
Inverting Onto Functions and Polynomial
Hierarchy

Harry Buhrman1, Lance Fortnow2, Michal Koucký3, John D. Rogers4, and
Nikolay Vereshchagin5

1 CWI, Amsterdam,
buhrman@cwi.nl

2 University of Chicago,
fortnow@cs.uchicago.edu

3 Institute of Mathematics of Czech Academy of Sciences,
mkoucky@cs.mcgill.ca

4 DePaul University, Chicago,
jrogers@cs.depaul.edu

5 Lomonosov Moscow State University,
ver@mech.math.msu.su

Abstract. The class TFNP, defined by Megiddo and Papadimitriou,
consists of multivalued functions with values that are polynomially verifi-
able and guaranteed to exist. Do we have evidence that such functions are
hard, for example, if TFNP is computable in polynomial-time does this
imply the polynomial-time hierarchy collapses? By computing a multi-
valued function in deterministic polynomial-time we mean on every input
producing one of the possible values of that function on that input.
We give a relativized negative answer to this question by exhibiting
an oracle under which TFNP functions are easy to compute but the
polynomial-time hierarchy is infinite. We also show that relative to this
same oracle, P 6= UP and TFNPNP functions are not computable in
polynomial-time with an NP oracle.

1 Introduction

Megiddo and Papadimtriou [MP91] defined the class TFNP, the class of mul-
tivalued functions with values that are polynomially verifiable and guaranteed
to exist. A function from TFNP is specified by a polynomial time computable
binary relation R(x, y) and a polynomial p such that for every string x there
is a string y of length at most p(|x|) such that R(x, y) holds. It maps x to any
y of length at most p(|x|) such that R(x, y). This class of functions includes
Factoring, Nash Equilibrium, finding solutions of Sperner’s Lemma, and finding
collisions of hash functions.

Fenner, Fortnow, Naik and Rogers [FFNR03] consider the hypothesis, which
they called “Q”, that for every function in TFNP there is a polynomial-time
procedure that will output a value of that function. That is, Proposition Q states
that for every R and p defining a TFNP-function there is a polynomial time
computable function f such that R(x, f(x)) holds for all x.

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-21 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic



Fenner et. al. showed that Q is equivalent to a number of different hypotheses
including

– Given an NP machine M with L(M) = Σ∗, there is a polynomial-time
computable function f such that f(x) is an accepting computation of M(x).

– Given an honest onto polynomial-time computable function g there is a
polynomial-time computable function f such that g(f(x)) = x. (A function
g(x) is called honest if there is a polynomial p(n) such that |x| ≤ p(|g(x)|)
for all x.)

– For all polynomial-time computable subsets S of SAT there is a polynomial-
time computable function f such that for all φ in S, f(φ) is a satisfying
assignment to φ.

– For all NP machines M such that L(M) = SAT, there is a polynomial-time
computable function f such that for every φ in SAT and accepting path c
of M(φ), f(φ, c) is a satisfying assignment of φ.

Proposition Q implies that all disjoint coNP-sets are P-separable (which
implies that NP ∩ coNP = P) and is implied by P = NP. Fenner et. al. ask
whether we can draw any stronger complexity collapses from Q, in particular
if Q implies that the polynomial-time hierarchy collapses. We give a relativized
negative answer to this question by exhibiting an oracle relative to which Q holds
and the polynomial-time hierarchy is infinite. Our proof uses a new “Kolmogorov
generic” oracle.

Proposition Q naturally generalizes to other levels of the polynomial hier-
archy. Namely, define the class TFΣp

k as follows. A TFΣp
k-function is specified

by a binary relation R(x, y) computable in polynomial time with an oracle from
Σp

k−1 and a polynomial p such that for every string x there is a string y of length
at most p(|x|) such that R(x, y) holds. For k ≥ 1 we will label Σp

kQ the statement

For every R and p defining a TFΣp
k-function there is a function f

computable in polynomial time with an oracle from Σp
k−1 such that

R(x, f(x)) holds for all x.

For k = 1 we obtain the class TFNP and Proposition Q.
Proposition TFΣp

k implies that PΣp
k−1 = Σp

k ∩Πp
k and is implied by Σp

k−1 =
Σp

k . A natural question is whether, similar to the implication

Σp
k−1 = Σp

k =⇒ Σp
k = Σp

k+1,

Proposition TFΣp
k implies Proposition TFΣp

k+1. We give a relativized negative
answer to this question in the case k = 1: For any Kolmogorov generic G the
Proposition TFΣp,G

2 does not hold.
In addition we show that for any Kolmogorov generic G, PG 6= UPG.

2 Definitions and preliminaries

Let Σ denote the alphabet {0, 1}. The set of all finite-length binary strings is
denoted Σ∗.



2.1 Complexity classes

Our model of computation is the oracle Turing machine, both deterministic
(DTM) and nondeterministic (NTM). Unless otherwise noted, all machines in
this paper run in polynomial time. We assume that the reader is familiar with
the complexity classes P, NP, UP, PSPACE, Σp

k , and Πp
k for k ≥ 0. The class

∆p
k is defined as PΣp

k−1 , and PH =
⋃

k Σp
k stands for the Polynomial hierarchy.

The class F∆p
k is defined as the class of all functions from Σ∗ to Σ∗ that are

computable in polynomial time with an oracle from Σp
k−1.

We say that disjoint sets B and C are P-separable if there is a set D ∈ P
such that B ⊆ D and C ⊆ Σ∗ −D.

Proposition Q and its generalizations Σp
kQ are defined in the Introduction.

It is easy to see that Σp
kQ is equivalent to the following statement:

For every nondeterministic polynomial-time Turing machine M with or-
acle from Σp

k−1 that accepts Σ∗, there is a function f in F∆p
k such that,

for all x, f(x) is an accepting computation of M(x).

It is easy to see the following:

Proposition 1. If Σp
k−1 = Σp

k then Σp
kQ is true. If Σp

kQ is true then ∆p
k =

Σp
k ∩Πp

k .

2.2 Kolmogorov complexity and randomness

An excellent introduction to Kolmogorov complexity can be found in the text-
book by Li and Vitányi [LV97]. We will state here the definitions and results
relevant to our work. Roughly speaking, the Kolmogorov complexity of a binary
string x is defined as the minimal length of a program that generates x; the
conditional complexity C(x|y) of x conditional to y is the minimal length of a
program that produces x with y as input.

A conditional description method is a partial computable function Φ (that
is, a Turing machine) mapping pairs of binary strings to binary strings. A string
p is called a description of x conditional to y with respect to Φ if Φ(p, y) = x.
The complexity of x conditional to y with respect to Φ is defined as the minimal
length of a description of x conditional to y with respect to Φ:

CΦ(x|y) = min{|p| | Φ(p, y) = x}.

A conditional description method Ψ is called universal if for all other conditional
description methods Φ there is a constant k such that

CΨ (x|y) ≤ CΦ(x|y) + k

for all x, y. The Solomonoff–Kolmogorov theorem [Sol64,Kol65] states that uni-
versal methods exist. We fix a universal Ψ and define conditional Kolmogorov
complexity C(x|y) as CΨ (x|y). We call this Ψ the reference universal Turing
machine. The (unconditional) Kolmogorov complexity C(x) is defined as the



Kolmogorov complexity of x conditional to the empty string. Comparing the
universal function Ψ with the function Φ(p, y) = Ψ(p, empty string) we see that
the conditional Kolmogorov complexity does not exceed the unconditional one:

C(x|y) ≤ C(x) + O(1).

Comparing the universal function Ψ with the function Φ(p, y) = p we see that
the Kolmogorov complexity does not exceed the length:

C(x) ≤ |x|+ k (1)

for some k and all x. For most strings this inequality is close to an equality: the
number of strings x of length n with

C(x) < n−m

is less than 2n−m. Indeed, the total number of descriptions of length less than
n−m is equal to

1 + 2 + · · ·+ 2n−m−1 = 2n−m − 1.

In particular, for every n there is a string x of length n and complexity at least
n. Such strings are called incompressible, or random.

Let f(x, y) be a computable function mapping strings to strings. To describe
the string f(x, y) it is enough to concatenate x and y. Thus we obtain:

C(f(x, y)) ≤ 2|x|+ |y|+ k. (2)

where k depends on f and on the reference universal machine but not on x, y.
The factor of 2 is needed, as we have to separate x from y. To this end we write
the former in a self-delimiting form. As a self-delimiting encoding of a string
u we take the string ū obtained from u by doubling all its bits and appending
the pattern 01. For instance, 001 = 00001101. A similar inequality holds for
computable functions of more than 2 strings:

C(f(x1, x2, . . . , xn)) ≤ |x1|+ 2|x2|+ · · ·+ 2|xn|+ O(1). (3)

2.3 Generic oracles

An oracle is a subset of Σ∗. The oracles we use are generic oracles. What does
this mean? To explain this we need to recall some definitions from category
theory.

A condition on an oracle A is a finite set of requirements having the form
x ∈ A and y 6∈ A, where x, y ∈ Σ∗. We say that an oracle A satisfies a condition
α if all the requirements in α are satisfied by A. Let U be a family of oracles and
let Uα denote the set of all A ∈ U satisfying α. An interval in U is a non-empty
subset of U having the form Uα. A subset S of U is called dense in U if every
non-empty interval I in U has a sub-interval J in U included in S. Countable
intersections of dense sets are called large subsets of U .



Let P be a property of a set of oracles. We say that P holds for a generic
oracle if the set P is large in the set of all oracles. We say that P holds for
a generic oracle in U if the set P ∩ U is large in U . Assume that U has the
following property: the intersection of every infinite descending chain

I1 ⊃ I2 ⊃ I3 ⊃ . . .

of intervals in U is non-empty. Then by the usual diagonalization we can show
that every large subset of U is non-empty. Using a metaphor, we can say that
“generic oracles exist.” Our usage of the term “generic” oracle is similar to the
usage of the term “random” oracle. Indeed, we say that a property P holds for
a random oracle if P is a measure 1 set.

Note that if a property P0 holds for a generic oracle in U and P1 holds for
a generic oracle in U then so does P0 ∩ P1. Therefore if we want to prove that
Proposition Q holds but that the polynomial hierarchy is infinite relative to
a generic oracle in U we can prove these things separately. The same applies
to countable families of properties. If each Pi holds for a generic oracle in U
then the property

⋂
i Pi also holds for a generic oracle in U . For example, if we

want to prove that P 6= NP relative to a generic oracle in U we can define a
relativized language L that is in NP for generic oracle in U and then define a set
of requirements Ri, where Ri is the statement “DTM number i does not accept
L.” Then it is enough to prove, for every i, that Ri holds relative to a generic
oracle in U . To this end it suffices to prove that the set U ∩ Ri is dense in U :
every interval I in U has a subinterval J in U such that J ⊂ Ri.

Good introductions and several applications of the approach we are using
here may be found in the papers [BGS75,FFKL03,FR03,MV96].

Previous results

The method we are using was essentially designed in [BGS75]. Let U be a family
of oracles. Fix a PSPACE-complete set H and consider oracles of the form

A⊕H = {0x | x ∈ A} ∪ {1x | x ∈ H},

where A ∈ U . We will denote the set of all such oracles by U⊕PSPACE-complete.
Consider “tower” numbers, that is, natural numbers 1, 2, 22, 222

, . . . . The next
tower number from n is 2n. Let

U0 = {A | A ∩Σn = ∅ for all non-tower n}.

Most of the oracle constructions use (U ⊕ PSPACE-complete)-genericity
where U is a subfamily of U0. We survey three such particular families U , which
are relevant to the results of this paper:

– Relative to a generic oracle in U0⊕PSPACE-complete (called Cohen-generic
in [FR03]) the following holds: P = NP ∩ coNP, Q is false [IN88], there
are disjoint P-inseparable coNP-sets, P = UP [FR03], and, moreover, the
polynomial hierarchy PH is infinite (this is a direct corollary of lower bounds
for constant depth circuits from [H̊as89]).



– Let U1 = {A ∈ U0 | |A ∩ Σn| ≤ 1 for all tower n}. Relative to a generic
oracle in U1 ⊕ PSPACE-complete (UP-generic, according to [FR03]), P =
NP∩ coNP, all disjoint coNP-sets are P-separable [BGS75], Q is true and
P 6= UP = PH [FR03].

– Let U2 = {A ∈ U0 | |A ∩ Σn| = 1 for all tower n}. Relative to a generic
oracle in U2 ⊕ PSPACE-complete we have P 6= NP ∩ coNP = UP = PH
[MV96].

2.4 Kolmogorov-generic oracles

No genericity notion known from the literature is suitable to construct an oracle
such that Q is true but the PH is infinite. This is easily seen for the three
genericity notions surveyed above. So we have to define a new one, which we call
Kolmogorov generic.

For each n fix a binary string Zn of length n2n that is incompressible, that
is, C(Zn) ≥ |Zn| −O(1). Divide Zn into substrings z1, . . . , z2n , each of length n.
Let Yn be the set {〈i, zi〉|i ∈ {0, 1}n}. (Here we identify i with the integer binary
represented by i. The pair 〈u, v〉 is encoded be the string ūv, where ū stands for
the self-delimiting encoding of u defined in Section 2.2.) Let U be the set of all
subsets of

⋃
n Yn where the union is over all tower n.

When proving that a certain property holds for a Kolmogorov generic oracle
A = G ⊕ H ∈ U ⊕ PSPACE-complete we use the fact that every two different
lengths of strings in G are exponentially far apart. When discussing a particular
polynomial-time computation, we only have to worry about strings at exactly
one length in the oracle. Longer strings cannot be queried by the computation
and so cannot affect it. Shorter strings can all be queried and found by the
computation.

3 Results

Theorem 1. Relative to a generic oracle in U⊕PSPACE-complete (a Kolmogorov-
generic oracle), Proposition Q is true.

Proof. We first assume that P = PSPACE and prove that Proposition Q is
true under a generic oracle G ∈ U .

As explained above it suffices to show that for every polynomial-time oracle
NTM M and relative to a Kolmogorov-generic oracle,

If M accepts Σ∗ then there is a polynomial time machine
finding for each input an accepting computation of M .

(4)

Fix M . Without loss of generality, M on an input x runs in time |x|k + k,
for some constant k independent of its oracle. Indeed, for each oracle nondeter-
ministic Turing machine M (not necessarily polynomial time) and natural k we
can construct an NTM that acts as M supplied with a clock that prevents it to



run more than in |x|k + k steps. If MA runs in polynomial time then for some k
the machine MA supplied with the clock |x|k + k is equivalent to MA.

We will show that the set of oracles satisfying (4) is dense. Let I = Uα be an
interval in U . We need to construct a sub-interval J of I such that (4) is true
for all G ∈ J . Consider two cases.

Case 1. There is a sub-interval of I such that for all A in that sub-interval,
MA does not accept Σ∗. Then let J be equal to that sub-interval of I.

Case 2. There is no such sub-interval. Consider the following polynomial-
time deterministic algorithm A that, given an input x of length at least two,
finds an accepting path of the computation MG(x). Let n be the largest tower
number smaller or equal to 4|x|2k. The algorithm A will try to collect enough
information about the oracle G so that it could find an accepting path of MG(x).
The algorithm A starts by asking the value of G on all the strings in Yi for
i ≤ log n. This can be done in time polynomial in |x|.

After that it will iteratively build a set Q of strings from G∩Yn starting from
an empty set Q. Using the assumption that P = PSPACE and the information
about G collected so far, the algorithm finds the lexicographically first accepting
path of MG on x under the assumption that G ∩ {〈i, u〉|i, u ∈ {0, 1}n} = Q.
(Note, M on x cannot query any string in Ym, for m > n.) Such path does exist,
as otherwise, the sub-interval J of I, consisting of all G′ with G′ ∩ {〈i, u〉|i, u ∈
{0, 1}n} = Q and G′ ∩ Yi = G ∩ Yi for all i ≤ log n would qualify case (1).

If this path is indeed an accepting path of the computation MG(x), A is
done. If not then there is a string w ∈ (G ∩ {〈i, u〉|i, u ∈ {0, 1}n}) \ Q that is
queried along this path. Clearly such w is from Yn. The algorithm picks the
first such w, adds it to the set Q and iterates the process. Clearly, A eventually
finds a correct accepting path of MG(x). We claim that A will find it within
polynomially many iterations.

Observe, given M , x, G∩Y≤log n each string in Q can be described by k log |x|
bits by its order number among the queries of M on x on the accepting path
described above. The set G ∩ Y≤log n has at most n + log n + log log n + . . .
strings, each of length at most log n. Thus G ∩ Y≤log n can be described in at
most O(n log n) bits. Hence if Q reaches size `, we can describe Q by `k log |x|+
O(n log n) + 2|x|+ O(1) bits (by Equation (3)).

Recall that all of the strings in Yn are derived from Zn. Because of the way
Yn is defined any set A of ` strings from Yn has Kolmogorov complexity at least
`n/2−O(1).

Indeed, each element of Yn is a pair 〈i, y〉. Let p denote the concatenation
of all y’s from all pairs 〈i, y〉 outside A arranged according to the order on i’s.
The length of p is n(2n − `). The initial string Zn can be obtained from p by
inserting the second components of pairs from A, their first components specify
the places where to insert. Thus given p and the shortest description q of A we
can find Zn, and Equation (2) implies

n2n −O(1) ≤ C(Zn) ≤ |p|+ 2|q|+ O(1) = n(2n − `) + 2C(A) + O(1).



Since 2+2k log |x| < n ≤ 4|x|2k, the Kolmogorov complexity of ` strings from
Yn is at least `k log |x|+ `−O(1). Thus Q cannot grow bigger than O(n log n)+
2|x| = O(|x|2k log |x|).

We can remove the hypothesis that P = PSPACE by first relativizing to
an oracle making P = PSPACE. It is known that relative to every PSPACE-
complete set H we have P = PSPACE. Thus, relative to H, Q-property holds
relative to a generic oracle in U . As H is computable, the Kolmogorov complex-
ity relativized by H coincides with the unrelativized Kolmogorov complexity (up
to an additive constant), and relativization does not change the notion of Kol-
mogorov genericity. In other words, Property Q holds relative a generic oracle
in U ⊕ PSPACE-complete. ut

Theorem 2. Relative to a generic oracle in U⊕PSPACE-complete (a Kolmogorov-
generic oracle), for all k ≥ 0 we have Σp

k 6= Σp
k+1.

Proof. Meyer and Stockmeyer [MS72] show that if Σp
k = Σp

k+1 then Σp
k = Σp

j

for all j ≥ k. So it is sufficient for us to show that Σp
k−2 6= Σp

k+1 for all k ≥ 3
relative to a Kolmogorov generic oracle G⊕H, where H is an arbitrary set.

We use the Sipser [Sip83] functions as defined by H̊astad [H̊as89]. The func-
tion fm

k is represented by a depth k alternating circuit tree with an OR gate
at the top with fan-in

√
m/ log m, bottom fan-in

√
km log m/2 and all other

fan-ins are m. Each variable occurs just once at each leaf.

Theorem 3 (H̊astad). Depth k − 1 circuits computing fm
k are of size at least

2Ω(
√

m/(k log m)).

Pick a tower n. Set m = 2n/k. The number of variables of fm
k is mk−1

√
k/2 <

2n for large n. For each of the variables of this formula assign a unique i ∈ {0, 1}n

so we can in polynomial-time find i from the variable and vice-versa.
Now consider the language Lk(G) such that input 1n is in L(G) if fm

k is true
when we set the variables corresponding to i to one if 〈i, zi〉 is in G and zero
otherwise.

We will show relative to a Kolmogorov generic oracle G ⊕ H, Lk(G) ∈
Σp,G⊕H

k+1 −Σp,G⊕H
k−2 .

First notice that Lk(G) ∈ Σp,G⊕H
k+1 for all G ∈ U : Consider an alternating

Turing machine that uses k-alternations to simulate the circuit. To determine
whether a variable corresponding to i is true the machine makes the NP query
“is there a z such that 〈i, z〉 is in G.” This gives us a ΣNP,G

k = Σp,G
k+1 machine

accepting Lk(G).
Let M be an alternating Σp

k−2 oracle Turing machine that runs in time nj .
Let I = Uα be an interval in U . We need to construct a subinterval J of I such
that MG⊕H does not accept L(G) for all G ∈ J . Along the lines of Sipser [Sip83]
we can convert the computation to a circuit of depth k−1 and size 2O(nj) whose
input variables correspond to queries to G. Hardwire the queries not of the form
〈i, zi〉 to one if they belong to H and zero otherwise to obtain a circuit whose
variables are the same as those in fm

k in the definition of Lk(G) on 1n. By



Theorem 3 for sufficiently large n this circuit cannot compute fm
k so there must

be some setting of the variables where the circuit and fm
k have different outputs.

Add to the condition α the requirement 〈i, zi〉 ∈ G if variable i is assigned 1 in
this setting and the requirement 〈i, zi〉 6∈ G otherwise. For all G ∈ U satisfying
the resulting condition, MG⊕H(1n) accepts iff 1n is not in L(G). ut

We can also show that one-way functions exist relative to G.

Theorem 4. Relative to a Kolmogorov generic oracle G⊕H, P 6= UP.

Proof. Define the relativized language LX as {〈i, 0n〉 : (∃z)|z| = n & 〈i, z〉 ∈ X}.
For a string z of length n, there is at most one string of the form 〈i, z〉 in G
so the language is in UPG. A simple argument demonstrates that LG is not in
PG⊕H . ut

Can the proof that Q holds relative to a Kolmogorov-generic be lifted to show
that Σp

kQ holds and we get the collapse of the ∆p
k and Σp

k ∩ Πp
k? The answer

is no for k = 2 and the proof of this shows that this is true for a broad class of
finite extension oracles.

To show that Σp
2Q fails relative to a Kolmogorov-generic oracle G, let f be

a function from Σ∗ to Σ∗ where for every x of length n

f(x) = y1 . . . yn−1

and
yj = 1 ⇐⇒ (∃u, z) |u| = n, |z| = 2n + log n, 〈xju, z〉 ∈ G.

No matter what strings are in G, the pigeonhole principle tells us that, for
all n, there will always be a collision, that is, two different strings x1 and x2 of
length n such that f(x1) = f(x2).

Let M be a Σp,G
2 machine that on any input of length n guesses two different

strings of length n in its existential step and then accepts iff those strings collide
on f . It is clear from the definition of f that M can find these collisions and
that it accepts Σ∗. A PNPG

machine that finds an accepting path of M could
be modified to output the two colliding strings on that path so, without loss of
generality, we will assume it does just that.

Theorem 5. Relative to a Kolmogorov generic oracle G⊕H, no PNP machine
can find an accepting path of the computation M(x) for every x.

Proof. Let 〈R,N〉 be an arbitrary pair consisting of an oracle polynomial time
DTM R and an oracle polynomial time NTM N . We will show that the set of
all oracles G such that R with oracle NG⊕H does not find any collision of fG is
dense in U .

Without loss of generality we can assume that there are polynomial upper
bounds of the running time of R and N that do not depend on their oracles. Let
pR and pN stand for those polynomials, respectively.

Let Iα be an interval in U . We will show that for some n there is an interval
Iβ ⊂ Iα such that for all G ∈ Iβ , RNG⊕H

(0n) does not find two strings that
collide on fG.



Pick a large n that is bigger than the maximal length of strings in the domain
of α and such that 2n + log n is a tower number. (We call the set of all y such
that α contains a condition y ∈ G or y 6∈ G the domain of α and use the notation
dom α.)

Note that the outcome of RNG⊕H

on input 0n depends only on membership
in G of strings of length at most pN (pR(n)). First we add to α the requirements
y /∈ G for all strings y /∈ Y2n+log n ∪ dom α of length at most pN (pR(n)) and
denote by β0 the resulting condition. The condition β is obtained from β0 in at
most pR(n) iterations. In ith iteration we define a condition βi obtained from
βi−1 by adding some requirements of the form y ∈ G and y /∈ G for y ∈ Y2n+log n.

Let us explain this in more detail. For x ∈ Σn and j = 1, . . . , n− 1 let

Bjx = {〈xju, zxju〉 | u ∈ Σn}.

We call the set Bx =
⋃n−1

j=1 Bjx the bag corresponding to x. The value fG(x)
depends only on Bx∩G. More specifically, jth bit of fG(x) is 0 if the set Bjx∩G
is empty.

On each iteration we choose a set D ⊂ Σn of cardinality at most pN (pR(n))
and set oracle’s value on the set

⋃
x∈D Bx. This means that for every y in this

set we include in βi either the condition y /∈ G, or the condition y ∈ G. The
notation Di will refer to the set of all strings x such that oracle’s value is set on
Bx during iterations s = 1, . . . , i. We will keep the following statement invariant:
fG is injective on Di for all G ∈ Iβi .

Additionally, on ith iteration we choose the desired answer ai of NG⊕H to
the i-th query to NG⊕H in the run of R on input 0n.

On ith iteration we run R on input 0n assuming the answers a1, . . . , ai−1 to
oracle queries until R makes ith query qi to the oracle or outputs a result. If the
first option happens, we choose the desired answer of NG⊕H on qi as follows.

Assume that G ∈ Iβi−1 and C is an accepting computation of NG⊕H on
input qi. We say that 〈G, C〉 is a good pair if the following holds. Let D be the
set of all x ∈ Σn such that computation C queries a string in the bag of x. The
pair 〈G, C〉 is good if fG is injective on the set D ∪Di−1.

Assume first that there is a good pair 〈G, C〉. In this case we pick a good pair
〈G̃, C̃〉, define D as explained above and choose YES as the desired answer to ith
query. The condition βi is obtained from βi−1 by adding the requirements y ∈ G
for all y ∈

⋃
x∈D Bx ∩ G̃ and the requirements y /∈ G for all y ∈

⋃
x∈D Bx \ G̃.

Note that NG⊕H(qi) = 1 for all G ∈ Iβi .
If there is no good pair 〈G, C〉 then we choose NO as the desired answer to

ith query and set βi = βi−1, Di = Di−1.
On some iteration k ≤ pR(n), R makes no new queries and outputs two

strings x1 and x2, where f presumably collides. At this point we set oracle’s
value on all remaining strings in Y2n+log n as follows. Pick any oracle G̃ ∈ Iβk−1

such that f G̃ is injective on the set Dk = Dk−1 ∪ {x1, x2} and such that for
all x ∈ Σn \ Dk, f G̃(x) = 00 . . . 0. If n is large enough then there is such G̃.
Indeed, the length of qi is at most pR(n) and thus every computation of N G̃⊕H



on input qi runs in time pN (pR(n)). Hence |Dk| is bounded by the polynomial
pR(n)pN (pR(n)) + 2. If 2n−1 is bigger than this bound then there are enough
strings in the range of f to avoid collision in Dk.

We let β be the condition containing the requirements y ∈ G for all y ∈ G̃
of length at most pN (pR(n)) and the requirements y /∈ G for all y /∈ G̃ of length
at most pN (pR(n)).

We claim that for all G ∈ Iβ , RNG⊕H

on 0n computes the way how we
determined. Indeed, if R computes differently for some G ∈ Iβ then there must
be a query answered in the opposite way than we desire. Let qi be the first such
query. Note that qi coincides with the ith query in our construction, as all the
previous queries are answered by NG⊕H as we desire. If we have chosen YES as
the desired answer to ith query then by construction NG⊕H(qi) = 1 and thus
the desired answer is correct. Therefore this may happen only if we have chosen
NO as the ith answer and NG⊕H(qi) = 1.

By way of contradiction, assume that this is the case. Pick then an accepting
computation C of NG⊕H on qi. We will show that there is G′ ∈ Iβi−1 such that
〈G′, C〉 is a good pair. Let D be the set of all x ∈ Σn such that computation
C queries a string in the bag of x. Note that by construction fG is injective on
Dk. (However, fG may be not injective on Di−1 ∪D thus 〈G, C〉 may be not a
good pair.)

We will add to G some strings from
⋃

x∈D\Dk
Bx so that for the resulting

oracle G′ the pair 〈G′, C〉 is good. We may assume that 2n, the cardinality of
every set Bjx, is greater than the number of queries along C. For every x ∈ D\Dk

and every j we can change jth bit of fG(x) to 1 by adding to G a non-queried
string from Bjx. All of the 2n−1 values in the range of f can be obtained in this
way. Thus we can change fG(x) for all x ∈ D \ Dk one by one so that for the
resulting oracle G′, C is an accepting computation and fG′

(x) is injective on
D ∪Dk and hence on D ∪Di−1. ut

4 Conclusion and open problems

Is there an oracle relative to which the polynomial-time hierarchy is proper and
Σp

kQ is true for all k? As a corollary we would get a relativized world where the
hierarchy is proper and ∆p

k = Σp
k∩Πp

k . The second statement remains open even
relative to Kolmogorov generics and, if true, would give a relativized version of
the polynomial-time hierarchy that acts like the arithmetic hierarchy.

Acknowledgments

We thank Steve Fenner and Marcus Schaefer for helpful discussions. The work
of N. Vereshchagin was in part supported by RFBR grant 06-01-00122 and the
work of M. Koucký was supported in part by grant GA ČR 201/07/P276, project
No. 1M0021620808 of MŠMT ČR and Institutional Research Plan No. AV0Z10190503.



References

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativization of P=?NP question. SIAM
J. Computing, 4(4):431–442, 1975.

[FFKL03] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit.
Information and Computation, 182:95–136, 2003.

[FFNR03] S. Fenner, L. Fortnow, A. Naik, and J. Rogers. Inverting onto functions.
Information and Computation, 186:90–103, 2003.

[FR03] L. Fortnow and J. Rogers. Separability and one-way functions. Computa-
tional Complexity, 11:137–157, 2003.

[H̊as89] J. H̊astad. Almost optimal lower bounds for small depth circuits. Advances
in Computing Research, 5:143–170, 1989.

[IN88] R. Impagliazzo and M. Naor. Decision trees and downward closures. In
Proceedings of the 3rd IEEE Structure in Complexity Theory Conference,
pages 29–38. IEEE, New York, 1988.

[Kol65] A.N. Kolmogorov. Three approaches to the quantitative definition of infor-
mation. Problems of Information Transmission, 1(1):1–7, 1965.

[LV97] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications. Graduate Texts in Computer Science. Springer, New York,
second edition, 1997.

[MP91] N. Megiddo and C. Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2):317–
324, 1991.

[MS72] A. Meyer and L. Stockmeyer. The equivalence problem for regular expres-
sions with squaring requires exponential space. In Proceedings of the 13th
IEEE Symposium on Switching and Automata Theory, pages 125–129. IEEE,
New York, 1972.

[MV96] An. Muchnik and N. Vereshchagin. A general method to construct oracles
realizing given relationships between complexity classes. Theoretical Com-
puter Science, 157:227–258, 1996.

[Sip83] M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th
ACM Symposium on the Theory of Computing, pages 61–69. ACM, New
York, 1983.

[Sol64] R.J. Solomonoff. A formal theory of inductive inference, part 1 and part 2.
Information and Control, 7:1–22, 224–254, 1964.


