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Abstract

In this note we give a direct method to classify all stable forms on Rn as well as to determine
their automorphism groups. We show that in dimension 6,7,8 stable forms coincide with non-
degnerate forms. We present necessary conditions and sufficient conditions for a manifold to
admit a stable form. We also discuss rich properties of the geometry of such manifolds.
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1 Introduction

Special geometries defined by a class of differential forms on manifolds are in the center of the
interest of geometers again. These interests are motivated by the fact that such a setting of special
geometries unifies many known geometries as symplectic geometry and geometries with special
holonomy [12], as well as other geometries arised in the M-theory [8], [20]. A series of papers by
Hitchin [10], [11] and his school [21], etc., opened a new way to these special geometries. Among
them they studied geometries associated with certain stable 3-forms in dimensions 6, 7 and 8 (see
the definition of a stable form in section 2 after Proposition 2.2.)

To classify the stable forms on Rn one could use the classification by Sato and Kimura [13] of the
stable forms on Cn (they are partial cases of prehomogeneous spaces) and to find the corresponding
real forms of the complex stable forms. We note that the Sato and Kimura classification does not
include the list of the automorphism groups of the complex stable forms. We also have noticed
a proof by Witt in [21] attempting to define the automorphism group of the real stable form of
PSU(3)-type, but unfortunately this proof is incomplete (see Remark 4.8 below).

In sections 2, 3 we study some properties of stable forms. In section 4 we classify stable forms on
Rn and we determine their automorphism groups. Our classification is based on the Djokovic work
[6]. In sections 5, 6, 7 we present certain necessary conditions as well as some sufficient conditions
for a manifold to admit a stable form. We also discuss the rich structure of manifolds admitting
stable forms in sections 5, 6, 8. In particular we show that for n = 7 or 8 the tangent bundle of
any manifold Mn which admits a stable 3-form has a canonical structure of a real simple Malcev
algebra bundle.

1The first and the third author are partially supported by the grant of ASCR Nr IAA100190701.
2The second author is supported by the grant 201/05/P088 of the Czech Science Foundation.

1

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-20 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic



2 Multi-symplectic forms and stable forms

We recall that a k-form γ on a vector space V n over a field F is called multi-symplectic, if the
following map

Iγ : V → Λk−1(V n)∗ : v 7→ vcγ

is injective.

Clearly a 2-form is multi-symplectic, if and only if it is symplectic.

A multi-symplectic form is generic in the following sense. For any k-form γ we can define its rank,
denoted by ρ(γ), as the minimal dimension of the subspace W ⊂ V ∗ such that γ ∈ ΛkW .

2.1. Lemma. A k-form γ on V n is multi-symplectic, if and only if, its rank is n.

Proof. It is easy to see that if the rank of γ is less than n, then the linear map Iγ has a non-trivial
kernel. On the other hand, if Iγ has the non-trivial kernel, then γ can be represented as a k-form in
the dual space of the kernel. In fact we have that the dimension of kernel of Iγ is equal to n− ρ(γ).
2

From now on we shall assume that F = C or R. In these cases the space Λk(V n)∗ has the natural
topology induced from F .

2.2. Proposition. The set of multi-symplectic k-forms is open and dense in the space of all
k-forms.

Proof. The equation for γ ∈ Λk(V n)∗ defining that Iγ has non-trivial kernel is an algebraic equation,
thus the set of non-multi-symplectic k-forms is a closed subset in Λk(V n)∗. It is also easy to check
that for any k there exists a multi-symplectic k-form on V n. Hence the statement follows.2

Clearly the multi-symplecity is invariant under the action of the group GL(Fn). We shall say that
a k-form γ is stable, if the orbit GL(Fn)(γ) is open in the space Λk(V n)∗. By Proposition 2.2
the set of multi-symplectic k-forms has non-trivial intersection with the orbit of any stable form.
Hence immediately follows

2.3. Corollary. A stable form is multi-symplectic.

The converse statement is true for k = 2 or k = n− 2. If k = 3 and n = 7, F = R, it is known that
there are 8 types of GL(R7)-orbits of multi-symplectic 3-forms but among them there are only two
of them are stable.

We say that two forms are equivalent (or of the same type), if they are in the same orbit of GL(V n)-
action. Clearly a real form is stable, if and only if its complexification is stable. We also know that
each complex orbit has a finite number of real forms [1], Proposition 2.3. Thus the classification of
real stable forms is equivalent to the classification of complex stable forms plus the classifacation
of the real forms of the complex stable forms. The classifications of complex stable forms is a part
of the Sato-Kimura classification of prehomogeneous spaces [13].
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3 Symmetric bilinear forms associated to a 3-form on R8.

In this section we associate to a 3-form ω3 on R8 several symmetric bilinear forms which are
invariants of ω3. We prove that the only non-degenerate 3-forms (see definition below, after the
formula (3.4)) are the stable forms. For each stable form we shall associate a Lie algebra structure
on R8.

We denote by I the natural isomorphism I : R8 ⊗ Λ8(R8)∗ → Λ7(R8)∗:

(3.1) I(v ⊗ θ) = vcθ,

where θ ∈ Λ8(R8) is a volume form.

Let ω be a 3-form on R8. We associate ω with a symmetric bilinear map S : R8×R8 → R8⊗Λ8(R8)∗

as follows

(3.2) Sω(v, w) = I−1((vcω) ∧ (wcω) ∧ ω).

Equivalently

(3.2.a) Sω(v, w) = −
8∑

i=1

ei ⊗ ((vcω) ∧ (wcω) ∧ ω ∧ e∗i )

for any basis (ei) in R8 and its dual basis (e∗i ).

For each v ∈ R8 we define a linear map Lω
v : R8 → R8 ⊗ Λ8(R8)∗ by letting the first variable in Sω

to be v

(3.3) Lω
v (w) = Sω(v, w).

Now we shall define a symmetric linear form Bω(v, w) : R8 × R8 → (Λ8(R8)∗)2 as follows

(3.4) Bω(v, w) = Tr(Lω
v ◦ Lω

w) ∈ (Λ8(R8)∗)2.

We say that ω is non-degenerate, if the reduced trace form < Bω, ρ2 > is non-degenerate, for
some choice of ρ ∈ Λ8(R8) \ {0}.

Let Gω be the automorphism group of ω. Let us consider the component G+
ω := Gω∩Gl+(R8).

3.5. Proposition. The bilinear forms Sω and Bω are Gl(R8)-equivariant in the following sense.
For any g ∈ Gl(R8) we have

(3.5.1) Sg∗(ω)(X, Y ) = g∗(Sω(g−1X, g−1Y )),

(3.5.2) Bg∗(ω)(X, Y ) = g∗(Bω(g−1X, g−1Y )).

If ω is non-degenerate, then the group G+
ω is a subgroup of SL(R8). The group Gω preserves the

reduced trace form < Bω, ρ2 > for any choice of ρ ∈ Λ8(R8).
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Proof. The computation of (3.5.1) and (3.5.2) is straightforward, so we omit them. The symmetric
form Bω(v, w) can be considered as a linear map Bω : (R8) → (R8)∗ ⊗ (Λ8(R8)∗)2. Let us consider
the associated linear map

(3.5.3) det(Bω) : Λ8(R8) → Λ8((R8)∗ ⊗ (Λ8(R8)∗)2) = Λ8((R8)∗)17.

If Bω is non-degenerate, then the map det(Bω) is not trivial. From (3.5.2) we deduce that the map
detBω is G+

ω -invariant map. So for any g ∈ G+
ω we get from (3.5.3)

det g = (det g−1)17.

Since det g > 0 we conclude that det g = 1. Now using (3.5.2) we get the last statement immediately.
2

3.6. Proposition. i) The trace form Bω is compatible with the multiplication Sω in the following
sense

Bω(Sω(a.b), c) = Bω(a, Sω(b, c)).

ii) The trace form Bω is non-degenerate, if and only if ω is stable.

Proof. The first statement follows immediately from the definition. The second statement could
be derived from the result of Sato and Kimura [13]. Here we give a straightforward proof of this
fact. We observe that if ω1 and ω2 are the real forms of the same complex 3-form, then their trace
forms are also the real forms of the trace form for the complex 3-form (all these bilinear forms Sω

and Bω can be defined for any vector space V over an arbitrary field.) Thus to check how many
real 3-forms are non-degenerate we need to check only 22 representatives of 3-forms in the Djokovic
classification [6]. Furthermore we know that a non-degenerate 3-form must be multi-symplectic.
Thus it suffices to compute the trace form of 13 multi-symplectic 3-forms in tables XI-XXIII in
the Djokovic classification. We wrote a program for computing the trace form Bω to run it under
Maple. We denote by e∗1 ∧ · · · ∧ e∗8 by θ, where e∗i are the coordinate 1-forms on R8. We shall use θ
to make a (reduced) multiplication V × V → V

(3.7) (vwcθ) = (vcω) ∧ (wcω) ∧ ω

Clearly we have

(3.8) Sω(v, w) = vw ⊗ θ.

We define structure constants Ak
ij by

(3.9) eiej =
∑

k

Ak
ijek

Then

(3.9.a) Sω(ei, ej) =
∑

k

Ak
ijek ⊗ θ

4



Now let us compute
Bω(el, em) =

∑
n

(S(el, S(em, en)), e∗n)

3.2.a=
∑
k,n

< ek ⊗ (elcω) ∧ (emencω) ∧ ω ∧ e∗k ⊗ θ, e∗n >

=
∑
n,p

(elcω) ∧Ap
mn(epcω) ∧ ω ∧ e∗n ⊗ θ

(3.10) =
∑
n,p

An
lp ·Ap

m,n ⊗ (θ)2.

The result is that the only stable forms numerated by XXIIIa, XXIIIb, XXIIIc by Djokovic have
non-degenerate trace forms.

Below we shall compute explicitly the reduced multiplication forms as well as the reduced trace
forms < Bφi , (θ∗)2 > for stable forms φi on R8 from the Djokovic classification.

(Form XXIIIa): φ1 = e124 + e134 + e256 + e378 + e157 + e468.
(Form XXIIIb): φ2 = e135 + e245 + e146 − e236 + e127 + e348 + e678.
(Form XXIIIc): φ3 = e135 − e146 + e236 + e245 + e347 + e568 + e127 + e128.

The reduced multiplication table for the form XXIIIa is:

0 −e1 e1 3 e2 − 3 e3 −3 e8 0 −3 e6 0

−e1 −2 e2 −2 e2 + 2 e3 −e4 −e5 −e6 2 e7 2 e8

e1 −2 e2 + 2 e3 2 e3 e4 −2 e5 −2 e6 e7 e8

3 e2 − 3 e3 −e4 e4 0 0 3 e7 0 3 e5

−3 e8 −e5 −2 e5 0 0 3 e3 −3 e4 0

0 −e6 −2 e6 3 e7 3 e3 0 0 3 e1

−3 e6 2 e7 e7 0 −3 e4 0 0 −3 e2

0 2 e8 e8 3 e5 0 3 e1 −3 e2 0


.

The reduced trace form for the form XXIIIa is:

0 0 0 −30 0 0 0 0

0 20 10 0 0 0 0 0

0 10 20 0 0 0 0 0

−30 0 0 0 0 0 0 0

0 0 0 0 0 −30 0 0

0 0 0 0 −30 0 0 0

0 0 0 0 0 0 0 −30

0 0 0 0 0 0 −30 0


.
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The reduced multiplication table for the form XXIIIb is:

6 e8 0 −3 e6 3 e5 −e1 3 e2 −3 e4 0

0 6 e8 −3 e5 −3 e6 −e2 −3 e1 3 e3 0

−3 e6 −3 e5 6 e7 0 −e3 −3 e4 0 3 e2

3 e5 −3 e6 0 6 e7 −e4 3 e3 0 −3 e1

−e1 −e2 −e3 −e4 −2 e5 2 e6 2 e7 2 e8

3 e2 −3 e1 −3 e4 3 e3 2 e6 −6 e5 0 0

−3 e4 3 e3 0 0 2 e7 0 0 3 e5

0 0 3 e2 −3 e1 2 e8 0 3 e5 0


.

The reduced trace form for the form XXIIIb is:

0 0 0 −60 0 0 0 0

0 0 60 0 0 0 0 0

0 60 0 0 0 0 0 0

−60 0 0 0 0 0 0 0

0 0 0 0 20 0 0 0

0 0 0 0 0 −60 0 0

0 0 0 0 0 0 0 30

0 0 0 0 0 0 30 0


.

The reduced multiplication table for the form XXIIIc is:



6 e7 − 6 e8 0 3 e6 3 e5 3 e4 3 e3 e1 −e1

0 6 e7 − 6 e8 −3 e5 3 e6 −3 e3 3 e4 e2 −e2

3 e6 −3 e5 6 e8 0 −3 e2 3 e1 e3 2 e3

3 e5 3 e6 0 6 e8 3 e1 3 e2 e4 2 e4

3 e4 −3 e3 −3 e2 3 e1 −6 e7 0 −2 e5 −e5

3 e3 3 e4 3 e1 3 e2 0 −6 e7 −2 e6 −e6

e1 e2 e3 e4 −2 e5 −2 e6 2 e7 2 e7 − 2 e8

−e1 −e2 2 e3 2 e4 −e5 −e6 2 e7 − 2 e8 −2 e8


.
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The reduced trace form for the form XXIIIc is:

60 0 0 0 0 0 0 0

0 60 0 0 0 0 0 0

0 0 60 0 0 0 0 0

0 0 0 60 0 0 0 0

0 0 0 0 60 0 0 0

0 0 0 0 0 60 0 0

0 0 0 0 0 0 20 10

0 0 0 0 0 0 10 20


.

2

3.11. Proposition. Each stable form φ defines a Lie algebra structure [, ]φ on R8 by the following
formula

(3.11.1) < [X, Y ]φ, Z >φ= φ(X, Y, Z),

where <,>φ denotes a reduced trace form of φ. Moreover the Lie algebra [, ]φi is the non-compact
real form of sl(3, C) for i = 1, 2 and the Lie algebra [, ]φ3 is the compact real form of sl(3, C).

Proof. First we note that the anti-symmetric bracket [, ]φ satisfies the following invariant property.
For each g ∈ Gl(R8) we have

(3.12) [X, Y ]g∗φ = g([g−1(X), g−1(Y )])φ.

Hence if the Jacobi identity holds at a form φ, it also holds at any point in the orbit GL(R8)(φ),
moreover these Lie brackets are equivalent. Secondly we notice that the bracket [, ]φ can be extended
linearly over C and this complexification is the anti-symmetric bracket defined by the complexifi-
cation of the form φ according to the same formula (3.11.1). Thus to verify the Jacobi identity for
3 stable forms φi, i = 1, 3, it suffices to verify for one of them.

Next, we shall show that the forms φi are equivalent to the Cartan forms on the real form of the
Lie algebra sl(3, C) and the trace form of one of the Cartan forms is a multiple of the Killing form.
Hence we shall get that the skew-symmetric multiplication defined in (3.11.1) coincides up to a
non-zero constant with the Lie bracket on the Lie algebra.

Taking into account Proposition 3.6.ii we observe that to show the equivalence of the complex
Cartan form on sl(3, C) to the stable forms φi ⊗ C it suffices to show that one of the real Cartan
forms is stable.

Now we compute the reduced trace formula for the Cartan form on the algebra su(3)

ρ3(X, Y, Z) =< [X, Y ], Z >
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where <,> denotes the Killing form on su(3). We use the following explicit expression taken from
[Witt2005] for a multiple of the form ρ3:

(−1/
√

3)3ρ3 = e123 + (1/2)(e147 − e156 + e246 + e257 + e345 − e367) + (
√

3/2)(e845 + e867)

where (ei) are an orthonormal basis in su(3) and eijk denotes the form ei ∧ ej ∧ ek. A direct com-
putation (also used Maple) gives us the following multiplication table for (4/3) · (−1/

√
3)3ρ3

2 e8 0 0
√

3e6

√
3e7

√
3e4

√
3e5 2 e1

0 2 e8 0 −
√

3e7

√
3e6

√
3e5 −

√
3e4 2 e2

0 0 2 e8

√
3e4

√
3e5 −

√
3e6 −

√
3e7 2 e3

√
3e6 −

√
3e7

√
3e4

√
3e3 − e8 0

√
3e1 −

√
3e2 − e4

√
3e7

√
3e6

√
3e5 0

√
3e3 − e8

√
3e2

√
3e1 − e5

√
3e4

√
3e5 −

√
3e6

√
3e1

√
3e2 −

√
3e3 − e8 0 − e6

√
3e5 −

√
3e4 −

√
3e7 −

√
3e2

√
3e1 0 −

√
3e3 − e8 − e7

2 e1 2 e2 2 e3 − e4 − e5 − e6 − e7 −2 e8


.

and we compute easily from here (also by using Maple) that the reduced trace formula for (−1/
√

3)3ρ3

is equal to (45/4) (diag). So the trace formula is a multiple of the Killing form.

Once we know that the reduced trace form is a multiple of the Killing form, we get the equivalence
of the complex Cartan form and the form φi ⊗ C. Since the only reduced trace form of φ3 is of
signature 0, we conclude that the φ3 is equivalent to ρ3. Now it follows immediately that the Lie
bracket for φ3 defined in (3.11.1) coincides with Lie bracket on su(3), since the reduced trace form
is a multiple of the Killing form. Thus the Lie bracket for φ3 satisfies the Jacobi identity. Hence
the Jacobi identity for all other φ1, φ2 also holds. This proves the first statement of Proposition
3.11.

It remains to determine that φ1 is equivalent to the Cartan form on sl(3, R) and φ2 is equivalent
to the Cartan form on su(1, 2). We know that the reduced trace form of the Cartan form on
sl(3, R) is a bilinear symmetric non-degenerate form which is invariant under the automorphism
group Aut(sl(3, R)) of the Lie algebra sl(3, R), since the Cartan form is invariant under the action
of Aut(sl(3, R)). Hence the reduced trace form of the Cartan form on sl(3, R) is a multiple of the
Killing form, in particular it has signature (3,5). Now we know that the signature of the reduced
trace form of φ1 is (3,5) and the signature of the reduced trace form of φ2 is of signature (4,4). This
proves the second statement of Proposition 3.11. 2

4 Classification of real stable forms.

We observe that the stability of a k-form is preserved under the Poincare isomorphism Λk(V n)∗ →
Λn−k(V n). We shall use notation e12···k for the form e1 ∧ e2 ∧ · · · ∧ ek. We also use notation Gγ for
the isotropy group of γ under the action of Gl(Rn) and by gγ the Lie algebra of Gγ .

8



4.1. Theorem. Suppose that 3 ≤ k ≤ n− k.
i)Then a stable k-form γ on Rn exists, if and only if k = 3 and 6 ≤ n ≤ 8. Furthermore
ii) if n = 6, then γ is equivalent to one of the following forms:
γ1 = e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6 with Gγ1 = SL(R3)× SL(R3)× Z2;
γ2 = Re (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) with Gγ2 = SL(C3),
iii) if n = 7, then γ is equivalent to one of the following forms:
ω1 = e123 − e145 + e167 + e246 + e257 + e347 − e356 with Gω1 = G2;
ω2 = e123 + e145 − e167 + e246 + e257 + e347 − e356 with Gω2 = G̃2,
iv) if n =8, then γ is equivalent to one of the following forms:
φ1 = e124 + e134 + e256 + e378 + e157 + e468 with Gφ1 = SL(3, R)× Z2;
φ2 = e135 + e245 + e146 − e236 + e127 + e348 + e678 with Gφ2 = PSU(1, 2)× Z2;
φ3 = e135 − e146 + e236 + e245 + e347 + e568 + e127 + e128 with Gφ3 = PSU(3)× Z2.

Proof. We first show that if 4 ≤ k ≤ n− k then there is no stable form. It suffices to show that in
this case we have

(4.2) dim Λk(Rn) ≥ n2 + 1 = dim(Gl(V n)) + 1.

Clearly we have under the assumption that 4 ≤ k ≤ n− k

dim Λk(Rn) ≥ dim Λ4(Rn).

Therefore (2.2) is a consequence of the following equality

(4.3) f(n) := n3 − 6n2 − 13n− 6 ≥ 1, for n ≥ 8.

Since f ′(n) > 0 for all n ≥ 8 it suffices to check (4.3) for n = 8 which is an easy exercise. To
complete the proof of Theorem 4.1.i we need to show that stable 3-forms exist for n = 6, 7, 8 and
not for n ≥ 9. But this is an well-known fact for n = 6, 7 and it follows from the classification of
3-forms on R8 by Djokovic [6]. To show that there is no stable 3-form in Rn, if n ≥ 9 we can repeat
the argument above to show that in this case dim Λ3(Rn) > dim Gl(Rn).

ii) This classification is already well-known, see [10] for a wonderful treatment.

iii) This classification follows from the list of Bures and Vanzura of multi-symplectic 3-forms in di-
mension 7 [2] together with their automorphism groups. The groups Gωi

have been first determined
by Bryant [3].

iv) We shall complete this classification from the last table in [Djokovic1983]. In that table Djokovic
supplied us only the Lie algbras gφi

, for i = 1, 2, 3. We shall recover Gφi
from gφi

by using the
following lemmas 4.4 and 4.5.

4.4. Lemma. Group Gl+(R8) acts transitively on the orbit Gl(R8)(φi), for φi being one of the
forms in Theorem 4.1.iv.

Proof. It suffices to show that the intersection Gφi ∩Gl−(R8) is not empty, where Gl−(R8) denotes
the orientation reversing component of Gl(Rn).

- For φ1 this intersection contains the following element σ23 · σ57 · σ68 · I1 · I4. Here σij denotes the
orientation reversing linear transformation which permutes the basic vectors vi and vj and leaves
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all other basic vectors fixed, and Ij denotes the orientation reversing linear transformation which
acts as −Id on the line vj ⊗ R and leaves all other basic vectors fixed.

- For φ2 this intersection contains the following element σ12 · σ34 · I6 · I7 · I8.

- For φ3 this intersection contains σ34 · σ56 · I1 · I7 · I8. 2

4.5. Lemma. Group Gl+φ := Gl+(R8)∩Gφ is connected for φi being one of the forms in Theorem
4.1.iv.

Proof. We use the observation obtained in section 3 that all three forms φi are the Cartan
forms

ρ(X, Y, Z) =< X, [Y,Z] >

on the Lie algebra sl(3, R), su(1, 2) and su(3), where <,> denotes the Killing form. Hence follows
that

(4.6) Aut(gφi
) ⊂ Gφi

.

In Proposition 3.11 we have also defined a way to recover the structure of the corresponding Lie
algebra from φi. Since all the reduced bilinear forms are invariant with respect to Gφi

we get

(4.7) Gφi ⊂ Aut(gφi).

Finally the structure of Aut(gφi
) is well-known, see e.g. [Murakami1952] and the references therein.

Thus we get Lemma 4.5 from (4.6) and (4.7). 2

Actually the proof of Lemma 4.5 implies Lemma 4.4. Nevertheless the proof of Lemma 4.4 gives us
explicitly an element in Gl−(R8) ∩Gφi . This completes the proof of Theorem 4.1. 2

4.8. Remark. In his thesis [21] Witt gave a proof that the component G+
φ3

is PSU(3). His proof
is incomplete, since he used implicitly without a proof the fact that the component G+

φ3
preserves

the Killing metric on su(3). (His method is to associate the Cartan form to a bilinear form with
value on R8 by using a fixed basis of R8. A detailed analysis shows that such a use is equivalent to
giving a linear map from (R8)∗ to R8 and in the given case of Witt, that map is an isomorphism
defined by the Killing metric).

We say that a differentiable form γ on a manifold Mn is stable, if at each x ∈ M the form γ(x) is
stable.

4.9. Proposition. If a connected manifold Mn admits a differentiable stable form γ3, then for all
x ∈ Mn the form γ(x) has the same type. In particular Mn admits a Gγ(x) structure. Conversely,
if Mn admits a Gγ structure, then it admits a differentiable form of γ type.

Proof. For each x ∈ Mn denote by U(x) the set of all points y ∈ Mn such that γ3(y) has the same
type as γ3(x). Clearly U(x) is an open subset in Mn. Suppose that U(x) 6= Mn. Then the closure
Ū(x) contains an point y which is not in U(x). Clearly γ(y) also has the same type as γ(x) since

10



U(y) has a non-empty intersection with U(x). Thus y ∈ U(x) which is a contradiction. The last
statement follows from the fact that the transition functions on G(x)-manifold preserve the form
γ(x). 2

5 Stable 3-forms on 6-manifolds

5.1. Obstruction for the existence of a Gγ1-structure.

If a non-orientable manifold M6 admits a Gγ1-structure, then its orientable double covering shall
admit Gγ1-structure. Now we shall consider only orientable manifolds M6 and so only the identity
component of Gγ1 . Clearly M6 admits an SL(3) × SL(3)-structure, if and only if it admits a
distribution of oriented 3-planes on M6.

We denote by ρ2 : H2(M, Z) → H2(M, Z2) the modulo 2 reduction.

5.1.1. Proposition. Suppose that a closed manifold M6 admits an SL(3)×SL(3)-structure. Then
its Euler class vanishes. Assume that H4(M6, Z) has no 2-torsion, the Euler class e(M6) vanishes
and M6 satisfies moreover the following condition (P). There are classes c1, c2 ∈ H2(M, Z) such
that

(P ) p1(M6) = c2
1 + c2

2, ρ2(c1 + c2) = w2(M6).

Then M6 admits an SL(3)× SL(3)-structure.

Proof. The first statement is well-known, since the Euler class of an oriented 3-dimensional vector
bundle is a 2-torsion, and H6(M, Z) has no 2-torsion. Let us assume that an orientable manifold M6

with vanishing Euler class has no 2-torsion in H4(M, Z), moreover M6 satisfies condition (P). Let V
be a non-vanishing vector field on M6. Since M6 satisfies condition (P), there is an almost complex
structure J on M6 such that c1(J) = c1 + c2, where c1 and c2 satisfies condition (P). Let W 4 be a
J-invariant sub-bundle of TM6 which is complement to V and JV . Clearly p1(W 4) = p1(M6). Let
L1 and L2 be the complex line bundles over M6 with the first Chern classes c1 and c2 satisfying
condition (P). Then p1(W 4) = p1(M6) = p1(L1 ⊕ L2) and w2(W 4) = w2(M6) = w2(L1 ⊕ L2).
Hence according to [19], Lemma 1, W 4 and L1 ⊕ L2 are stably isomorphic. Next we compute
that

e(W 4) = c2(W 4) = c2(TM6, J) =
1
2
(c2

1(TM6, J)− p1(TM6)) = c1 · c2 = e(L1 ⊕ L2).

Hence, taking into account [19], Lemma 2, W 4 and L1 ⊕ L2 are isomorphic as real vector bundles.
Thus TM6 is the sume of two 3-dimensional vector bundles. 2

5.1.2. Remark. i) In 5.3 we discuss regular maximally non-integrable Gγ1-structures. If a
Gγ1-structure is degenerate, but still regular, then it is easy to see that M6 satisfies the condition
(P).

ii) If M6 admits 3 linearly independent vector fields, then it admits also an SL(3)×SL(3)-structure.
In [18] Thomas gave a necessary and sufficient condition for an orientable 6-manifold to admit 3
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linearly independent vector fields, namely M6 has vanishing Euler class and vanishing Stiefel-
Whitney class w4.

5.2. Obstruction for the existence of a Gγ2-structure.

5.2.1. Proposition. A manifold M6 admits an SL(3, C)-structure, if and only if it is orientable
and spinnable.

Proof. Clearly a 6-manifold M6 admits an SL(3, C)-structure, if and only if M6 admits an almost
complex structure of vanishing first Chern class. In particular M6 must be orientable and spinnable.
On the other hand, if M6 is orientable and spinnable, then M6 admits an SL(3, C)-structure, since
it admits an almost complex structure, whose first Chern class is an integral lift of w2. Thus the
necessary and sufficient condition for M6 to admit an SL(3, C)-structure is the vanishing of the
Stiefel-Whitney classes w1(M6) and w2(M6). 2

5.3. Maximally non-integrable 3-forms of γ1-type.

Every 3-form γ1 on M6 defines a pair of two oriented transversal 3-distributions D1 and D2 together
with volume forms on each Di as follows. Recall that at every point x ∈ M we can write γ1 =
e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6. The union D1 ∪D2 is defined uniquely as the set of all vectors v ∈ TxM
such that rank (vcγ1) = 2, or equivalently, (vcγ1)2 = 0. The orientation (the volume form) of
D1 and D2 is defined by the restriction of γ1 to each distribution Di. Conversely, a pair of two
transversal oriented 3-distributions D1 and D2 on M6 together with their volume form defines a
3-form of γ1-type as follows. Let their volume forms be α1 and α2 respectively. Now we define
γ1 = p∗1(α1) + p∗2(α2), where p1 : TM → D1 and p2 : TM → D2 are the projections defined by
Di.

We call the structure (M6, γ1) regular, if the dimensions of the distributions [Di, Di] defined by γ1

are constant over M6. We shall call a regular Gγ1-structure maximal non-integrable, if at least
one of the distributions Di is maximal non-integrable in the sense that Di + [Di, Di] = TM .

At this place we note that the labeling D1 and D2 is well-defined only locally. Globally we may
be not able to distinguish, which of the two planes is the D1. This ambiguity can be removed, if
M6 is simply connected, since in this case the two line bundles detD1 and det D2 can be distin-
guished.

We can describe the maximal non-integrability of Di in terms of γ1 as follows. Write ω1 =
p∗1(α1), ω2 = p∗2(α2). Locally we can write ω1 = p∗1(e

1 ∧ e2 ∧ e3), ω2 = p∗2(e
4 ∧ e5 ∧ e6).

5.3.1. Proposition. There is a volume form D3ω2 ∈ Λ3(Λ2(D1))∗ defined in local coordinates
as follows:

D3(ω2) = i∗1(d p∗2(e
4) ∧ d p∗2(e

5) ∧ d p∗2(e
6)),

where i1 : Di → TM is the embedding, and dp∗2(e
i) are considered as elements of (Λ2TM)∗. This

expression does not depend on the choice of local 1-forms ei considered as 1-forms on D2. This
volume form is not zero, if and only if D1 is maximal non-integrable.
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Proof. We first show that, if f4, f5, f6 is another co-frame in D2, so that (f4, f5, f6) = g(e4, e,5 , e6)
for g ∈ Gl(D2) then

(5.3.2) i∗1(d p∗2(f
4) ∧ d p∗2(f

5) ∧ d p∗2(f
6)) = (det g) · i∗1(d p∗2(e

4) ∧ d p∗2(e
5) ∧ d p∗2(e

6)).

Proposition 5.3.1 is a local statement, so it suffices to prove it on a small disk B6 ⊂ M6. We
denote by A the open dense subset in the gauge transformation group Γ(B6 × Gl(D2)) which is
defined by the condition that (f4, e5, e6) and (f4, f5, e6) are also a co-frames on D2. Then we have
g = g3 ◦ g2 ◦ g1, where g1 sends (e4, e5, e6) to (f4, e5, e6), g2 sends (f4, e5, e6) to (f4, f5, e6) and
g3 = g ◦ g−1

1 ◦ g−1
2 . Now it is straightforward to check (5.3.2) for each g1, g2, g3. Hence (5.3.2)

holds on the open dense set A. Since the LHS and RHS of (5.3.2) are continuous mappings, the
equality (5.3.2) holds on the whole Gl(D2). This proves the first statement. The second statement
now follows by direct calculations in local coordinates. 2

Our study of maximally non-integrable Gγ1-structures is motivated by its relation with the parabolic
geometry. This structure is a generalization of the famous Cartan 2-distribution in a 5-manifold and
it has a canonical conformal structure [4]. The Lie algebra of the automorphism group Aut(M6, γ1)
as well as local invariants of (M6, γ1) can be calculated using the theory of filtered manifolds (see
e.g. [22].)

6 Stable 3-forms on 7-manifolds

6.1. Topological conditions for the existence of a stable 3-form on a 7-manifold.

The sufficient and necessary condition for the existence of a G2-structure on a 7-manifold M7 has
been established by Gray [9]. A manifold admits a G2-structure, if and only if it is both orientable
and spinnable, i.e. the first two Stiefel-Whitney classes vanish.

It has been observed in [15] that a closed 7-manifold M7 admits a G̃2 -structure, if and only if it
is orientable and spinnable. The closedness condition originates from the Dupont work [7] using
the K-theory, which implies the reduction of the SO(7)-structure on M7 to an SO(3) × SO(4)-
structure.

The geometry of G2-manifolds has been intensively studied, but the geometry of G̃2-manifolds
is barely explored. In [14] we have constructed the first example of a non-homogeneous closed
7-manifold which admits a closed 3-form of G̃2-type.

6.2. Malcev algebra structure on 7-manifolds admitting stable 3-forms.

Any stable 3-form φ in dimension 7 defines a reduced symmetric bilinear form by the formula
[3]

< V, W >φ=< (V cφ) ∧ (W cφ) ∧ φ, ρ >

where ρ is some nonzero element in Λ8(R7). Let us define a multiplication x ◦φ y on R7 by the
following formula:

< x ◦φ y, z >φ= φ(x, y, z).
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With Peter Nagy we have discovered that the skew-symmetric multiplication x ◦φ y defines the
structure of the simple Malcev algebra A∗ on R7 whose corresponding Moufang loop is S7 for
φ = ω1 in Theorem 4.1 (resp. the pseudo sphere S(4,4)(1) of the unit vector in the vector space
R8 with the metric with the signature (4, 4) for φ = ω2). Malcev algebras are generalization of Lie
algebras, see [17] for more information, in particular the structure of the simple Malcev algebras
A∗ on R7.

Thus the tangent bundle TM7 has the canonical structure of the simple Malcev algebra bun-
dle.

7 Stable 3-forms on 8-manifolds

As before we assume that M8 is orientable, since we can go to the orientable double covering, if
necessary.

The maximal compact subgroup of G+
φ1

is SO(3) which is included in SO(8) via the adjoint rep-
resentation. The maximal compact subgroup of PSU(1, 2) = SU(1, 2)/Z3 is S(U(1) × U(2))/Z3.
The subgroups SO(3) and S(U(1) × U(2))/Z3 are subgroups of PSU(3) = SU(3)/Z3. Thus any
orientable 8-manifold M8 admitting a 3-form of φ1-type or of φ2-type admits also a 3-form of φ3-
type. In particular M8 must be orientable and spinnable. Now for any spinnable manifold M8 we
define the characteristic class q1(M) as follows.

Denote by q1 the spin characteristic class in H4(BSpin(∞), Z) corresponding to−c2 ∈ H4(BSU(∞), Z).
For any spin-bundle ξ over M we denote by q1(ξ) the pull-back of q1. We set q1(M) := q1(TM).

As before ρ2 : H2(M8, Z) → H2(M8, Z2) denotes the modulo 2 reduction. The following Proposi-
tion is essentially a reformulation of Corollary 6.4 in [5].

7.1. Proposition. A closed orientable 8-manifold M8 admits a stable 3-form, if and only if it
satisfies the following conditions

(a) w2(M8) = 0 = e(M8),

(b) w6(M8) ∈ ρ(H6(M8, Z)),

(c) p2(M8) = −q1(M8)2 and
(q1(M8))2

9
[M8] = 0 mod 6.

In fact Corollary 6.4 in [5] is formulated as a necessary and sufficient condition for a manifold to
admit a PSU(3)-structure. But we have seen that the necessary condition for a manifold M8 to
admit a PSU(3)-structure is also a necessary condition for a manifold to admit a SL(3, R)-structure
or a PSU(1, 2)-structure.
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8 Further remarks

8.1. It is easy to see that our construction of natural bilinear forms works also for 3-forms on
space R3n+2. In the same way (this is already noticed first by Bryant for R7, in [2] this form
has been computed for all except one multi-symplectic 3-form) we can associate to any 3-form ω
on R3n+1 a bilinear form with values in Λ3n+1(R3n+1)∗, and it descends to a bilinear form if the
3-form is non-degenerate; we can also associate to any 3-form ω on R3n a linear map from R3n

to R3n ⊗ Λ3n(R3n)∗, and this linear map descends to a linear map R3n → R3n, if the 3-form ω
is non-degenerate (this is noticed by Hitchin for R6). We have not yet tested, if non-degenerate
3-forms exist in higher dimensions. In low dimensions 6,7,8 they coincide with stable forms.

8.2. Let ω3 be a stable 3-form on M , dim M ≥ 7. Then there is the canonical inclusion Gω to
O(k, l). So if a manifold M admits a stable form ω3 6= γi, i = 1, 2, it also admits a canonical
(pseudo)-Riemanian metric. The curvature of this (pseudo)-Riemannian metric is a differential
invariant of manifold (M,ω3). Using these metrics and existing stable forms we can construct new
differential forms which appear in other special geometries. Now we shall call a manifold (M,ω3)
stable, if ω3 is stable. Stable 8-manifolds (M8, ω3) seem to us especially interesting, since the bundle
TM8 has the canonical commutative multiplication as well as the structure of Lie algebra bundle
defined in Proposition 3.11. We conjecture that the algebra R8 with the commutative multiplication
defined by φi is a simple algebra. We have a partial proof for that conjecture in the case of φ2. The
stable form φi also defines the volume form on M8 and therefore according to Djokovic it defines
the graded E8-structure on the bundle ⊕3

i=1(Λ
i(TM)⊕ Λi(T ∗M))⊕ End(TM).

8.3. Suppose that M is a compact manifold and ω3 is a stable 3-form on M . As we have seen from
8.2 if dim M ≥ 7, then the automorphism group Aut(M,ω3) is a finite dimensional Lie group. If γ1

is maximal non-integrable, then the automorphism group (M6, γ1) is also a finite dimensional Lie
group. If γ1 is degenerate, then the automorphism group Aut(M6, γ1) can be infinite dimensional.
An example is M6 = S1(θ1)×S1(θ2)×Σ1×Σ2 and ω3 = dθ1∧σ1 +dθ2∧σ2, where σi is the volume
element on the surface Σi. Finally the automorphism group Aut(M6, γ2) is also finite dimensional,
since SL(3, C) is elliptic.
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