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1 Introduction, notations

Our concern in this paper lies with the weighted inequalities

(/Q|f(x)|pV($)dx>l/pSc(/ﬂ|Vf(x)|de>l/p, feW(2), (11)

and

IfILP[log(L + L)J*|l < ¢ VFILP|l,  f e WP (1), (1.2)
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where either (2 is a bounded domain in RY or 2 = RY and V is a weight
on {2, that is, a.e. non-negative and locally integrable function on (2, and
the constant ¢ on the right hand sides is independent of f and N. Both
inequalities can naturally be interpreted as imbedding theorems independent
of the dimension.

Variants and generalizations of the above inequalities in R"Y or on domains
in RV have been intensively studied during last decades. They appear under
various names as the trace inequality or the uncertainty principle and they
have many relevant applications in analysis. It would be a difficult task to col-
lect even the most important references and we shall make no attempt to do
that. We shall just recall several basic facts and explain our motivation. Nec-
essary and sufficient conditions for the imbedding of W into L?(V') depend-
ing on the dimension have been studied e.g. in [1] (Adams’ inequality), let us
recall Maz’ya’s works using capacities, [19], [20]. For p = ¢ =2 and N > 3,
a necessary and sufficient condition is due to Kerman and Sawyer [13]—this
is connected with Sawyer’s necessary and sufficient conditions for validity of
two weight inequalities for the Riesz potentials, see [22]. Observe that due
to the nature of these two-weight conditions (which require an information
on the acting of Riesz potentials on weights in question) and of capacities,
of importance are sufficient conditions (close to necessary ones as much as
possible of course) in amenable terms of various classes and/or spaces of
functions. Fefferman in [6] gave the following sufficient condition: Let us
recall that the Fefferman-Phong class F,,, 1 < p < N/2, consists of functions
V' such that

1/p
Vg, = )P d < 00.
Wie,= 50 (G [, V0P ) <o

Then (see [6]) for N > 3,1 < p < N/2, and V € F, inequality (1.1) holds
with RY in place of 2. Note that Chiarenza and Frasca [4] gave a very fine
alternative proof making use of of the maximal operator.

For N = 2 and functions in W,*(£2) (£2 a bounded smooth domain) there
is the sufficient condition V' € Llog L({2) for (1.1) due to Gossez and Loulit in
[8] and a more general condition in terms of Lorentz-Zygmund spaces based
on a fine critical imbedding theorem due to Brezis and Wainger [3], see Krbec
and Schott [16]; this is, however, strictly limited to planar domains.

Dimension free estimates answer the natural question about existence of
some residual improvement of the integrability properties independent of the



Dimension-free imbeddings 3

dimension. They are also linked with other interesting concepts concerning
the Sobolev spaces, for instance, properties of contraction semigroups and
find applications even in quantum physics (see e.g. [18] for some of the ref-
erences). One of the major triggering moments was the celebrated Gross
logarithmic inequality [9], generalized later in various directions by several
authors, see, e.g. [11], [10]. Recall that the Gross logarithmic inequality (see
e.g. [18] for a detailed discussion),

[ ropios (MR ) aevisg< L [ wi@pan 0

gives, for a function f living, say, in a bounded domain 2 C R" and with

IF ()] < 1,

[ l@rogl@lde < o [ [95@)Pds (14

(since under our assumptions log || f||2 < 0). Note that one can formally put
0 in the integral on the left-hand side of (1.3) and (1.4) if | f(x)| = 0 (which
corresponds well to elementary limit lim, .o, t’logt = 0 for any 6 > 0). The
left hand side of (1.3) contains generally both positive and negative values
and the estimate says that the final balance of that, containing a logarithmic
residuum integrability improvement is estimated by a multiple of the L?-norm
of the gradient.

Note also that in [2] Adams considered more general and dimension de-
pendent inequalities (with norms taken with respect to the Gaussian measure
exp(—|z[?) dz).

In [15] we have employed the Gross theorem to show that

/B [f(@)*log (L + |f (2)I/IIV fll2) dz < el| f[Wo*(B)|I? (1.5)

12(

(Wy*(B) = C’{)’O(B)W B), B being the unit ball in RY) with a constant ¢
independent of f and N.
In this paper we will study the general form of (1.5), namely,

/Q |f (@) [Pllog (1 + |f(@)[/IV flIp)]* d < e[|V FILP(£2)]]P (1.6)
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for 1 < p < oo, a >0, and f € Wy”(£2), and also we will establish the
weighted dimension-free imbedding of the form

[)f@»%V@»dwg<ﬂVfuﬁunua

for f € W,”(£2), £2 being a bounded domain and/or RV,

We shall tacitly assume that all functions here are real-valued (complex-
valued functions can be considered, too). Various constants independent of f
will be denoted by the same generic symbol ¢, C' etc. if no misunderstanding
can arise.

We shall use the standard notation || .||, for the norm in W*?; if k = 0,
then W*? = [P with the norm denoted by ||.||,; sometimes we shall use
symbols like || f|L?]| etc. for the sake of better legibility. If V is a weight in
a domain 2 C RY then the weighted Lebesgue space LP(V) = LP(£2,V)
is defined as the space of all measurable f on {2 with the finite norm
IFILPW)] = ([, 1f(@)PV( )dq:)l/p. If f is a measurable function in RY,
then f* will denote its non-increasing rearrangement. The symbol L9 will
stand for the usual Lorentz space (1 < p,q < oo, or 1 < p < oo and g = 00).

If & is a Young function, that is, & is even, convex, ®(0) = 0,
limHOO ()/t) = oo, and 2 C RY is measurable, then m(®,f) =
[, @ )) dz is the modular and the (quasi)norm in the corresponding Or-

licz space qu = Lg(£2) is the Minkowski functional of the modular unit ball,
namely, ||f|Lg| = inf{\ > 0: m(®, f/A) < 1} (the Luxemburg norm). We
refer to [14] and [21] for the theory of classical Orlicz spaces and of modular
spaces, resp. We shall restrict ourselves to a characterization of weighted Or-
licz spaces Lg(V) = Lo(£2, V), generated by the modular [, &(f(x))V (z) dx
as special Musielak-Orlicz spaces. Let us recall the latter concept in a form
adapted to our needs (see [21] for the general case). Let us assume that
¢ = P(x,t) : 2 xR — [0,00) is a Young function of the variable ¢ for each
fixed z € {2 and a measurable function of the variable z for each fixed t € R.
The function @ with these properties is called the generalized Young function
or the Musielak-Orlicz function. Then

MﬁZL@%NMW

is a modular on the set of all measurable functions on {2 so that we can
consider the corresponding Orlicz space.
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The weighted Orlicz spaces can be described in this language. Let V be
a weight on {2 and let @ be a Young function. Define

&y (z,t) = D(t)V (z), re N teR

Then @, is a generalized Young function and the resulting Musielak-Orlicz
space Lg,(£2) is nothing but the weighted Orlicz space Lg(£2,V) with the
modular

with the corresponding Luxemburg norm, and usually denoted by Lg (V) in
the following.

The symbol LP[log(14 L)]* (a > 0) will denote the Orlicz space with the
generating Young function ¢ — [t[P[log(1 + [¢])]*, t € R, and Leype for a > 0
will stand for the space with the Young function ¢ — exp(|t|*) — 1, t € R.
For o = 1 we shall simply write L”log(1 + L) and Leyp.

A very suitable tool in the following will be the general imbedding theorem
due to Ishii (see [12] and [21]). We state it in a slightly modified form, suitable
for our purposes. Note that the norm of the imbedding in the theorem
is independent of the dimension since it is a reformulation of an abstract
theorem, which holds true in general Musielak-Orlicz spaces.

Proposition 1.1 (Ishii). Let U and V' be weights in a measurable set G C
RN, and let & and V be Young functions. Then Le(G,U) — Lg(G,V) if
and only if there exists K > 1 such that the function

x—sup [V()V(z) — &(Kt)U(z)], r € G,

t>0

1s integrable over G.

2 Imbeddings on bounded domains based on
the Gross inequality

We shall first discuss weighted consequences of the Sobolev imbedding theo-
rem and of the general Gross logarithmic inequality.

Since we are interested in large N’s we shall tacitly assume that N > 3
in the following to avoid unnecessary technicalities.
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First of all let us briefly discuss a straightforward approach based on
Sobolev imbeddings. It is not difficult to see that V € LN/? is a sufficient
condition for (1.1). One can do a little bit better: Since W'?(2) is imbedded
into the Lorentz space LN?/(N=P)» we have

|£2]
/Q @)V () de < / (FH(O)PV*(8) dt

2] dt
< / (DI Ny ) &
0

|£2] p dt
< sup Sp/NV*<S)/ (t(N‘p)/pr*(t)) -
0

t Y
where we have used the Hardy-Littlewood rearrangement inequality. Hence
(1.1) holds if V' € LN/P°°_In particular, V € Leyp (0r Loy e with any 8 > 1)
is sufficient for (1.1) in any RY. Nevertheless, a dimension-free imbedding
would require a detailed inspection of the behaviour of the imbedding con-
stants and also of the equivalence of the exponential norm of V' with the
asymptotic estimates for the L/»* norms in dependence on N. We shall
not pursue this line here.

Instead, we shall employ the dimension-free estimates for functions in
WLP(RY), generalizing the Gross inequality. Recall that the original Gross
theorem (see (1.3)) states that

[ e (M) o i< [ wr@pas e

for all f € WH2(RYN) If, say, ||f[W2(RY)|] < 1, we obtain from (2.1)

| @R egls@de < o [ 95 ds (22

(since under our assumption log || f||2 < 0). Note in passing that due to the
presence of the log function the Gross inequality expresses a fine balance for
the small and large values of |f].

We shall start with the general form of (2.1) for 1 < p < oo, see Gunson
[10]: It holds

[ @Pog @ et aw, < [ i@ (23
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for all f € WEP(RN), || f]l, = 1, with

N Nlogm Nlogp N(p—1)log(p—1)
INp =+ -

p 2p p? P
1y, (DO N2 (2.4)
pl & (F(l + N/P’))

=N +T+ T3 -1, — T,

where I' is the Euler Gamma function and p’ = p/(p — 1).
Substituting f(z)/||f|l, into (2.3) we get the more usual Lebesgue norm
form of the above inequality, namely,

/ @ Pog L g 4o < / Vi@)Pde.  (25)
o 11T, .

In the remainder of this section {2 will be for simplicity the unit ball B in
RY and we shall consider functions in W, = W, *(B).
We wish to have an inequality analogous to (2.2). First of all

N logm lo lo -1
T1+T2+T3—T4:—<1+ & + 58P _ g(p/ )> (2.6)
p 2 p p
so that
|T1 +T2 +T3 — T4| S Cl(p)N
Further,
D(1+N/2) NP (Nj2)N/2-1/2
DL+ Nfp) ™ eV (NN
eN/p’ (p/)N/p’fl/Q NN/271/2
™ eN/2 T T 9N/2—1/2  NN/P—1/2
eN/p’ (p/)N/p’ NN/Z
N2 9Nz NN
ep/ N/p' N N/2
(%) &)
which gives
1 N 1 N
T5| ~ N |=log — — —log — 2.7
3l ~ V[ ow g, — los . (2.7)
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hence |T5| < ca2(p)N log N, and we get

[ r@riog Bl ar < cpwiognisip+ [ 1vi@pas @)
RN £ 1l RN
for all f € WIP(RM).

Now we shall additionally need an asymptotic estimate for the best con-
stant in the Sobolev inequality.

The Sobolev imbedding theorem states in particular that VVO1 P=
WyP(£2),1<p< N, N >3, where 2 is a domain in R", is imbedded into
LNP/(N=P) - Moreover (see, e.g. [23]), the best constant in the corresponding
inequality for spaces on RY is well known: If p < N, then

([ e i
RN

where

(N—p)/Np
) <OVl feWTRY), (29)

e L (=T TR ) Y
C= Vg (N —p) (F(N/mm - N/M) |

Let p € (1,00) be fixed and N > p. Invoking Stirling’s formula for the
Gamma function we have (I'(€))Y/¢ ~ € as € — oo, hence

1 (p=1\TP Dr s Nj2) Y
O~ N (N — p) (F(N/p)F(l + N/p’))
| D(N)D(1+N/2) 'Y
~ NP NV (F(N/p)r(l + N/p’))
1 N[(N/2)D(N/2)]YN ()N

™~ N (T(N/p) /N0 NN (D (N )N (2.10)

~ ((D(N/2))2N)"? ! :
((rev/27) (N/p)V» ((v(N/p))/N )P

N 2 1 1
(3)" s ~

Let f € W'?(RY), supp f C B.
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Using (2.9), we get

IF1L2 (B[P < (L F| LY/ (B)||P | BPY
c /2 PIN
< voi (o) IWAC@IP

c 2 PN p N[
< voi (vrcwm) IVAP @]

c N 1 1 (2/N)(p/2) N
~ 2P VfILP(R™Y)||P
s (r) IVAPEN

c 2\ "? N
~ i (w) IVAZEP

1
~ p(MRNY||P
ITAP @Y
(2.11)
Altogether

c(p)Nlog N [[f|L7|[” < (e1(p)N + ca(p)Nlog N) || f|L7]”
< cp)log N
S TN
Since p > 1 the constant on the right hand side tends even to 0 as N — oc.
Inserting this estimate into (2.8) we get

IV FILPP.

Lemma 2.1. Let 1 < p < oco. Then

/ F@)Plog L 4r < v piop, (2.12)
g 17T,

for all f € Wol’p(B), with a constant ¢ independent of f and N. The same is
true for any fived ball in RN with a possibly different constant c, depending
on this ball and independent of the dimension.

Now we are in position to prove the following theorem.

Theorem 2.2. Let N > 3 and 1 < p < oo. Then there exists ¢ independent
of N such that

/B |f(@)[Plog(1 + [f(@)[/IV fllp) d < ]|V fILP]]P (2.13)
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for all f € WyP(B), and the norm of the imbedding of W, " (B) into LP log(1+
1) is independent of N.

Moreover, if V' € Lexpt(B), then there exists ¢ > 0 independent of N such
that

[1r@rv@ s < vy

for all f € Wy*(B).

Proof. Let f € WyP(B), || f|W,"(B)|| = 1/2. Denote the extension of f by
zero to the whole of RY by the same symbol. Consider function f.(z) =
|f(2)| +e2s.(x), with s.(z) = 1if |z| < 1, s.(x) = 1= (Jz| = 1)/eif 1 < |z| <
1+e¢, that is, s. is radially decreasing from the value 1 to 0 for 1 < |z| < 14-¢,
and s.(x) = 0 if |x| > 1 4+ . Our first step will be to show that

/RN(!f(fC)l +e%s.(x))Plog(1 + | f(2)| + es.(x)) dz
< c||[VFILP|| + ec(N) < o0

(2.14)

with some constant ¢ independent of the dimension and (small) €. The final
step will be then to derive the desired weighted inequality from (2.13).
Let us turn our attention to (2.12). We have

/RN(’f(x)] +e2s.(2)) log(1 + | f(2)| + €25.(2)) da
(1f(z)| +&*)Plog(1 + | f(z)| + &%) dx

|f(@)[=2
/ x)| 4+ e*)Plog(1 + | f(z)| + &%) dx
0<|f(x) |<2
+/ % log(1 + £%) dm—l—/ ePlog (1 +¢) dx
B (14¢)B\B

Il 8) + 12(8) + ]3(8) + ]4(8).

(
By virtue of (2.12) with 2B instead of B and ¢ small, since log(1 + | f(x)| +
e?) < 2log(|f(z) + &) if | f(2)] = 2,

W< [ (@] + ) log(1 ()] + %) da
|f(x)]>2
<o / V@) + )P de
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For the right hand side there is the elementary estimate
[ V0@ +Ss@pPde < AL+ [ Vs @l da
RN (14+¢)B\B
(with ¢ depending on p only). It is easy to estimate the last integral; we get
I(g) < |V fILP||P + ce® |2B| < ||V f|LP|| + 2V ce® | B

provided € < 1.
We estimate the second integral. Invoking the asymptotic estimate in
(2.10) we have, by Holder’s inequality,

I(e) = / (7)) + 2P log(1 + |f(x)] + <) de
0<|f(z)]<2

No/(N (N—-p)/N N

§c< [ sy -p>) BY/
0<|f(z)|<2

< C

= N1/2

< c
— Np/2

IV(1f (@)] + s (@) | L7|)”

IVFILPNP + e(N)e.

Finally, the third and the fourth integrals can be treated easily to show
that

IQ+I4§C€

with some constant ¢ independent of f and N (and ¢); we omit the details.
Hence the left hand side of (2.14) is finite. Fatou’s lemma gives

/B [ (@) [P log(1 + | f(2)]) dw < |V FILP(B)]]", (2.15)

where ¢ is independent of N and f.

For a general f € Wy"(B), f # 0, inequality (2.15) holds for
f(x)/2|[VfILP||). We can assume that the constant ¢ on the right hand
side of (2.15) is > 1. Then if

2V AILP]] < min(1, ¢),

we get

/B @) Plog(1 + | f(x)]) dz < 1,
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that is, || f|L? log(1 + L)|| < 1.

Now our problem reduces to establishing a sufficient condition for the
imbedding L?log(14L)(B) — LP(B, V'), where L? log(1+L)(B) is the Orlicz
space generated by the Young function ¢ — t?log(1 + |¢|). Ishii’s theorem
gives a necessary and sufficient condition for that, namely, integrability of
the function

sup[tPV (z) — Kt*log(1 + Kt)], x € B, (2.16)

t>0

over B, for some K > 1. Let us rewrite the function in (2.16) as

sup[tV (z) — Ktlog(1 + Kt'/7)].

t>0

By virtue of the Young inequality the condition is V' € Lg(B), where
U is the complementary function to ¥(t) = [¢|log(1 + ¢'/?). Note that
U (t) ~ |t|log(1+t) and it is well known that the complementary function is
equivalent to ¢t — exp [t| — 1. O

Remark 2.3. It is only a formal change to consider any bounded domain
instead of the unit ball in previous considerations.

As to an unbounded (2 a closer inspection of (2.4) shows that the term
YNp 18 non-negative if p € [2,p*], where p* is the unique solution of the
equation

erpt’? = 2(p — 1)VP', (2.17)

Indeed, the term —T5 in (2.4) is non-negative if p > 2. As to remaining
terms let us look at (2.6). An elementary calculation shows that the right
hand side of (2.6) is non-negative provided p € (1, p*), where p* is the unique
solution of (2.17). Consequently vy, > 0 if p € (2, p*).

3 Extrapolation of Sobolev imbeddings

In this section we will use extrapolation of Sobolev imbeddings to get the
residual dimension-free imbeddings for functions with no constraints on their
support.

The symbol W, ” will denote either W, (£2) with some domain 2 ¢ RY
or the space W?(RY) (which coincides with W, *(RY)).
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Theorem 3.1. Let 1 < p < N/3. There exists a constant ¢ independent of
N, a, and f € Wy such that

[fILP[log(1 + L)]*|| < ||V fL7] (3.1)
for every f € Wy? and a € (p?/(N —p), p/2].

Corollary 3.2. Let V' be a weight function on 2, 1 < p < N/3, and assume
that Vx(v>1y € Legpp/a with o as in Theorem 3.1 and Vxjo<v<1y € L.
Then there exists a constant ¢ independent of N such that

IFILPVIIl < el VFILP]
for every f € Wy P(2). If|2] < oo, it is enough to assume that V € L

exptl/zx.

Proof of Theorem 3.1. Let o > 0. Holder’s inequality combined with the
Sobolev imbedding gives

(/Q |F(2)|P log(1 + | f(z)])]* dq}) 1/p

< ([ wproa) o ([ togt + 7 ar) "

C

/N
< ol VAN( [ fostt + @™ )
(3.2)

It is not difficult to see that for e € (0, 1),

log(1+¢) < %ga, &> 0.

Indeed, consider h(§) = log(1 + &) — c.£° with c. to be specified later. Then
h(0) = 0 and
1
h/(g) =7, 80&58_1'

We wish to find ¢. such that h(§) <0, i.e.,

ec.&5 fec > 1.



Dimension-free imbeddings

Plainly it is sufficient that ¢, = 1/ so that

Na/p
log(1 + [/ (@) )] < (1) () ol

€

and

(/9 log(1+ | f ()N dx) 1/N

< (1)/ ([ 1s@rerar) "

This means that the appropriate choice is

Nae  Np
p N-p
in another terms,
P
c—
a(N —p)

Inserting this into (3.3) and applying Sobolev’s inequality again we get

([ Ttost+ 1™ ax "

1 ag/p M
3l (/ eypenas)
/N
2) ()
o ((N=p)/Np)(p/(N—p))
2)" ([ o)

« p/(N
p||p/(N=p)
Y (o) e

Together with ( ) this yields

(/Q |f(2)|P log(1 + | f(z)])]* dx) 1/p

a/p p/(N—p)
< ¢ a(N —p) 1 |V f|LP||*+P/ (N=P),
= N1/2 p? N1/2

IN
Q

IN

IA

<
(5
(5
(5
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Hence for N large we have

a/p

1/p
(/ F(@)I? fog(1 + | £ (x))]* dx) < N Lo
(9}

with some ¢ independent of f and N. To achieve independence of the right
hand side of N we have to choose

a <

N3

Note that the best choice for spaces on bounded domains is o« = p/2 and we
have than

1/p
(/Q If(x)l”[log(H|f(fv)|)}adw> < VAP, (3.4

Replacing |f(x)| by |f(@)|/IV £, gives c||V f|LP|[P/N=P) on the right hand
side of (3.4). Assume that

p : 1
IVfILP|| < min (17 m) .
Then
1/p
( [ 1@ os+ |f(x)|)]"da:> <1

and consequently,
[fILP[log(1 + L)]*[| < 1.

Since ¢ was independent of N this imbedding estimate is independent of N,

too.
O

Proof of Corollary 3.2. According to Proposition 1.1 (Ishii’s theorem) we
have LP[log(1 + L)]* — LP(V) if and only if the function

H(z) =sup (t?V (z) — KPt*[log(1 + Kt)|?) (3.5)

t>0

is integrable over B. But (3.5) can be rewritten as

H(z) = sup (tV(z) — KPt[log(1 + Kt'/7)]*) (3.6)

t>0
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hence the necessary and sufficient condition for the imbedding is
/ U(V(x))dr < oo,
Q

where VU is a Young function complementary to KPt[log(1 + Kt'/7)]e.
The function ¢ — K? [log(1 + Ktl/p)]a is an inverse to the As-function

~ 1 gl/e p

W) = 765 [ (5 ) 1]
so that (see [14, 1/§6]) we have ¥(£) ~ exp (fl/a) — 1 for £ bounded away
from zero, say for & > 1 (in the sense of the equivalence of Young func-
tions). As to values of V' belonging to (0,1) we have to look directly at the
integrability of the function in (3.6). Elementary calculations show that if
V(z) < 1, then the expression on the right hand side of (3.6) is negative if

t>KP (eXp K—plo — 1) and the sup becomes a (fixed) multiple of V (z).
]
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