
SMOOTH APPROXIMATIONS

PETR HÁJEK AND MICHAL JOHANIS

Abstract. We prove that a Lipschitz (or uniformly continuous) mapping f : X → Y can be approximated by smooth

Lipschitz (resp. uniformly continuous) mapping, if X is a separable Banach space admitting a smooth Lipschitz bump
and either X or Y is a C(K) space (resp. super-reflexive space). As a corollary we obtain also smooth approximation

of C1-smooth mappings together with their first derivatives.

1. Introduction

The theory of approximation of continuous mappings between infinite dimensional Banach spaces by smooth map-
pings, which goes back to Kurzweil [K] and Bonic and Frampton [BF], is nowadays well understood and provides
satisfactory results, see for example [DGZ].

The related problem, whether the smooth approximation of Lipschitz (or uniformly continuous) mappings can retain
the Lipschitz (or uniform continuity) property is much less studied, and so far the result available are not very general.
One of the reasons is that most of the results on approximation of continuous mappings use the notion of smooth
partition of unity, and it is very difficult, if not impossible, to keep some uniformity in the partition.

The main results of the present paper are that a Lipschitz (or uniformly continuous) mapping f : X → Y can
be approximated by smooth Lipschitz mapping (Corollary 8), resp. uniformly continuous mapping (Corollary 10),
if X is a separable Banach space admitting a smooth Lipschitz bump and either X or Y is a C(K) space (resp.
super-reflexive space). To this end, we develop some more general theorems and apply the results of Lindenstrauss on
absolute retracts (see e.g. [BL, Theorem I.1.6, Theorem I.1.26]). These two results complement the presently known
theorems (see below), for example we remove the assumption on X having a basis from Theorem H but unfortunately
we have to restrict the type of the target space.

Further, we show that smooth approximation of Lipschitz mappings is closely related to a smooth approximation of
C1-smooth mappings together with their first derivatives, namely we generalise the result of Moulis (Theorem C) into
arbitrary (non-separable) spaces (Theorem 13). As a corollary we obtain also a result on approximation of C1-smooth
mappings (Corollary 14).

To put our results into perspective, we summarise the current state of the theory below.
But first, we need to fix some notation. Let BX (UX) denote a closed (open) unit ball of a normed linear space

X. Further, for a metric space (P, ρ), we denote B(x, r) = {y ∈ P : ρ(x, y) ≤ r} and U(x, r) = {y ∈ P : ρ(x, y) < r}
the closed and open ball in P centred at x ∈ P with radius r ≥ 0. Let A ⊂ P . A neighbourhood U ⊂ P of A is
called an r-uniform neighbourhood if there is r > 0 such that

⋃
x∈A U(x, r) ⊂ U . A neighbourhood is called a uniform

neighbourhood if it is r-uniform for some r > 0. For a set M ∈ P and ε > 0 we denote Mε = {x ∈M : dist(x, P \M) >
ε}.

Now we list the known results, in the order as they appeared in the literature:

Theorem A (Moulis). Let X be a Banach space with an unconditional Schauder basis that admits a Ck-smooth
Lipschitz bump function, k ∈ N∪{∞}, and Y be a Banach space. For any open Ω ⊂ X, any mapping f ∈ C1(Ω, Y ) and
any continuous function ε : Ω → (0,+∞) there is g ∈ Ck(Ω, Y ), such that ‖f(x)− g(x)‖ < ε(x) and ‖f ′(x)− g′(x)‖ <
ε(x) for all x ∈ Ω.

This theorem immediately follows from the following two results:

Theorem B (Moulis). Let X be a Banach space with a monotone unconditional Schauder basis that admits a Ck-
smooth Lipschitz bump function. There is a constant C > 0 such that if Y is a Banach space, M ⊂ X such that
PnM ⊂ M for all n ∈ N, Ω a uniform open neighbourhood of M , f : Ω → Y an L-Lipschitz Gâteaux differentiable
mapping such that for each n ∈ N the mapping x 7→ f ′(x)en is uniformly continuous on Ω, and ε > 0, then there is
g ∈ Ck(X,Y ) such that ‖g′(x)‖ ≤ C(1 + ε)L for all x ∈Mε and ‖f(x)− g(x)‖ < ε for all x ∈Mε.

Theorem C (Moulis). Let X, Y be normed linear spaces, X separable, and k ∈ N∪{∞}. Suppose there is C ∈ R such
that for any L-Lipschitz mapping f ∈ C1(2UX , Y ) and any ε > 0 there is a CL-Lipschitz mapping g ∈ Ck(UX , Y ),
such that supx∈UX

‖f(x)− g(x)‖ ≤ ε. Then for any open Ω ⊂ X, any mapping f ∈ C1(Ω, Y ) and any continuous
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function ε : Ω → (0,+∞) there is g ∈ Ck(Ω, Y ), such that ‖f(x)− g(x)‖ < ε(x) and ‖f ′(x)− g′(x)‖ < ε(x) for all
x ∈ Ω.

We note, that Theorem B is actually formulated as [M, Lemme fondamental 1] under much stronger assumptions,
namely for Lp spaces and mappings C1-smooth on some ball. However, the proof in [M] works also for spaces with
unconditional basis with only formal modifications. Denote Xn = span{ei}n

i=1 and fn = f�Xn . Then the assumptions
of Theorem B imply that that f ′n are uniformly continuous on Ω ∩ Xn. Noticing this, the proof in [M] works also
almost verbatim under the relaxed differentiability assumptions.

The next theorem uses the infimal convolution techniques, hence provides only C1-smooth approximation of func-
tions. Nevertheless, it is the first non-separable result.

Theorem D (Cepedello). Let X be a super-reflexive Banach space, f : X → R a Lipschitz function and ε > 0. Then
there is a function g ∈ C1(X) which is Lipschitz on bounded sets and such that supx∈X |f(x)− g(x)| ≤ ε.

This follows from [C, Corollary 3].
If we put no assumptions on the smoothness of the source space, we obtain only a uniformly Gâteaux differentiable

approximation.

Theorem E (Johanis, [J]). Let X be a separable Banach space, Y a Banach space, f : X → Y be an L-Lipschitz
mapping and ε > 0. Then there is a mapping g : X → Y which is L-Lipschitz, uniformly Gâteaux differentiable, and
supx∈X ‖f(x)− g(x)‖ ≤ ε.

The following theorem gives smooth approximations of bounded Lipschitz functions.

Theorem F (Fry). Let X be a separable normed linear space that admits a Ck-smooth Lipschitz bump function,
k ∈ N ∪ {∞}. For each ε > 0 there is a constant K ∈ R such that if f : X → [0, 1] is 1-Lipschitz, then there is a
K-Lipschitz function g ∈ Ck(X), such that supx∈X |f(x)− g(x)| ≤ ε.

By obvious adjustments of the proof of [F1, Theorem 1] we obtain this more general Theorem F, see also the proof
of Theorem 3, (i)⇒(ii). We note that the subsequent attempt to generalise Theorem F for WCG spaces in [F3] appears
to be seriously flawed and it is unknown at present if the result holds.

Finally, there is a recent result on approximation of Lipschitz (or more generally uniformly continuous) mappings
on c0(Γ).

Theorem G (Hájek-Johanis). Let Γ be an arbitrary set, Y be a Banach space, M ⊂ c0(Γ), U ⊂ c0(Γ) be a uni-
form neighbourhood of M , f : U → Y be a uniformly continuous mapping with modulus of continuity ω and let
ε > 0. Then there is a mapping g ∈ C∞(c0(Γ), Y ) which locally depends on finitely many coordinates such that
supM ‖f(x)− g(x)‖ ≤ ε and g is uniformly continuous on M with modulus of continuity dominated by ω. In particu-
lar, if f is L-Lipschitz, then g is L-Lipschitz on M .

This stronger version of [HJ, Theorem 1] follows by not very difficult modification of the proof.
If a uniformly continuous mapping f : X → Y is uniformly Gâteaux differentiable, then the mappings x 7→ f ′(x)h

are uniformly continuous on X (see e.g. [HJ, Lemma 4]). Thus combining Theorem E and Theorem B we immediately
obtain the following corollary:

Theorem H. Let X be a Banach space with an unconditional Schauder basis that admits a Ck-smooth Lipschitz bump
function. There is a constant C > 0 such that if Y is a Banach space, f : X → Y an L-Lipschitz mapping, and ε > 0,
then there is a C(1 + ε)L-Lipschitz mapping g ∈ Ck(X,Y ) such that ‖f(x)− g(x)‖ < ε for all x ∈ X.

This result was first stated by R. Fry in [F2]. His proof (as well as the corrigendum) is however not correct.

2. Approximation of functions and embeddings into c0(Γ)

First, although not directly related to our results, we show the following observation, which basically says that to
approximate Lipschitz functions it only suffices to consider approximation of bounded functions, and moreover we gain
control over the Lipschitz constant of the approximation.

Proposition 1. Let k ∈ N ∪ {∞} and X be a normed linear space with the following property: There is a C ∈ R
such that for each A ⊂ X there is a C-Lipschitz function hA ∈ Ck(X, [0, 1]) satisfying hA(x) = 0 for all x ∈ A and
hA(x) = 1 for all x ∈ X such that dist(x,A) ≥ 1.

Then for each ε > 0 and an arbitrary L-Lipschitz function f : X → R there is a CL-Lipschitz function g ∈ Ck(X)
such that |g(x)− f(x)| ≤ ε for each x ∈ X.

Proof. Let us define a function f̃ : X → R by f̃(x) = 1
εf( ε

Lx). This function is obviously 1-Lipschitz. Next, let us
define sets An = {x ∈ X : f̃(x) ≥ n} for n ∈ Z. Clearly, An+1 ⊂ An for all n ∈ Z, and using the 1-Lipschitz property
of f̃ it is easy to check that

dist(X \An, An+1) ≥ 1 for all n ∈ Z. (1)
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Further, denote hn(x) = 1− hAn+1(x) for n ∈ Z. For each n ∈ Z, hn ∈ Ck(X, [0, 1]), hn is C-Lipschitz, hn(x) = 1 for
all x ∈ An+1 and, by (1), hn(x) = 0 for all x ∈ X \An.

Now, put

h(x) =
∞∑

n=0

hn(x)−
−1∑

n=−∞

(
1− hn(x)

)
. (2)

Fix an arbitrary x ∈ X. Then there is m ∈ Z such that x ∈ Am \ Am+1. It follows, that hn(x) = 0 for all n > m and
hn(x) = 1 for all n < m. Hence (2) defines a function h : X → R. Moreover, by (1), the sums in (2) are even locally
finite, therefore h ∈ Ck(X). Further, it is easy to check that h(x) = m+ hm(x). This implies that h(x) ∈ [m,m+ 1],
while f̃(x) ∈ [m,m+ 1) and hence

∣∣h(x)− f̃(x)
∣∣ ≤ 1.

It remains to show that h is C-Lipschitz. To this end, choose x, y ∈ X and find n, l ∈ Z such that x ∈ An \ An+1

and y ∈ An+l \ An+l+1. Without loss of generality we may assume that l ≥ 0. If l = 0, then clearly |h(x)− h(y)| =
|n+ hn(x)− n− hn(y)| ≤ C ‖x− y‖.

We prove the case l > 0 by induction on l. As a first step of the induction assume that l = 1. Denote by [x, y] the
line segment between the points x and y. Since [x, y] is connected, there is a point z ∈ [x, y] ∩ An+1 ∩ (X \An+1).
From the properties of hn and hn+1 and from the continuity of hn+1 it follows that hn(z) = 1 and hn+1(z) = 0. Thus

|h(y)− h(x)| = |n+ 1 + hn+1(y)− n− hn(x)| = |hn+1(y) + 1− hn(x)| = |hn+1(y)− hn+1(z) + hn(z)− hn(x)|
≤ |hn+1(y)− hn+1(z)|+ |hn(z)− hn(x)| ≤ C ‖y − z‖+ C ‖z − x‖ = C ‖y − x‖ .

To prove the general induction step assume that l > 1. By the continuity of f̃ there is z ∈ [x, y] such that
z ∈ An+1 \An+2. Using the induction hypothesis on the pair x, z and again on the pair z, y we obtain |h(x)− h(y)| ≤
|h(x)− h(z)|+ |h(z)− h(y)| ≤ C ‖x− z‖+ C ‖z − y‖ = C ‖x− y‖.

Finally, let g(x) = εh(L
ε x). It is straightforward to check that g satisfies the conclusion of our theorem.

ut

Combining Proposition 1 and Theorem F we would obtain a smooth approximation of Lipschitz functions on smooth
separable normed linear spaces. However, we skip the details, since we will show more, see Corollary 8.

In the sequel we will be using smooth bi-Lipschitz homeomorphisms into c0(Γ). The following two results show how
they can be constructed and how they are related to smooth approximation of Lipschitz functions. First we define
some notions useful in this context.

For a metric space P , we denote U(r) = {U(x, r); x ∈ P}. For a real function f we denote supp f = f−1(R \ {0}).
Let X be a set. A collection {ψα}α∈Λ of functions on X is called a sup-partition of unity if
• ψα : X → [0, 1] for all α ∈ Λ,
• for each x ∈ X the set {α ∈ Λ: ψα(x) > 0} is finite,
• for each x ∈ X there is α ∈ Λ such that ψα(x) = 1.

Let U be a covering of X. We say that the sup-partition of unity {ψα}α∈Λ is subordinated to U if {suppψα}α∈Λ refines
U.

Fact 2. Let Γ be an infinite set, r > 0 and 0 < δ < r
2 . There is an open point-finite uniform refinement V = {Vγ}γ∈Γ

of the uniform covering U(r) of c0(Γ) such that U( r
2 − δ) refines V. Moreover, V is formed by the translates of the

open ball U(0, r − δ). Further, there is a C∞-smooth, locally dependent on finitely many coordinate functionals, and
( 2

r + δ)-Lipschitz sup-partition of unity {ψγ}γ∈Γ on c0(Γ) subordinated to U(r).

The first part of this fact was already shown in [P, Proposition 2.3], but with more complicated proof.

Proof. Notice that, by homogeneity, it suffices to prove all the statements only for r = 1.
Let {aγ}γ∈Γ be the set of all vectors in c0(Γ) with coordinates in Z. (Notice that the cardinality of such set is |Γ|

and so we may index its points by Γ.) We claim that V = {U(aγ , 1− δ)}γ∈Γ is the desired refinement.
Clearly, V is an open refinement of U(1). To see that it is point-finite, pick any x ∈ c0(Γ) and find a finite

F ⊂ Γ such that |x(γ)| < δ whenever γ ∈ Γ \ F . Suppose that α ∈ Γ is such that x ∈ U(aα, 1 − δ). Then for γ /∈ F ,
|aα(γ)| ≤ |aα(γ)− x(γ)|+ |x(γ)| < 1 and so aα(γ) = 0. From |x(γ)− aα(γ)| < 1−δ and aα(γ) ∈ Z it follows that there
are at most two possibilities for aα(γ) for each γ ∈ F . From this we can conclude that

∣∣{α : x ∈ U(aα, 1− δ)}
∣∣ ≤ 2|F |.

Finally, we show that U( 1
2−δ) refines V. Choose any x ∈ c0(Γ) and find β ∈ Γ such that ‖x− aβ‖ ≤ 1

2 . This is always
possible, since there is a finite F ⊂ Γ such that |x(γ)| < 1

2 whenever γ /∈ F , and so aβ(γ) = 0 for such γ. Suppose
z ∈ U(x, 1

2 − δ). Then ‖aβ − z‖ ≤ ‖aβ − x‖+ ‖x− z‖ < 1
2 + 1

2 − δ = 1− δ, which implies U(x, 1
2 − δ) ⊂ U(aβ , 1− δ).

To construct the sup-partition of unity subordinated to U(1), find ε > 0 and 0 < η < 1
2 such that 0 <

1/
(
1− η − 1+ε

2

)
< 2 + δ

4 and (1 + ε)
(
2 + δ

2

)
≤ 2 + δ. Let W = {U(aγ , 1 − η)}γ∈Γ be the point-finite refinement

of U(1) from the first part of the proof such that U( 1
2 − η) refines W. Further, let ‖·‖ be an equivalent C∞-smooth

norm ‖·‖ on c0(Γ) which locally depends on finitely many of the coordinate functionals {e∗γ}γ∈Γ (away from the origin)
and such that ‖x‖∞ ≤ ‖x‖ ≤ (1+ε) ‖x‖∞ for all x ∈ c0(Γ). (To construct such a norm, take for example the Minkowski
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functional of the set {x ∈ c0(Γ) :
∑

γ∈Γ ϕ(xγ) ≤ 1}, where ϕ ∈ C∞(R), ϕ is convex and even, ϕ(1) = 1, and ϕ(t) = 0
for t ∈ [− 1

1+ε ,
1

1+ε ].)
For each γ ∈ Γ we put ψγ(x) = q

(
‖x− aγ‖

)
, where q ∈ C∞(R, [0, 1]), q is

(
2 + δ

2

)
-Lipschitz, q(t) = 0 for t ≥

1 − η, and q(t) = 1 for t ≤ 1+ε
2 . The collection {ψγ}γ∈Γ is a sup-partition of unity. Indeed, it is easy to see, that

suppψγ ⊂ U(aγ , 1 − η) for each γ ∈ Γ, and consequently the set {γ ∈ Γ: ψγ(x) > 0} is finite for each x ∈ X.
Further, fix any x ∈ X. There is an α ∈ Γ such that U(x, 1

2 − η) ⊂ U(aα, 1 − η), which gives ‖x− aα‖∞ ≤ 1
2 . Hence

‖x− aα‖ ≤ (1 + ε) ‖x− aα‖∞ ≤ 1+ε
2 , which in turn implies ψα(x) = 1.

As the function q is
(
2 + δ

2

)
-Lipschitz and the function ‖·‖ is (1 + ε)-Lipschitz (with respect to the norm ‖·‖∞),

the functions ψγ are (2 + δ)-Lipschitz according to the choice of ε. The rest of the properties of the functions ψγ is
obvious.

ut

Theorem 3. Let X be a normed linear space, Γ an infinite set, and k ∈ N∪{0,∞}. Then the following are equivalent:
(i) There is M ∈ R such that there is a Ck-smooth and M -Lipschitz sup-partition of unity {φγ}γ∈Γ on X subordinated

to U(1).
(ii) X is uniformly homeomorphic to a subset of c0(Γ) and for each ε > 0 there is K > 0 such that for each 1-Lipschitz

function f : X → [0, 1] there is a K-Lipschitz function g ∈ Ck(X) such that supx∈X |g(x)− f(x)| ≤ ε.
(iii) There is a bi-Lipschitz homeomorphism ϕ : X → c0(Γ) such that the coordinate functions e∗γ ◦ ϕ ∈ Ck(X) for

every γ ∈ Γ.

Proof. First we show that (i) implies (iii). From the properties of the sup-partition of unity there is β ∈ Γ such that
φβ(0) = 1. By scaling and composing φβ with a suitable function we construct a C-Lipschitz function h ∈ Ck(X, [0, 1])
such that h = 0 on B(0, r) and h = 1 outside U(0, 1) for some constants C, r ∈ R, r > 0. (We may for example choose
r such that 1− 2Mr > 0 and take h(x) = q(φβ(2x)), where q ∈ Ck(R), q is Lipschitz, q([0, 1]) = [0, 1], q(0) = 1, and
q(s) = 0 for s ≥ 1− 2Mr.)

Choose t > 1 and for each n ∈ Z and γ ∈ Γ define functions φn
γ ∈ Ck(X) by

φn
γ (x) = tnφγ

( x
tn

)
h

( x
tn

)
.

The properties of the functions φγ and h guarantee that each φn
γ is (M + C)-Lipschitz. Let d : Z × Γ → Γ be some

one-to-one mapping and define ϕ : X → RΓ by ϕ(x)α = φn
γ (x) if α = d(n, γ) for some n ∈ Z, γ ∈ Γ; ϕ(x)α = 0

otherwise.
We show that ϕ actually maps into c0(Γ). Choose an arbitrary x ∈ X and ε > 0. There is n0 ∈ Z such that tn < ε

for all n < n0 and n1 ∈ Z such that ‖x‖ ≤ rtn for all n > n1. It follows that
∣∣φn

γ (x)
∣∣ < ε for all n < n0 and γ ∈ Γ, and,

by the properties of h, φn
γ (x) = 0 for all n > n1 and γ ∈ Γ. As for each n0 ≤ n ≤ n1, φγ(x/tn) 6= 0 only for finitely

many γ ∈ Γ, we can conclude that ϕ : X → c0(Γ).
Since each φn

γ is (M + C)-Lipschitz, the mapping ϕ is (M + C)-Lipschitz as well.
To prove that ϕ is one-to-one and ϕ−1 is Lipschitz too, choose any two points x, y ∈ X, x 6= y, and find m ∈ Z

such that 2tm ≤ ‖x− y‖ < 2tm+1. Without loss of generality we may assume that ‖x‖ ≥ tm. Then h(x/tm) = 1 and
so there is γ ∈ Γ such that φm

γ (x) = tm. Now suppose there is z ∈ X such that φm
γ (z) > 0. As suppφγ ⊂ U(w, 1) for

some w ∈ X,
∥∥ x

tm − z
tm

∥∥ < 2 and consequently ‖x− z‖ < 2tm. But this means that φm
γ (y) = 0 and therefore

‖ϕ(x)− ϕ(y)‖∞ ≥
∣∣φm

γ (x)− φm
γ (y)

∣∣ = φm
γ (x) = tm >

1
2t
‖x− y‖ .

(iii)⇒(i): Let A,B ∈ R are such that A ‖x− y‖ ≤ ‖ϕ(x)− ϕ(y)‖∞ ≤ B ‖x− y‖. By Fact 2, there is a C > 0
and a C∞-smooth, locally dependent on finitely many coordinate functionals, and C-Lipschitz sup-partition of unity
{ψγ}γ∈Γ on c0(Γ) subordinated to U(A). Putting φγ = ψγ ◦ ϕ, {φγ}γ∈Γ is a BC-Lipschitz sup-partition of unity
subordinated to U(1). Fix γ ∈ Γ. To see that φγ ∈ Ck(X), pick any x ∈ X. There is a neighbourhood V of ϕ(x) such
that ψγ(w) = G(f1(w), . . . , fn(w)) for each w ∈ V , where f1, . . . , fn ∈ {e∗γ}γ∈Γ and G ∈ C∞(Ω) for some Ω ⊂ Rn

open. Let U be an open neighbourhood of x such that ϕ(U) ⊂ V . Then φγ(y) = ψγ(ϕ(y)) = G(f1(ϕ(y)), . . . , fn(ϕ(y)))
for each y ∈ U . Since, by the assumption, fi ◦ ϕ ∈ Ck(X) for each i = 1, . . . , n, and G ∈ C∞(Ω), φγ is Ck-smooth on
U .

(i)⇒(ii): We already know that (iii) holds and from this the first part of (ii) follows immediately. To prove the
second part of (ii), let ε > 0. The basic idea of the proof is that Lipschitz functions are stable under the operation
of pointwise supremum. To preserve the smoothness, we will use a “smoothened supremum”, or an equivalent smooth
norm on c0(Γ). Let ‖·‖ be an equivalent C∞-smooth norm on c0(Γ) which locally depends on finitely many of the
coordinate functionals {e∗γ}γ∈Γ (away from the origin), and let C > 0 be such that ‖x‖∞ ≤ ‖x‖ ≤ C ‖x‖∞ for all
x ∈ c0(Γ) (see the proof of Fact 2). We will show, that K = 4C3M/ε satisfies our claim.

By adding the constant 1 we may and do assume that f maps into [1, 2]. Put δ = ε
C and ψγ(x) = φγ(x

δ ) for all
x ∈ X, γ ∈ Γ. It follows, that {ψγ}γ∈Γ is a Ck-smooth and M/δ-Lipschitz sup-partition of unity subordinated to U(δ).
Since the sets {γ ∈ Γ: ψγ(x) > 0} are finite, (ψγ(x))γ∈Γ ∈ c0(Γ) for each x ∈ X. For each γ ∈ Γ there is a point xγ ∈ X
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such that suppψγ ⊂ U(xγ , δ). The boundedness of the function f guarantees that also
(
f(xγ)ψγ(x)

)
γ∈Γ

∈ c0(Γ) for
each x ∈ X. Therefore we can define the function g : X → R by

g(x) =

∥∥(
f(xγ)ψγ(x)

)
γ∈Γ

∥∥∥∥(
ψγ(x)

)
γ∈Γ

∥∥ .

As
‖(ψγ(x))‖ ≥ ‖(ψγ(x))‖∞ = sup

γ∈Γ
ψγ(x) = 1 for each x ∈ X, (3)

the function g is well defined on all of X.
The mapping x 7→

(
ψγ(x)

)
and, by the boundedness of f , also the mapping x 7→

(
f(xγ)ψγ(x)

)
are Lipschitz

mappings from X into c0(Γ)\U(0, 1). (Notice that for each x ∈ X there is γ ∈ Γ such that ψγ(x) = 1 and f(xγ)ψγ(x) ≥
1.) Since ‖·‖ is C∞-smooth and depends locally on finitely many coordinates away from the origin, and since ψγ ∈
Ck(X) and f(xγ)ψγ ∈ Ck(X) for each γ ∈ Γ, similarly as in the proof of (iii)⇒(i) we infer that g ∈ Ck(X).

To see that the function g is K-Lipschitz, choose any two points x, y ∈ X. Then, using (3) and the facts that ψγ

maps into [0, 1], f maps into [1, 2], and ψγ are M/δ-Lipschitz, we can estimate

|g(x)− g(y)| =

∣∣∣∥∥(
f(xγ)ψγ(x)

)∥∥ ∥∥(
ψγ(y)

)∥∥− ∥∥(
f(xγ)ψγ(y)

)∥∥ ∥∥(
ψγ(x)

)∥∥∣∣∣∥∥(
ψγ(x)

)∥∥ ∥∥(
ψγ(y)

)∥∥
≤

∣∣∣∥∥(
f(xγ)ψγ(x)

)∥∥ ∥∥(
ψγ(y)

)∥∥− ∥∥(
f(xγ)ψγ(y)

)∥∥ ∥∥(
ψγ(x)

)∥∥∣∣∣
≤

∥∥(
ψγ(y)

)∥∥ ∣∣∣∥∥(
f(xγ)ψγ(x)

)∥∥− ∥∥(
f(xγ)ψγ(y)

)∥∥∣∣∣ +
∥∥(
f(xγ)ψγ(y)

)∥∥ ∣∣∣∥∥(
ψγ(y)

)∥∥− ∥∥(
ψγ(x)

)∥∥∣∣∣
≤ C

∥∥(
f(xγ)(ψγ(x)− ψγ(y))

)∥∥ + 2C
∥∥(
ψγ(y)− ψγ(x)

)∥∥
≤ C2

∥∥(
f(xγ)(ψγ(x)− ψγ(y))

)∥∥
∞ + 2C2

∥∥(
ψγ(y)− ψγ(x)

)∥∥
∞

≤ 4C2 sup
γ∈Γ

|ψγ(y)− ψγ(x)| ≤ 4C2M

δ
‖x− y‖ = K ‖x− y‖ .

Finally, to show that g approximates f , choose an arbitrary x ∈ X. Applying successively the inequality (3) and
the facts that suppψγ ⊂ U(xγ , δ) and f is 1-Lipschitz, we obtain

|g(x)− f(x)| =

∣∣∣∣∣
∥∥(
f(xγ)ψγ(x)

)∥∥∥∥(
ψγ(x)

)∥∥ − f(x)

∥∥(
ψγ(x)

)∥∥∥∥(
ψγ(x)

)∥∥
∣∣∣∣∣ ≤

∥∥(
(f(xγ)− f(x))ψγ(x)

)∥∥∥∥(
ψγ(x)

)∥∥ ≤ C
∥∥(

(f(xγ)− f(x))ψγ(x)
)∥∥

∞

= C sup
γ∈Γ

{
|f(xγ)− f(x)|ψγ(x)

}
= C sup

γ∈Γ
x∈U(xγ ,δ)

{
|f(xγ)− f(x)|ψγ(x)

}
≤ C sup

γ∈Γ
x∈U(xγ ,δ)

{
‖xγ − x‖

}
< Cδ = ε.

(ii)⇒(i): It is not difficult to construct a point-finite base of the uniform coverings of c0(Γ) and pull it back onto
X via the uniform homeomorphism (cf. [P, Proposition 2.3]). So let V = {Vγ}γ∈Γ be an open point-finite uniform
refinement of the covering U(1) of X. (We note that such refinement can be chosen so that |V| = |Γ| and so we can
indeed index it by Γ.) Let 0 < δ ≤ 1 be such that U(δ) refines V. For each γ ∈ Γ we define the function fγ : X → [0, 1]
by fγ(x) = min{dist(x,X \ Vγ), δ}.

Choose some 0 < θ < δ
2 . For each γ ∈ Γ, the function fγ is 1-Lipschitz and so, by (ii), there is a K-Lipschitz

function gγ ∈ Ck(X) such that supx∈X |gγ(x)− fγ(x)| ≤ θ. Let q ∈ Ck(R, [0, 1]) be a C-Lipschitz function for some
C ∈ R, such that q(t) = 0 for t ≤ θ and q(t) = 1 for t ≥ δ − θ. Finally, we let φγ(x) = q(gγ(x)) for each γ ∈ Γ.
Clearly, each function φγ belongs to Ck(X, [0, 1]) and is M -Lipschitz, where M = CK. Further, for any x ∈ X there
is α ∈ Γ such that U(x, δ) ⊂ Vα, hence fα(x) = δ and consequently φα(x) = 1. As suppφγ ⊂ Vγ for all γ ∈ Γ and V is
point-finite, {φγ}γ∈Γ is a sup-partition of unity subordinated to U(1).

ut

We note, that the proof could be made considerably shorter by proving (iii)⇒(ii) directly using Theorem G (see
the proof of Theorem 7) instead of (i)⇒(ii) and (iii)⇒(i). However, the reasons for our strategy of the proof were two:
First, we do not need the full generality (and associated machinery) of Theorem G and second, the proof of (i)⇒(ii)
shows an interesting technique for constructing smooth Lipschitz approximations (due to Fry, [F1]), and in fact shows
the reason for the definition of the notion of sup-partition of unity.

Corollary 4. Let X be a separable normed linear space that admits a Ck-smooth Lipschitz bump function, k ∈ N∪{∞}.
Then there is a bi-Lipschitz homeomorphism ϕ : X → c0 such that the coordinate functions e∗j ◦ ϕ ∈ Ck(X) for every
j ∈ N.

Proof. Fry in [F1] has constructed a Ck-smooth M -Lipschitz sup-partition of unity {ψj}∞j=1 on X that is subordinated
to U(1), so Theorem 3 applies.

ut
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3. Approximation of mappings

To be able to use Theorem G, we need to “extend” Lipschitz mappings from subsets of c0(Γ). To this end we
introduce some additional notions.

Let (X, ρ) be a metric space, A ⊂ X. For ε > 0, a mapping rε : X → A such that ρ(rε(x), x) < ε for each x ∈ A is
called an ε-retraction.
A is called a Lipschitz approximate retract (LAR), if there is K > 0 such that for any ε > 0 there is a K-Lipschitz

ε-retraction of X into A. A is called a Lipschitz approximate uniform neighbourhood retract (LAUNR), if there is
K > 0 such that for any ε > 0 there is a uniform open neighbourhood U ⊂ X of A and a K-Lipschitz ε-retraction of
U into A.

A metric space is called an absolute Lipschitz approximate uniform neighbourhood retract (ALAUNR) if it is a
LAUNR of every metric space containing it as a subspace.

Example. Let X be a Banach space with an unconditional basis {en}∞n=1 and let X∞ = span{en}∞n=1 be its linear
subspace consisting of finitely supported vectors. Then X∞ is a Lipschitz approximate retract of X.

Indeed, let C = 2ubc{en} and D = bc{en}, put K = C(5 + 4D) and choose an arbitrary ε > 0. Let ϕ : R → [0, 1]
be defined as ϕ(t) = 0 for t ≤ ε/(2C), ϕ(t) = 1 for t ≥ ε/C, and ϕ is affine on [ε/(2C), ε/C]. Notice that ϕ is
2C/ε-Lipschitz. Denote Rn = I − Pn. Define the ε-retraction r : X → X∞ by r(x) =

∑∞
n=1 ϕ(‖Rn−1x‖)xnen. We

claim that ‖x− r(x)‖ < ε for all x ∈ X. To see this, fix x ∈ X and find n0 ∈ N ∪ {0} such that ‖Rn0x‖ < ε/C and
‖Rnx‖ ≥ ε/C for all 0 ≤ n < n0. Then

‖x− r(x)‖ =

∥∥∥∥∥
∞∑

n=1

(
1− ϕ(‖Rn−1x‖)

)
xnen

∥∥∥∥∥ =

∥∥∥∥∥ ∑
n>n0

(
1− ϕ(‖Rn−1x‖)

)
xnen

∥∥∥∥∥
≤ C

∥∥∥∥∥ ∑
n>n0

xnen

∥∥∥∥∥ = C ‖Rn0x‖ < C
ε

C
= ε.

To show that r is K-Lipschitz, choose any x, y ∈ X. We may without loss of generality assume that ‖x− y‖ ≤
ε/(C(1 + D)). (It is an easy fact, that mappings on normed linear spaces that are Lipschitz on short distances are
Lipschitz globally with the same Lipschitz constant.) Find n0 ∈ N∪{0} such that ‖Rn0y‖ < 2ε/C and ‖Rny‖ ≥ 2ε/C
for all 0 ≤ n < n0. Then ‖Rnx‖ ≥ ‖Rny‖ − ‖Rn(x− y)‖ ≥ 2ε/C − (1 +D)ε/(C(1 +D)) = ε/C for all 0 ≤ n < n0. It
follows that ϕ(‖Rnx‖) = ϕ(‖Rny‖) = 1 for all 0 ≤ n < n0. Using this fact, we can estimate

‖r(x)− r(y)‖ =

∥∥∥∥∥
∞∑

n=1

(
ϕ(‖Rn−1x‖)xn − ϕ(‖Rn−1y‖)yn

)
en

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑

n=1

ϕ(‖Rn−1x‖)(xn − yn)en

∥∥∥∥∥ +

∥∥∥∥∥
∞∑

n=1

(
ϕ(‖Rn−1x‖)− ϕ(‖Rn−1y‖)

)
ynen

∥∥∥∥∥
≤ C ‖x− y‖+

∥∥∥∥∥ ∑
n>n0

(
ϕ(‖Rn−1x‖)− ϕ(‖Rn−1y‖)

)
ynen

∥∥∥∥∥
≤ C ‖x− y‖+ C sup

n>n0

∣∣ϕ(‖Rn−1x‖)− ϕ(‖Rn−1y‖)
∣∣ ∥∥∥∥∥ ∑

n>n0

ynen

∥∥∥∥∥
≤ C ‖x− y‖+ C

2C
ε

sup
n>n0

∣∣‖Rn−1x‖ − ‖Rn−1y‖
∣∣ ‖Rn0y‖

< C ‖x− y‖+ C
2C
ε

(1 +D) ‖x− y‖ 2ε
C

= K ‖x− y‖ .

The following proposition shows how the notion of ALAUNR relates to “approximate extensions” of Lipschitz
mappings.

Proposition 5. Let (X, ρ) be a metric space. The following are equivalent:

(i) X is an ALAUNR.
(ii) There is K > 0 such that X is an absolute K-Lipschitz approximate uniform neighbourhood retract (i.e. the

Lipschitz constant K does not depend on the metric space which X is a subspace of).
(iii) There is K > 0 such that for each ε > 0 there is δ > 0 such that for any metric spaces Q ⊂ P and every

L-Lipschitz mapping f : Q → X there is U ⊂ P a δ/L-uniform open neighbourhood of Q and a KL-Lipschitz
mapping g : U → X such that ρ(f(x), g(x)) < ε for all x ∈ Q.

(iv) For any metric spaces Q ⊂ P and every L-Lipschitz mapping f : Q → X there is K > 0 such that for any
ε > 0 there is U ⊂ P a uniform open neighbourhood of Q and a KL-Lipschitz mapping g : U → X such that
ρ(f(x), g(x)) < ε for all x ∈ Q.
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(v) There is K > 0 such that for each ε > 0 there is δ > 0 such that for any metric space P , X ⊂ P , there
is U ⊂ P a δ-uniform open neighbourhood of X such that for any metric space (Q, σ) and every L-Lipschitz
mapping f : X → Q there is a KL-Lipschitz mapping g : U → Q such that σ(f(x), g(x)) < ε for all x ∈ X.

(vi) For any metric spaces P and (Q, σ), X ⊂ P , and every L-Lipschitz mapping f : X → Q there is K > 0 such
that for any ε > 0 there is U ⊂ P a uniform open neighbourhood of X and a KL-Lipschitz mapping g : U → Q
such that σ(f(x), g(x)) < ε for all x ∈ X.

Proof. (ii)⇒(i), (iii)⇒(iv), and (v)⇒(vi) are trivial.
(i)⇒(iii): Embed X isometrically into `∞(Γ). There is K > 0 such that X is a K-Lipschitz approximate neigh-

bourhood retract of `∞(Γ). Choose ε > 0 and let δ > 0 be such that there is a K-Lipschitz ε-retraction r : V → X
for some δ-uniform open neighbourhood V of X in `∞(Γ). Let Q ⊂ P be metric spaces and f : Q → X be an L-
Lipschitz mapping. Since `∞(Γ) is an absolute Lipschitz retract, there is an L-Lipschitz extension h : P → `∞(Γ) of
f : Q→ X ⊂ `∞(Γ). Put U = h−1(V ). Then U is open in P , and it is a δ/L-uniform neighbourhood of Q. Indeed, if
y ∈ U(z, δ/L) for some z ∈ Q, then h(y) ∈ U(h(z), δ), where h(z) ∈ X; hence h(y) ∈ V . Finally, put g(x) = r(h(x))
for any x ∈ U . Then ρ(f(x), g(x)) = ρ

(
f(x), r(h(x))

)
= ρ

(
f(x), r(f(x))

)
< ε whenever x ∈ Q.

(iii)⇒(ii), (v)⇒(ii) (and (iv)⇒(i), (vi)⇒(i) similarly): Let X be a subspace of a metric space P , we put Q = X and
f = id. For any ε > 0, the K-Lipschitz mapping g is the desired retraction rε.

(ii)⇒(v): Let ε > 0 and r : U → X be the K-Lipschitz ε/L-retraction from some δ-uniform neighbourhood U of X.
Put g = f ◦ r. Then σ(f(x), g(x)) = σ

(
f(x), f(r(x))

)
≤ Lρ(x, r(x)) < Lε/L = ε for any x ∈ X.

ut

Corollary 6. Let (X, ρ) be an ALAUNR.
(a) If (Z, σ) is bi-Lipschitz homeomorphic to X, then Z is an ALAUNR.
(b) If Z is a LAUNR of X, then Z is an ALAUNR.

Proof. (a): Let ϕ : Z → X be a bi-Lipschitz homeomorphism such that Aσ(x, y) ≤ ρ(ϕ(x), ϕ(y)) ≤ Bσ(x, y). We
show that (iv) of Proposition 5 holds. Let Q ⊂ P be metric spaces and f : Q → Z an L-Lipschitz mapping. Let
f̃ : Q → X be defined as f̃ = ϕ ◦ f and let K0 be the constant in Proposition 5(iv) for f̃ . Put K = K0B/A. Choose
any ε > 0. There is a uniform open neighbourhood U ⊂ P of Q and a K0BL-Lipschitz mapping g̃ : U → X such
that ρ(f̃(x), g̃(x)) < Aε for all x ∈ Q. Then g : U → Z, g = ϕ−1 ◦ g̃ is a K0BL/A-Lipschitz mapping such that
σ(f(x), g(x)) = σ

(
f(x), ϕ−1(g̃(x))

)
= σ

(
ϕ−1(f̃(x)), ϕ−1(g̃(x))

)
≤ (1/A)ρ(f̃(x), g̃(x)) < Aε/A = ε whenever x ∈ Q.

(b): Let K0 be the Lipschitz constant of the ε-retractions into X (as X is ALAUNR) and K1 be the Lipschitz
constant of the ε-retractions from U ⊂ X into Z. We show that (iv) of Proposition 5 holds. Let Q ⊂ P be metric
spaces and f : Q → Z ⊂ X an L-Lipschitz mapping. Put K = K1K0. Choose any ε > 0. There is a δ-uniform open
neighbourhood V ⊂ X of Z and a K1-Lipschitz (ε/2)-retraction r : V → Z. Further, there is an η-uniform open
neighbourhood W ⊂ P of Q and a K0L-Lipschitz mapping h : W → X such that ρ(f(x), h(x)) < min{ε/(2K1), δ/2}
for all x ∈ Q.

Let U = h−1(V ). Then U ⊂ W is open in W and hence in P , and it is a uniform neighbourhood of Q. Indeed, let
ζ = min{δ/(2K0L), η}. If y ∈ U(z, ζ) for some z ∈ Q, then y ∈ W and so h(y) ∈ U(h(z), δ/2). From this we obtain
h(y) ∈ U(f(z), δ), and since f(z) ∈ Z, it follows that h(y) ∈ V .

Finally, put g(x) = r(h(x)) for any x ∈ U . Then g : U → Z is a K1K0L-Lipschitz mapping such that ρ(f(x), g(x)) =
ρ
(
f(x), r(h(x))

)
≤ ρ

(
f(x), r(f(x))

)
+ ρ

(
r(f(x), r(h(x))

)
< ε/2 +K1ρ(f(x), h(x)) < ε whenever x ∈ Q.

ut

Finally we can prove our main approximation theorem.

Theorem 7. Let Y be a Banach space, k ∈ N ∪ {∞}, and X be a normed linear space such that there is a set Γ
and a bi-Lipschitz homeomorphism ϕ : X → c0(Γ) such that the coordinate functions e∗γ ◦ ϕ ∈ Ck(X) for every γ ∈ Γ.
Assume further that X or Y is an ALAUNR. There is a constant C ∈ R such that if f : X → Y is L-Lipschitz and
ε > 0, then there is a CL-Lipschitz mapping g ∈ Ck(X,Y ), such that supx∈X ‖f(x)− g(x)‖ ≤ ε.

Moreover, if C1, C2 ∈ R are such that ϕ is C1-Lipschitz and ϕ−1 is C2-Lipschitz, and if K is the Lipschitz constant
of the ALAUNR, then C = C1C2K.

Proof. We define f̃ : ϕ(X) → Y by f̃(z) = f(ϕ−1(z)) for any z ∈ ϕ(X). The mapping f̃ is C2L-Lipschitz. If Y is a
K-Lipschitz ALAUNR, then by Proposition 5(iii) there is a uniform open neighbourhood U of ϕ(X) in c0(Γ) and a
mapping f̂ : U → Y such that f̂ is KC2L-Lipschitz and

∥∥f̂(z)− f̃(z)
∥∥ < ε

2 for each z ∈ ϕ(X). In case that X is a K-
Lipschitz ALAUNR, we come to the same conclusion by using Proposition 5(iii) to a mapping ϕ−1 to obtain a uniform
open neighbourhood U of ϕ(X) in c0(Γ) and a KC2 Lipschitz mapping q : U → X such that

∥∥q(z)− ϕ−1(z)
∥∥ < ε

2L

for all z ∈ ϕ(X), and then putting f̂ = f ◦ q. (Using Corollary 6 and Proposition 5(iii) to f̃ instead, we would arrive
to a worse Lipschitz constant KC1C

2
2L.)

By Theorem G there is a mapping ĝ ∈ C∞(c0(Γ), Y ) locally dependent on finitely many coordinates and such that
it is C2KL-Lipschitz on ϕ(X) and

∥∥ĝ(z)− f̂(z)
∥∥ ≤ ε

2 for all z ∈ ϕ(X). We define the mapping g : X → Y by g = ĝ ◦ϕ.
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Similarly as in the proof of Theorem 3, (iii)⇒(i), we obtain that g ∈ Ck(X,Y ). Clearly, g is C1C2KL-Lipschitz. To
see that g approximates f , choose any x ∈ X. Then

‖g(x)− f(x)‖ =
∥∥ĝ(ϕ(x))− f

(
ϕ−1(ϕ(x))

)∥∥ =
∥∥ĝ(ϕ(x))− f̃(ϕ(x))

∥∥
≤

∥∥ĝ(ϕ(x))− f̂(ϕ(x))
∥∥ +

∥∥f̂(ϕ(x))− f̃(ϕ(x))
∥∥ < ε

2
+
ε

2
= ε.

ut

We note that the notion of ALAUNR is necessary for our approach to Theorem 7 (at least in the case of the source
space X): For any Banach space Y and any Lipschitz mapping f : ϕ(X) → Y we need to find a Lipschitz “approximate
extension” to a uniform neighbourhood U of ϕ(X). Now, consider Y = X and a mapping ϕ−1 : ϕ(X) → X, find an
“approximate extension” q : U → X and put r = ϕ ◦ q. Then r is a Lipschitz ε-retraction of U into ϕ(X).

Let V be a topological space, let v0 ∈ V . By B0(V ) we denote the space of all bounded real-valued functions f on
V for which f(v) → 0 whenever v → v0, considered with the supremum norm. Let P be a metric space, by Cu(P ) we
denote the space of all bounded, uniformly continuous, real-valued functions on P with the supremum norm. By the
result of Lindenstrauss, [L, Theorem 6] (see also [BL]), both B0(V ) and Cu(P ) are absolute Lipschitz retracts.

Now using Corollary 4 and Theorem 7 we obtain the following:

Corollary 8. Let X be a separable normed linear space that admits a Ck-smooth Lipschitz bump function, k ∈ N∪{∞}.
Let Y be a Banach space. If at least one of the spaces X or Y is equal to either B0(V ) for some topological space V ,
or Cu(P ) for some metric space P , then there is a constant C ∈ R such that for any L-Lipschitz mapping f : X → Y
and any ε > 0 there is a CL-Lipschitz mapping g ∈ Ck(X,Y ) for which supx∈X ‖f(x)− g(x)‖ ≤ ε.

The above approach can be modified to deal with uniformly continuous mappings. However, we must be somewhat
careful in the formulation of the result (notice the necessity of a sub-additive modulus of the embedding in Theorem 9).
We skip the details, as the proofs are almost identical to the ones already given.

A modulus is a non-decreasing function ω : [0,+∞) → [0,+∞) continuous at 0 such that ω(0) = 0. The set of all
moduli will be denoted by M. The subset of M of all moduli that are sub-additive will be denoted by Ms ⊂ M. A
modulus of continuity of a mapping f is denoted by ωf .

Theorem 9. Let Y be a Banach space, k ∈ N ∪ {∞}, and X be a normed linear space such that there is a set Γ and
a uniform homeomorphism ϕ : X → c0(Γ) such that ωϕ−1 ≤ ω1 ∈ Ms and the coordinate functions e∗γ ◦ ϕ ∈ Ck(X)
for every γ ∈ Γ. Assume further that X or Y is an absolute uniform approximate uniform neighbourhood retract. If
f : X → Y is uniformly continuous and ε > 0, then there is a function ω ∈ M and a mapping g ∈ Ck(X,Y ), such that
ωg ≤ ω and supx∈X ‖f(x)− g(x)‖ ≤ ε.

Moreover, if X is AUAUNR with modulus ω0, then ω = ωf ◦ ω0 ◦ ω1 ◦ ωϕ. If Y is AUAUNR with modulus ω0, then
ω = ω0 ◦ ωf ◦ ω1 ◦ ωϕ.

By the result of Lindenstrauss, [L, Theorem 8] (see also [BL]), super-reflexive Banach spaces are absolute uniform
uniform (sic) neighbourhood retracts. Hence, using Corollary 4 and Theorem 9 we obtain the following:

Corollary 10. Let X be a separable normed linear space that admits a Ck-smooth Lipschitz bump function, k ∈
N ∪ {∞}. Let Y be a Banach space. If X or Y is a super-reflexive Banach space, then there is a constant C ∈ R
and a modulus ω0 ∈ M such that for any uniformly continuous mapping f : X → Y and any ε > 0 there is a
mapping g ∈ Ck(X,Y ) for which supx∈X ‖f(x)− g(x)‖ ≤ ε and ωg(δ) ≤ ωf (ω0(Cδ)) (if X is super-reflexive) or
ωg(δ) ≤ ω0(ωf (Cδ)) (if Y is super-reflexive).

4. Approximation of C1-smooth mappings

First, we extend the result of Moulis about the relation of Lipschitz approximation and the approximation of
derivatives to non-separable case. For this we need some finer information about refinements of open coverings.

Lemma 11 (M.E. Rudin, [R]). Let P be a metric space, U = {Uα}α∈Λ be an open covering of P . Then there are open
refinements {Vnα}n∈N,α∈Λ, {Wnα}n∈N,α∈Λ of U that satisfy the following:

• Vnα ⊂Wnα ⊂ Uα for all n ∈ N, α ∈ Λ,
• dist(Vnα, P \Wnα) ≥ 2−n for all n ∈ N, α ∈ Λ,
• dist(Wnα,Wnβ) ≥ 2−n for any n ∈ N and α, β ∈ Λ, α 6= β.
• for each x ∈ P there is an open ball Ux ∈ P with centre x and a number nx ∈ N such that

(i) if i > nx, then Ux ∩Wiα = ∅ for any α ∈ Λ,
(ii) if i ≤ nx, then Ux ∩Wiα 6= ∅ for at most one α ∈ Λ,

Next, we need a result about Lipschitz partitions of unity. Let X be a normed linear space, k ∈ N∪{∞}. We denote
Ck

L(X) = {f ∈ Ck(X), f is Lipschitz} and Uk
L =

{
f−1

(
(0,+∞)

)
; 0 ≤ f ≤ 1, f ∈ Ck

L(X)
}
.

Lemma 12. Let X be a normed linear space and k ∈ N ∪ {∞}. Then the following are equivalent:
(i) The space X admits Ck

L partitions of unity.
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(ii) If A ⊂W ⊂ X, A is closed and W is open in X, then there is U ∈ Uk
L such that A ⊂ U ⊂W .

(iii) If A ⊂W ⊂ X, W is bounded and dist(A,X \W ) > 0, then there is U ∈ Uk
L such that A ⊂ U ⊂W .

(iv) The family Uk
L contains a σ-discrete basis of the topology of X.

Proof. The equivalence of (i) and (iv) follows from [JTZ, Lemma 1]. Note only, that to satisfy the condition (i) in
[JTZ, Lemma 1] it suffices to multiply each f ∈ S0 by a suitable constant so that all f ∈ S0 have the same Lipschitz
constant.

To see (i)⇒(ii), consider the partition of unity subordinated to the covering {W,X \ A} of X. By (i) there are
functions ψ1, ψ2 ∈ Ck

L such that suppψ1 ⊂ W , suppψ2 ⊂ X \ A, 0 ≤ ψ1 ≤ 1, 0 ≤ ψ2 ≤ 1 and ψ1(x) + ψ2(x) = 1 for
all x ∈ X. Hence ψ1 = 1 on A and we may put U = ψ−1

1

(
(0,+∞)

)
.

(ii) implies (iii) is trivial.
Finally, suppose (iii) holds. Let Dm = {Dm

α }α∈Λ be a covering of X by open balls with radius 1
m . By Lemma 11 there

are open refinements {V m
nα}n∈N,α∈Λ, {Wm

nα}n∈N,α∈Λ of Dm such that V m
nα ⊂ Wm

nα ⊂ Dm
α , dist(V m

nα, X \Wm
nα) ≥ 2−n

and the family {Wm
nα}α∈Λ is discrete for all n ∈ N. Thus, by (iii), there are Um

nα ∈ Uk
L such that V m

nα ⊂ Um
nα ⊂ Wm

nα.
The family {Um

nα}m,n∈N,α∈Λ is therefore a σ-discrete basis of the topology of X.
ut

Finally, we prove the main result of this section.

Theorem 13. Let X, Y be normed linear spaces and k ∈ N ∪ {∞}. Consider the following statements:
(i) There is C ∈ R such that for any L-Lipschitz mapping f : UX → Y and any ε > 0 there is a CL-Lipschitz

mapping g ∈ Ck(UX , Y ), such that supx∈UX
‖f(x)− g(x)‖ ≤ ε.

(ii) For any open Ω ⊂ X, any mapping f ∈ C1(Ω, Y ) and any continuous function ε : Ω → (0,+∞) there is
g ∈ Ck(Ω, Y ), such that ‖f(x)− g(x)‖ < ε(x) and ‖f ′(x)− g′(x)‖ < ε(x) for all x ∈ Ω.

(iii) For any open Ω ⊂ X, any L-Lipschitz mapping f ∈ C1(Ω, Y ), any continuous function ε : Ω → (0,+∞) and any
η > 1 there is an ηL-Lipschitz mapping g ∈ Ck(Ω, Y ), such that ‖f(x)− g(x)‖ < ε(x) for all x ∈ Ω.

Then (i)⇒(ii)⇒(iii)

Proof. (ii)⇒(iii) is obvious.
Suppose (i) holds. First notice that by translating and scaling we immediately obtain approximations on any open

ball in X.
Second, (i) gives us also approximations of functions. Indeed, if f ∈ C1(UX) is L-Lipschitz, then choose some y ∈ SY

and consider the mapping f̃ ∈ C1(UX , Y ), f̃(x) = f(x) · y. Let g̃ ∈ Ck(UX , Y ) be an approximation provided by (i)
and F ∈ Y ∗ be a Hahn-Banach extension of the norm-one functional ty 7→ t defined on span{y}. Then g = F ◦ g̃ is
the desired approximation of the function f .

To prove (ii), let {Uα = U(xα, rα)}α∈Λ be a covering of Ω by open balls such that

‖f(xα)− f(x)‖ < ε(xα)
3

< ε(x) for each x ∈ Uα, (4)

‖f ′(xα)− f ′(x)‖ < ε(xα)
9C

for each x ∈ Uα, (5)

for each α ∈ Λ. Let {Wnα}n∈N,α∈Λ be a refinement of {Uα} from Lemma 11.
The statement (iii) in Lemma 12 is satisfied using the approximations of functions discussed above. Hence there is

a Ck
L partition of unity {ψnα}n∈N,α∈Λ subordinated to {Wnα}. Let Lnα be the Lipschitz constant of ψnα, and without

loss of generality assume Lnα ≥ 1 and also C ≥ 1.
For each α ∈ Λ let us define the mapping gα : Uα → Y by gα = f(x) − f ′(xα)x. Then, by (5) and the second

inequality in (4),

‖g′α(x)‖ < ε(xα)
9C

<
ε(x)
3C

≤ ε(x)
3

for each x ∈ Uα. (6)

For any n ∈ N and α ∈ Λ, using (i) we approximate gα by hnα ∈ Ck(Uα, Y ) such that

‖h′nα(x)‖ ≤ ε(xα)
9

<
ε(x)
3

for each x ∈ Uα, (7)

‖gα(x)− hnα(x)‖ ≤ ε(xα)
9 · 2nLnα

<
ε(x)

3 · 2nLnα
< ε(x) for each x ∈ Uα. (8)

(The second inequalities follow from the second inequality in (4).)
Finally, we define the mapping g : Ω → Y by

g(x) =
∑

n∈N,α∈Λ

(
hnα(x) + f ′(xα)x

)
ψnα(x).

Since suppψnα ⊂ Uα and the sum is locally finite, the mapping is well defined and moreover g ∈ Ck(Ω, Y ).
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Choose x ∈ Ω and let us compute how far g(x) is from f(x):

‖f(x)− g(x)‖ =

∥∥∥∥∥ ∑
n∈N,α∈Λ

(
f(x)− hnα(x)− f ′(xα)x

)
ψnα(x)

∥∥∥∥∥ =

∥∥∥∥∥ ∑
n∈N,α∈Λ

(
gα(x)− hnα(x)

)
ψnα(x)

∥∥∥∥∥
≤

∑
n∈N

α∈Λ: x∈Uα

‖gα(x)− hnα(x)‖ψnα(x) < ε(x)
∑
n∈N

α∈Λ: x∈Uα

ψnα(x) = ε(x),

where the last inequality follows from (8).
To estimate the distance between the derivatives at x ∈ Ω, notice that by Lemma 11 for each n ∈ N there is at

most one α ∈ Λ such that x ∈ Wnα. Since suppψnα ⊂ Wnα, there is a function β : N → Λ such that for each n ∈ N,
x /∈ suppψnα whenever α 6= β(n) and moreover x ∈ Uβ(n). (For a fixed n ∈ N, either there is exactly one α ∈ Λ such
that x ∈ Wnα and in that case we put β(n) = α, or x /∈ Wnα for all α ∈ Λ and we can choose an arbitrary β(n) for
which x ∈ Uβ(n).) Hence,

‖f ′(x)− g′(x)‖ =
∥∥∥(
f(x)− g(x)

)′∥∥∥ =

∥∥∥∥∥ ∑
n∈N,α∈Λ

(
gα(x)− hnα(x)

)′
ψnα(x) +

∑
n∈N,α∈Λ

(
gα(x)− hnα(x)

)
ψ′nα(x)

∥∥∥∥∥
≤

∑
n∈N

α∈Λ: x∈Uα

‖g′α(x)− h′nα(x)‖ψnα(x) +
∞∑

n=1

∥∥gβ(n)(x)− hnβ(n)(x)
∥∥∥∥∥ψ′nβ(n)(x)

∥∥∥
≤

∑
n∈N

α∈Λ: x∈Uα

(
‖g′α(x)‖+ ‖h′nα(x)‖

)
ψnα(x) +

∞∑
n=1

∥∥gβ(n)(x)− hnβ(n)(x)
∥∥Lnβ(n)

<

(
ε(x)
3

+
ε(x)
3

) ∑
n∈N

α∈Λ: x∈Uα

ψnα(x) +
∞∑

n=1

ε(x)
3 · 2nLnβ(n)

Lnβ(n) = ε(x),

where the last inequality follows from (6), (7) and (8).
ut

Notice that if we can construct Lipschitz partitions of unity on X without the aid of Lemma 12 (as is the case when
X is separable), then in Theorem 13(i) it suffices to require only the approximation of Lipschitz mappings that are
moreover C1-smooth.

Corollary 14. Let X be a separable normed linear space that admits a Ck-smooth Lipschitz bump function, k ∈
N ∪ {∞}. Let Y be a Banach space. If at least one of the spaces X or Y is equal to either B0(V ) for some topological
space V , or Cu(P ) for some metric space P , then for any open Ω ⊂ X, any mapping f ∈ C1(Ω, Y ) and any continuous
function ε : Ω → (0,+∞) there is g ∈ Ck(Ω, Y ), such that ‖f(x)− g(x)‖ < ε(x) and ‖f ′(x)− g′(x)‖ < ε(x) for all
x ∈ Ω.

Proof. By Corollary 8, the requirements of Theorem 13(i) are satisfied. Notice only that first we need to extend the
mappings in Theorem 13(i) from UX to the whole ofX, which is easy, since first we extend it to BX by the Lipschitzness
and then to the whole of X, as BX is a 2-Lipschitz retract of X.

ut
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E-mail address: hajek@math.cas.cz

Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
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