) ∨ (B → A).

It is one of the basic systems of fuzzy logic. We can obtain speed-up between Gödel-
Dummett and intuitionistic logic in the same way as in the previous remark. More
interestingly, we can find polynomial size proofs of tautologies of the form of Theorem
6. The tautology in Theorem 6 has the form∧

i=1,...n

(pi ∨ qi) → (Clas(v) → β1(p, s)) ∨ (Clas(v) → β2(q, r)),

where v is the list p, q, r, s and∧
i=1,...n

(pi ∨ qi) → (β1(p, s) ∨ β2(q, r))
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has a polynomial classical proof. In Gödel-Dummett logic

(A → (B ∨ C)) → ((A → B) ∨ (A → C))

is a tautology. Hence it is sufficient to prove∧
i=1,...n

(pi ∨ qi) → (Clas(v) → (β1(p, s) ∨ β2(q, r))),

or
Clas(v) → (

∨
i=1,...n

(pi ∨ qi) → (β1(p, s) ∨ β2(q, r))).

However, the last tautology has a polynomial size proof since the assumption Clas(v)
enables to reproduce the classical proof in Gödel-Dummett logic.

Short proofs of tautologies based on monotonicity of the perfect
matching problem

One might conjecture that we could employ classical analogies of the Tautologies in
Theorem 12, i.e., tautologies of the form10

(?)
∧

i=1,...n

(pi → qi) → (C(p) → C(q))

for a circuit C computing a monotone Boolean function f , to find lower bounds for
classical propositional systems. However, we will show that the tautology asserting
monotonicity of a particular circuit defining the perfect matching function has a poly-
nomial size F -proof. Since we have a quasipolynomial lower bound for monotone
circuits computing the perfect matching function, we conclude that there is no poly-
nomial function relating the size of F -proof of (?) and Cm(f). In order to completely
frustrate the possibility of finding lower bounds for F by means of (?), we would like
to find polynomial size F - proofs for a circuit defining a monotone function f s.t. the
gap Cm(f)/C(f) is exponential. Unfortunately, we know only one example of such
a function (namely the one obtained from [13]), and the complexity of the algorithm
does not invite formalisation.

The perfect matching problem

Let G be a bipartite graph on U and V , U = u1, . . . un, V = v1, . . . vn. A matching
M is a set of vertex disjoint edges of G. M is a perfect matching, if |M | = n. G will
be represented by propositional variables pij , i, j = 1, . . . n s.t. there is an edge in G
connecting ui and vj iff pij = 1. The perfect matching function fPM is the function
in p = pij , i, j = 1, . . . n, variables s.t. fPM (p) = 1 iff the graph represented by p has
a perfect matching. Clearly, fPM is a monotone function. By the result of Razborov
[10] every monotone circuit computing fPM must have a superpolynomial size. On the

10In F we would understand (?) as containing the conditions Ma for gates of C(p) and C(q) in the
assumption.
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other hand, there is a polynomial time algorithm deciding whether a bipartite graph G
has a perfect matching, and hence there are polynomial-size circuits computing fPM .

Recall the coding of circuits from Section 5. For circuits C1, . . . Cn and a formula
A

A(C1, . . . Cn)

will be an abbreviation form ∧
a∈Ci,i=1,...n

Ma → A(r1, . . . rn),

where r1, . . . rn are variables representing the outputs of C1, . . . Cn. For a list of vari-
ables q, Cq will denote the list of circuits indexed by the formulas q. Let A = A(p, q)
be a formula. We will say that circuits Cq in variables p

1. solve the problem A, if

(?) A(p, q) → A(p, Cq)

is a tautology, and

2. solve the problem A polynomially in F , if the circuits have polynomial size and
(?) has a polynomial size F -proof.

Moreover, the function fA(p) will be the Boolean function s.t. for any assignment of
the variables p, fA(p) = 1 iff there exists an assignment of q s.t. A(p, q) is true.

As opposed to the previous notation, we shall say that A(p, q) is monotone in p if
A contains only the binary connectives ∧, ∨, and negations do not occur in front of
variables p.

Lemma 14 Let A = A(p, q) be a formula, r = r1, . . . rk, p = p1, . . . pk. Assume that
circuits Cq in variables p solve the problem A. Then

(1) the circuit C(p) := A(p, Cq(p)) computes the function fA(p).

(2) Assume in addition that Cq solve the problem A polynomially in F and that A
is monotone in p. Then the tautology

(?)
∧

i,j=1,...n

(pi → ri) → (C(p) → C(r))

has a polynomial size proof in F .
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Proof. (1) is clear.
(2) We must show that

(?)
∧

i=1,...n

(pi → ri) → (A(p, Cq(p)) → A(r, Cq(r))

has a polynomial size F -proof. Since A(p, q) is monotone in p, we obtain a linear proof
of

(i)
∧

i=1,...n

(pi → ri) → (A(p, Cq(p)) → A(r, Cq(p)).

Since the circuits Cq solve the problem A polynomially in F , we have a polynomial
proof of

(ii) A(r, Cq(p)) → A(r, Cq(r)),

which together with (i) gives a polynomial size CF proof of (?). (Note that (?) contains
all the circuit gate conditions in its assumption.) QED

Let p = pij , i, j = 1, . . . n and q = qij , i, j = 1, . . . n. Then the formula

MATCH(p, q)

is the formula asserting that q is a matching on the graph represented by p, i.e., the
formula ∧

i,j

(¬qij ∨ pij) ∧
∧

i,j1 6=j2

(¬qij1 ∨ ¬qij2) ∧
∧

i1 6=i2,j

(¬qi1j ∨ ¬qi2j),

where the indices range over 1, . . . n. The formula

PMATCH(p, q) :=
∧
i

∨
j

qij ∧MATCH(p, q)

is the formula asserting that q is a perfect matching. In the Appendix, we will sketch
the construction of circuits Cq which polynomially solve the problem PMATCH in F .
This will give the following theorem:

Theorem 15 There is a circuit C which computes the perfect matching function s.t.
the tautology ∧

i,j=1,...n

(pij → qij) → (C(p) → C(q))

has a polynomial size F -proof. Hence (to match the formulation Theorem 12) also the
tautology ∧

i,j=1,...n

(pij ∨ qij) → ([C(p)] ∨ [¬C(¬q)])

has a polynomial size F -proof.
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Appendix

The algorithm

Let us first outline the algorithm for finding a perfect matching in a graph. For a
matching M and a vertex v, we will say that v is matched if v ∈ V ert(M). Similarly,
an edge e is matched if e ∈ M . A path P in G will be called alternating if it alter-
nates between matched and unmatched edges and the first vertex is unmatched. An
alternating path will be called augmenting if it ends by an unmatched vertex, too.

The algorithm constructs a sequence of matchings M0, . . . Mn, Mi having size i.
Let M0 := ∅. At the stage i + 1, find an augmenting path P for Mi and let Mi+1 :=
(Mi \ P ) ∪ (P \Mi).

An augmenting path for a matching M in G can be found as follows. Let u ∈ U be
an unmatched vertex in G and define a sequence of sets of vertices Uu

0 , Uu
1 , . . . Uu

n ⊆ U ,
V u

1 , . . . V u
n ⊆ V .

Uu
0 := {u}

V u
i+1 := {a ∈ V ert(G),∃b ∈ U i

i 〈a, b〉 ∈ G \M}, i = 0, . . . n− 1

Uu
i+1 := {a ∈ V ert(G),∃b ∈ V i

i 〈a, b〉 ∈ M}, i = 1, . . . n− 1.

Clearly, for every a ∈ V u
k resp. a ∈ Uu

k there exists an alternating path of length
2k − 1 resp. 2k from u to a. Hence if we find a and k = 1, . . . n s.t. a ∈ V u

k and a is
unmatched, then there is an augmenting path from u to a. Moreover, we can easily
construct the path: we can find a′ ∈ Uu

k−1 s.t. 〈a′, a〉 ∈ G is unmatched. Again there
is an alternating path of length 2k − 2 from u to a′, and we can find some a′′ ∈ V u

k−2

s.t. 〈a′′, u〉 ∈ G is matched etc until we reach u.
A set X ⊆ U will be called critical in G, if |X| > |G(X)|, where G(X) ⊆ V is the

image of X over the graph G. The correctness of the algorithm can be proved using
Hall’s theorem:
G has a perfect matching iff G does not have a critical set.
It can be easily shown that the sets Uu

i , V u
i constructed above either define an aug-

menting path, or
X :=

⋃
i=0,...n

Uu
i

is a critical set. For if Y :=
⋃

i=0,...n V u
i then i) Y = G(X), from the definition, and

ii) |Y | = |(X \ {u})| = |X| − 1, since every vertex of Y is matched to some vertex in
X \ {u}. Therefore if G has a perfect matching then, since there is no critical set, the
algorithm finds an augmenting path for Mi and hence it extends the matching Mi to
Mi+1, until a perfect matching is reached.

The formalisation

There exist polynomial formulas Countkn(p1, . . . pn) asserting that exactly k of the
variables p = p1, . . . pn are true s.t. their expected properties have polysize proofs in
F (see [2]). This enables the formalisastion of basic counting arguments in F .
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The formula MATCHk(p, q) will be an abbreviation for

MATCH(p, q) ∧ Countkn(
∨

j=1,...n

qij , i = 1, . . . n).

For a vertex a, the formula MATCHEDa(q) will be an abbreviation for
∨

j=1,...n qij ,
if a = ui ∈ U , and

∨
j=1,...n qji, if a = vi ∈ V .

A path of odd length in a bipartite graph on U and V which starts in some ui1 ∈ U
can be represented by a sequence ui1 , . . . uik

∈ U vj1 , . . . vjk
∈ V s.t. the path contains

edges 〈uil
, vjl

〉 and 〈vil
, ujl+1〉. Let f = fij , i, j = 1, . . . n and g = gij , i, j = 1, . . . n

be fresh variables. Let a = ui, b = vj be vertices. Then the formula

ODDPATHk
ab(p, f, g)

will be the formula asserting that f and g represent an odd path from a to b of length
k, i.e., the assertion that i) f and g are onto partial functions from 1, . . . n to 1, . . . k,
and f1i = 1, gkj = 1, ii) for every i′, j′ = 1, . . . n, and l = 1, . . . k if fi′l = 1 and gj′l = 1
then pi′j′ = 1. The formula

ALTODDPATHk
ab(p, q, f , g)

will be the formula asserting that f and g represent an alternating path of odd length
from a to b w.r. to the matching q, i.e., the conjunction of i) ODDPATHk

ab(p, f, g), ii)
¬MATCHEDa(q) and iii)

∧
i,j(fil ∧ gjl → ¬qij), for odd l, and

∧
i,j(fil ∧ gjl → ¬qij)

for l even. Similarly for an odd path which starts in some a ∈ U and for even length
paths. Let

PATHk
ab(p, f, g), and ALTPATHk

ab(p, f, g)

be the formulas asserting that f and g represent a path resp. alternating path from a
to b of length k.

AUGPATHk
ab(p, q, f , g)

will be the formula asserting that f and g represent an augmenting path from u to
v w.r. to the matching q, i.e., an alternating path from a to b s.t. b is unmatched.
Finally,

AUGPATH(p, q, f , g)

is the disjunction of all AUGPATHk
ab(p, q, f , g).

For a list of formulas Aij , i, j = 1, . . . n Dom(q) will be the list of n formulas∧
i

Ai1, . . .
∧
i

Ain.

The formula
CRIT(p, r),

r = r1, . . . rn, will be the formula asserting that the set X := {ui ∈ U ; ri = 1}
is a critical set in the graph represented by p. More exactly, it is a disjunction of
conjunctions of the form Countk

n(r1, . . . rn) ∧ Countj
n(Dom(ri ∧ pij)), for j < k.

The following Lemma shows that the easy direction of Hall’s theorem is shortly
provable in F :
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Lemma 16 The formula

PMATCH(p, q) → ¬CRIT(p, r)

has a polynomial-size Frege proof.

Proof. Assume PMATCH(p, q) and CRIT(p, r). Then we shortly obtain a negation
of pigeonhole principle which has a short Frege refutation. QED

Lemma 17 There are polynomial circuits Cf and Dg in variables p, q s.t. the follow-
ing has polynomial-size Frege proof:

MATCH(p, q) → (AUGPATH(p, q, f , g) ∨ CRIT(p,Dom(f))).

Proof. Recall the sets Ua
0 , . . . Ua

n and V u
0 , . . . V a

n . For a ∈ U , we can find polynomial-
size circuits Es

au, s = 0, . . . n, u ∈ U , and F s
av, s = 1, . . . n, v ∈ U , s.t. Es

au = 1 iff
u ∈ Ua

s and Es
av = 1 iff v ∈ V a

s , and moreover, the anologons of the defining relations
between Ua

i and V a
i have polynomial proofs in F . The proof is then a straightforward

formalisation of the above informal argument. QED

Lemma 18 There exist circuits Cq in variables p, q, f , g s.t. the following has polynomial-
size Frege proof:

MATCHk(p, q) → (MATCHk+1(p, Cq) ∨ CRIT(p,Dom(Cq))).

Proof. The following is a simple counting argument in F : if M is a matching of size
k and P is an augmenting path then (P \M) ∪ (M \ P ) is a matching of size k + 1.
The statement of the Lemma then follows from the previous one. QED

Let us recall the matchings M0, . . . Mn from our description of the algorithm. Using
the circuits from Lemma 17 and Lemma 18, we can find polynomial circuits Ck

q (p) s.t.
there are short Frege proofs of

MATCHk(p, Ck
q ) ∨ CRIT(p, Dom(Cq))),

i.e., they either define a matching of size k, or a critical set. Since MATCHn(p, q) is
trivially equivalent to PMATCH(p, q), we also have circuits Cq and polynomial proofs
for

PMATCH(p, Cq) ∨ CRIT(p, Dom(Cq))).

Finally, from Lemma 16 it follows that

PMATCH(p, q) → PMATCH(p, Cq)

has a polynomial-size Frege proof, and hence the circuits Cq solve the problem PMATCH(p, q)
polynomially in F .
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