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Abstract

We present necessary and sufficient conditions for the existence of
a countably additive measure on a Boolean σ-algebra. For instance,
a Boolean σ-algebra B is a measure algebra if and only if B − {0} is
the union of a chain of sets C1 ⊂ C2 ⊂ ... such that for every n,

(i) every antichain in Cn has at most K(n) elements (for some in-
teger K(n)),

(ii) if {an}n is a sequence with an /∈ Cn for each n, then limn an = 0,
and

(iii) for every k, if {an}n is a sequence with limn an = 0, then for
eventually all n, an /∈ Ck.

The chain {Cn} is essentially unique.
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1 Statement of results

A Boolean algebra is an algebra B of subsets of a given nonempty set
X, with Boolean operations a∪ b, a∩ b, −a = X −a, and the zero and
unit elements 0 = ∅ and 1 = X. A Boolean σ-algebra is a Boolean
algebra B such that every countable set A ⊂ B has a supremum
sup A =

∨
A (and an infimum inf A =

∧
A) in the partial ordering of

B by inclusion.

Definition 1.1. A measure (more precisely, a strictly positive σ-
additive probability measure) on a Boolean σ-algebra B is a real valued
function m on B such that

(i) m(0) = 0, m(a) > 0 for a 6= 0, and m(1) = 1

(ii) m(a) ≤ m(b) if a ⊂ b

(iii) m(a ∪ b) = m(a) + m(b) if a ∩ b = 0

(iv) m(
∨∞

n=1 an) =
∑∞

n=1 m(an) whenever the an are pairwise disjoint.

A measure algebra is a Boolean σ-algebra that carries a measure.

Let B be a Boolean algebra and let B+ = B −{0}. A set A ⊂ B+

is an antichain if a ∩ b = 0 whenever a and b are distinct elements of
A. A partition W (of 1) is a maximal antichain, i.e. an antichain with∨

W = 1. B satisfies the countable chain condition (ccc) if it has no
uncountable antichains. B is weakly distributive if for every sequence
{Wn}n of partitions there exists a partition W with the property that
each a ∈ W meets only finitely many elements of each Wn.

If B is a measure algebra then B satisfies ccc and is weakly dis-
tributive. Below we present additional, purely algebraic, conditions
that characterize measure algebras.

If {an}n is a sequence in a Boolean σ-algebra B, one defines

lim sup
n

an =
∞∧

n=1

∞∨

k=n

ak and lim inf
n

an =
∞∨

n=1

∞∧

k=n

ak,

and if lim supn an = lim infn an = a, then a is the limit of the sequence,
denoted limn an.

Theorem 1.2. A Boolean σ-algebra B is a measure algebra if and
only if it is weakly distributive and B+ is the union of a countable
family {Cn}n such that for every n,
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(i) every antichain in Cn has at most K(n) elements (for some
integer K(n)), and

(ii) if {an}n is a sequence with an /∈ Cn for each n, then limn an = 0.

Theorem 1.3. A Boolean σ-algebra B is a measure algebra if and
only if B+ is the union of a countable family {Cn}n such that for
every n,

(i) every antichain in Cn has at most K(n) elements (for some
integer K(n)),

(ii) if {an}n is a sequence with an /∈ Cn for each n, then limn an = 0,
and

(iii) for every k, if {an}n is a sequence with limn an = 0, then for
eventually all n, an /∈ Ck.

Theorem 1.4. A Boolean σ-algebra B is a measure algebra if and
only if it is weakly distributive and B+ is the union of a countable
family {Cn}n such that for every n,

(i) every antichain in Cn has at most K(n) elements, and

(ii) for every n and all a and b, if a ∪ b ∈ Cn then either a ∈ Cn+1

or b ∈ Cn+1

If a Boolean σ-algebra B satisfies ccc then weak distributivity is
equivalent to this condition: if {Wn}n is a sequence of partitions then
each Wn has a finite subset En such that limn

⋃
En = 1.

Definition 1.5. A Boolean σ-algebra B is uniformly weakly distribu-
tive if there exists a sequence of functions {Fn}n such that for each
partition W , Fn(W ) is a finite subset of W, and if {Wn}n is a sequence
of countable partitions then limn

⋃
Fn(Wn) = 1.

Definition 1.6. Let B be a Boolean σ-algebra. B is concentrated if
for every sequence An of finite antichains with |An| ≥ 2n there exist
an ∈ An such that limn an = 0. B is uniformly concentrated if there
exists a function F such that for each finite antichain A, F (A) is
an element of A, and if An is a sequence of finite antichains with
|An| ≥ 2n then limn F (An) = 0.

Theorem 1.7. A Boolean σ-algebra B is a measure algebra if and
only if it is uniformly weakly distributive and concentrated.

Theorem 1.8. A Boolean σ-algebra B is a measure algebra if and
only if it is weakly distributive and uniformly concentrated.
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2 Background and definitions

We give a brief history of the problem, introduce relevant definitions
and state the known results. For an additional reference and a more
detailed history, see [14] (in particular Fremlin’s article [6]) and [4].

The problem of an algebraic characterization of measure algebras
originated with John von Neumann. In 1937 (Problem 163 in [13])
he stated that measure algebras satisfy ccc and are weakly distribu-
tive, and asked if these conditions are sufficient for the existence of a
measure.

In [12], Dorothy Maharam investigated Boolean σ-algebras that
carry a continuous submeasure and presented necessary and sufficient
conditions for the existence of such a submeasure as well as of a mea-
sure.

Definition 2.1. A (strictly positive) submeasure on a Boolean algebra
B is a real valued function m on B such that

(i) m(0) = 0, m(a) > 0 for a 6= 0, and m(1) = 1

(ii) m(a) ≤ m(b) if a ⊂ b

(iii) m(a ∪ b) ≤ m(a) + m(b)

A Maharam submeasure on a Boolean σ-algebra is a submeasure that
is continuous:

(iv) if {an}n is a decreasing sequence in B with
∧∞

n=1 an = 0 then
limn m(an) = 0.

A Maharam algebra is a Boolean σ-algebra that carries a Maharam
submeasure.

A measure is a Maharam submeasure, and every Maharam algebra
is ccc and weakly distributive. Maharam asked if every Maharam
algebra is a measure algebra. She also proved that a Suslin line, if
it exists, provides an example of a Boolean σ-algebra that is ccc and
weakly distributive but not a Maharam algebra. (The existence of a
Suslin line is consistent with the axioms of set theory [17], [8], but not
provable in ZFC, [15].)

In [11], John Kelley gave a combinatorial characterization of Boolean
algebras that carry a finitely additive measure. A finitely additive mea-
sure on a Boolean algebra is a function m that satisfies conditions (i),
(ii) and (iii) of Definition 1.1. He also proved the following theorem
(due independently to Pinsker [10]):
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Theorem 2.2. A Boolean σ-algebra B carries a measure if and only
if it is weakly distributive and carries a finitely additive measure.

Proof. Let m be a finitely additive measure on B. For every partition
W let λW be the function

λW (b) = sup{m(b ∩
⋃

E) : E is a finite subset of W},

and let
µ(b) = inf{λW (b) : W is a partition}.

The function µ is σ-additive, and weak distributivity implies that
µ(b) > 0 for every b 6= 0.

A major advance toward the solution of Maharam’s problem was
the following result of Nigel Kalton and James Roberts.

Definition 2.3. A submeasure m on a Boolean algebra B is exhaus-
tive if limn m(an) = 0 for every infinite antichain A = {an : n =
1, 2, ...}. It is uniformly exhaustive if for every ε > 0 there exists some
n such that there is no sequence of n disjoint elements a1, . . . , an ∈ B
with m(ai) ≥ ε for all i = 1, . . . , n.

Note that a Maharam submeasure is exhaustive while a finitely
additive measure is uniformly exhaustive.

Theorem 2.4. (Kalton-Roberts [9].) If a Boolean algebra B carries
a uniformly exhaustive submeasure then B carries a finitely additive
measure.

Corollary 2.5. If a Boolean σ-algebra carries a uniformly exhaustive
Maharam submeasure then it is a measure algebra.

The use of the order sequential topology on B (introduced by Ma-
haram and developed by Bohuslav Balcar) resulted in further charac-
terizations of Maharam algebras, cf. [1] and [2], in particular:

Theorem 2.6. (Balcar-Jech-Pazák [2].) A Boolean σ-algebra B car-
ries a Maharam submeasure if an only if it is ccc and weakly dis-
tributive and has the Gδ property, i.e. there exists a countable family
{Un}nof subsets of B with

⋂∞
n=1 Un = {0} such that for every sequence

{ak}k with limit 0, eventually all ak are in Un.
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Theorem 2.6 combined with an earlier result of Todorcevic [18]
shows that it is consistent that a Boolean σ-algebra is a Maharam
algebra if and only if it satisfies ccc and is weakly distributive.

In [16], Michel Talagrand solved Maharam’s problem by construct-
ing a submeasure on a countable Boolean algebra that is exhaustive
but not uniformly exhaustive. In view of [9] this yields a (countably
generated) Maharam algebra that is not a measure algebra.

The Kalton-Roberts theorem and the Balcar-Jech-Pazák theorem
are the tools we use in the proofs of Theorems 1.2–1.8.

3 Proof of Theorems 1.2–1.8

First we verify that measure algebras satisfy the conditions stated in
the theorems. Let m be a measure on a Boolean σ-algebra B. B is
weakly distributive, in fact uniformly weakly distributive: For each
n and every partition W , let Fn(W ) be a finite subset E of W such
that m(

⋃
E) ≥ 1 − 1

2n . If {Wn}n is a sequence of partitions and if
an = −⋃

Fn(Wn) then we have m(an) ≤ 1
2n and so lim supn an = 0.

Hence limn
⋃

Fn(Wn) = 1.
For each n let Cn be the family of all a ∈ B such that m(a) ≥ 1

2n .
We have

⋃∞
n=1 Cn = B+, for every n every antichain in Cn has at most

2n elements, and if a ∪ b ∈ Cn then either a ∈ Cn+1 or b ∈ Cn+1. If
an /∈ Cn for every n then limn an = 0.

For every finite antichain A let F (A) = a ∈ A be such that
m(a) ≤ m(x) for all x ∈ A. We have m(F (A)) ≤ 1

|A| , and so if
{An}n is a sequence of finite antichains with |An| ≥ 2n then for each
n, m(F (An)) ≤ 1

|2n| and it follows that limn F (An) = 0.
We shall prove that the conditions in Theorems 1.2–1.8 imply the

existence of a measure.

Lemma 3.1. Let B be a weakly distributive Boolean σ-algebra that
satisfies the conditions of Theorem 1.2. Then B is uniformly weakly
distributive.

Proof. Let {Cn}n be a countable family that has properties (i) and
(ii). Without loss of generality we may assume that each Cn is upward
closed, i.e. if a ⊂ b and a ∈ Cn then b ∈ Cn. To begin with, condition
(i) implies ccc and so every antichain is at most countable. Let W
be a partition and n a number. We shall define Fn(W ) so that the
functions Fn witness uniform weak distributivity.
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We claim that there exists a finite set E ⊂ W (possibly empty) such
that there exists no nonempty finite set F ⊂ W − E with

⋃
F ∈ Cn.

If not then we can find an infinite sequence {Ek}k of disjoint finite
subsets of W producing an infinite antichain {⋃ Ek : k = 1, 2, ...} in
Cn. We let Fn(W ) be such an E.

Now let {Wn}n be a sequence of partitions. Since B is weakly
distributive there exist finite sets En ⊂ Wn such that limn

⋃
En = 1.

For each n let an =
⋃

En − ⋃
Fn(W ). By the definition of Fn(W ) we

have an /∈ Cn and hence limn an = 0. It follows that limn
⋃

Fn(W ) =
1.

Lemma 3.2. ([4], p. 259.) If B is a uniformly weakly distributive
ccc Boolean σ-algebra then B has the Gδ property.

Proof. Let Fn be functions that witness the uniform weak distributiv-
ity. For each n we let

Un = {a ∈ B : a is disjoint from
⋃

Fn(W ) for some partition W}.

First we claim that
⋂∞

n=1 Un = {0} : If a ∈ Un for each n, and if Wn are
partitions such that a∩⋃

Fn(Wn) = 0 then because limn
⋃

Fn(Wn) =
1, we have a = 0. Now let {ak}k be a sequence with limit 0, and
let n be an integer. There is a decreasing sequence {bk}k such that
b1 = 1, ak ⊂ bk for each k and

∧∞
k=1 bk = 0. Let W be the partition

{bk+1 − bk : k = 1, 2, ...} and let E = Fn(W ). There is some K such
that bK ∩ ⋃

E = 0 and hence ak ∈ Un for all k ≥ K.

Lemma 3.3. Let B be a Maharam algebra with a Maharam submea-
sure m and assume that B satisfies the conditions of Theorem 1.2.
Then m is uniformly exhaustive.

Proof. Let {Cn}n be a countable family with properties (i) and (ii). In
order to verify that m is uniformly exhaustive it suffices to show that
for every ε > 0 there is some n such that {a ∈ B : m(a) ≥ ε} ⊂ Cn.
If not, let ε be a counterexample. For each n we pick an /∈ Cn with
m(an) ≥ ε. By (ii), limn an = 0. Since m is continuous, we have
limn m(an) = 0, a contradiction.

Now Theorem 1.2 follows: If B satisfies the conditions, then by
Lemmas 3.1, 3.2 and the Balcar-Jech-Pazák Theorem B carries a Ma-
haram submeasure, and by Lemma 3.3 and the Kalton-Roberts The-
orem, B carries a measure.
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Having proved Theorem 1.2, for Theorem 1.3 it suffices to show
that under the conditions of the theorem, B is weakly distributive. As
B satisfies ccc it is enough to show that if for every k, limn ak

n = 0,
then there is a function n(k) such that limk ak

n(k) = 0 (see [4], p.253).
This “diagonal property” is verified using (iii) and (ii).

Turning our attention to Theorem 1.4, we will show that the con-
ditions of Theorem 1.4 imply the conditions of Theorem 1.2. Let B be
a weakly distributive Boolean σ-algebra and let {Cn}n be a countable
family that has properties (i) and (ii) of Theorem 1.4. Notice that if
we replace each Cn by the set {x ∈ B+ : (∃y ⊂ x) y ∈ C1 ∪ · · · ∪ Cn},
then the family still has properties (i) and (ii). Thus we assume that
C1 ⊂ C2 ⊂ . . . and that each Cn is upward closed. The following
lemma shows that {Cn}n satisfies condition (ii) of Theorem 1.2.

Lemma 3.4. If an /∈ Cn for each n, then lim supn an = 0.

Proof. Let a = lim supn an and assume that a 6= 0. For each n and
each k, let bnk = an+1 ∨ · · · ∨ an+k. From (ii) it follows that bnk /∈ Cn,
for all k.

We have a = limn limk bnk, and by weak distributivity there exists
for each n some k(n) such that a = limn bn,k(n). Since a 6= 0, there
exist some b 6= 0, b ⊂ a and some N such that b ⊂ bn,k(n) for all
n ≥ N. Let n ≥ N be such that b ∈ Cn. Since Cn is upward closed,
we have bn,k(n) ∈ Cn, a contradiction.

For Theorem 1.7, let B be a Boolean σ-algebra that satisfies the
conditions of Theorem 1.7. By Lemma 3.2 B has the Gδ property,
and Theorem 2.6 shows that B is a Maharam algebra as long as it is
ccc. We use the following lemma:

Lemma 3.5. ([3]) If B is a uniformly weakly distributive Boolean
σ-algebra then B satisfies ccc.

Proof. Let B̄ be the regular completion of B. Since B is dense in B̄,
every partition in B̄ has a refinement in B and limits of sequences in B
are the same in B̄ as in B. Hence B̄ is uniformly weakly distributive.
If B̄ has a partition of size ω1 then P (ω1) is a complete subalgebra
of B̄ and therefore it is uniformly weakly distributive. By [3] P (ω1)
is not uniformly weakly distributive and so B̄, and hence B, satisfies
ccc.
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Hence B carries a Maharam submeasure by the Balcar-Jech-Pazák
Theorem.

Lemma 3.6. Let B be a Maharam algebra with a Maharam submea-
sure m and assume that B is concentrated. Then m is uniformly
exhaustive.

Proof. If m is not uniformly exhaustive then there exists an ε > 0 such
that for every n there is an antichain An of size 2n with m(a) ≥ ε for
all a ∈ An. This contradicts the condition that there exists a sequence
{an}n such that an ∈ An and limn an = 0.

This completes the proof of Theorem 1.7: if B satisfies its condi-
tions then B carries a Maharam submeasure by the Balcar-Jech-Pazák
Theorem, and by the Kalton-Roberts Theorem it carries a measure.

For Theorem 1.8, we will show that if B satisfies the conditions of
Theorem 1.8 then it satisfies the conditions of Theorem 1.2. Let B be
a weakly distributive Boolean σ-algebra and let F be a function acting
on finite antichains witnessing that B is uniformly concentrated.

For each n we let

Cn = {a ∈ B+ : a 6= F (A) for every antichain A of size ≥ 2n}.

If a is such that a /∈ Cn for each n then there exist antichains An such
that |An| ≥ 2n and a = F (An). Since limn F (An) = 0 we have a = 0,
and so

⋃∞
n=1 Cn = B+. If {an}n is a sequence such that an /∈ Cn for

each n then there exist antichains An such that |An| ≥ 2n and an =
F (An). Hence limn an = 0. Finally, every antichain in Cn has fewer
than 2n elements: If A is an antichain of size ≥ 2n, then F (A) /∈ Cn

and so A is not a subset of Cn. Hence B satisfies the assumptions of
Theorem 1.2.

4 Odds and ends

A Boolean algebra B satisfies the σ-bounded cc (chain condition) if
B+ is the union of a countable family {Cn}n such that for every n,
every antichain in Cn has at most K(n) elements (for some integer
K(n)). B satisfies the σ-finite cc if B+ is the union of a countable
family {Cn}n such that for every n, every antichain in Cn if finite.
These conditions were explicitly stated in [7].
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The conditions in Theorems 1.2, 1.3 and 1.4 state that B is σ-
bounded cc but require that the Cn have an additional property. This
is necessary: Talagrand’s result [16] yields a Maharam algebra that
is σ-bounded cc but is not a measure algebra. In contrast, Stevo
Todorcevic proved in [19] that a Boolean σ-algebra B is a Maharam
algebra if and only if it is weakly distributive and σ-finite cc. Notice
that if B carries a Maharam submeasure m then B+ =

⋃∞
n=1 Cn

such that {Cn}n witnesses the σ-finite cc and also has the additional
properties from Theorems 1.2, 1.3 and 1.4. (Let Cn = {a ∈ B :
m(a) ≥ 1

2n }.)

In Theorem 1.3 we may assume that the Cn form a chain: C1 ⊂
C2 ⊂ ... It turns out that such a chain is essentially unique:

Proposition 4.1. If {Cn} and {C ′
n} are two chains that satisfy con-

ditions (ii) and (iii) of Theorem 1.3 then {Cn} and {C ′
n} are mutually

cofinal: for every k there is an n such that Ck ⊂ C ′
n.

Proof. If not, then there is a sequence {an} in Ck such that an /∈ C ′
n

for each n. Hence lim an = 0, a contradiction.

Condition (iii) of Theorem 1.3 is the Gδ property, and implies that
for every n, every antichain in Cn is finite; hence it implies ccc. Con-
ditions (ii) and (iii) imply that B is weakly distributive and so every
B that satisfies (ii) and (iii) of Theorem 1.3 is a Maharam algebra.

As David Fremlin pointed out, if we drop weak distributivity in
Theorem 1.4, then we get a characterization of Boolean algebras that
carry a finitely additive measure:

Theorem 4.2. A Boolean algebra B carries a finitely additive mea-
sure if and only if B+ is the union of a countable family {Cn}n such
that for every n,

(i) every antichain in Cn has at most K(n) elements, and

(ii) for every n and all a and b, if a ∪ b ∈ Cn then either a ∈ Cn+1

or b ∈ Cn+1

Proof. The condition is clearly necessary. For the sufficiency we follow
the construction in [1], p. 75: First, modify the Cn so that each Cn

is upward closed and C1 ⊂ C2 ⊂ C3 ⊂ . . . , and let Un = B − Cn for
each n. For each number r = 1

2n1
+ · · · + 1

2nk with n1 < · · · < nk, let
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Vr = {u1 ∪ · · · ∪ uk : ui ∈ Uni , i = 1, . . . k}, and define m(a) = inf{r :
a ∈ Vr}. The condition (ii) implies that for each a, 1

2n ≤ m(a) ≤ 1
2n−1 ,

where n is the least n such that a ∈ Cn. It follows that m(a) > 0
whenever a 6= 0, and m is a submeasure on B. By (i), m is uniformly
exhaustive, and so by the Kalton-Roberts Theorem B carries a finitely
additive measure.

In Definition 1.6 of (uniformly) concentrated, the assumption that
|An| ≥ 2n can be replaced by |An| ≥ αn, for any sequence αn such
that

∑∞
n=1 αn < ∞. (If m is a measure then

∑
m(an) < ∞ implies

lim an = 0.)
Theorems 1.7 and 1.8 state that measure algebras are characterized

by being uniformly weakly distributive and concentrated, resp. weakly
distributive and uniformly concentrated. From Theorem 1.7 and [2]
it follows that it is consistent that B is a measure algebra if and
only if it is ccc, weakly distributive and concentrated. On the other
hand, if a Suslin tree exists then the corresponding Suslin algebra B
is ccc, weakly distributive and concentrated, and does not carry even
a Maharam submeasure:

Proposition 4.3. Let T be a Suslin tree and B the corresponding
complete Boolean algebra. Then B is concentrated.

Proof. Let {An}n be finite antichains in B, |An| ≥ n. We may assume
that

⋃
An = 1 for each n. A routine argument using that T is a

Suslin tree shows that there exists a countable family of functions
{fk}k ⊂ ∏∞

n=1 An such that

∞∨

k=1

∞∧

n=1

fk(n) = 1.

Now let F ∈ ∏∞
n=1 An be such that for each n, F (n) 6= fi(n) for all

i = 1, . . . , n. We show that limn F (n) = 0.
Let an = F (n) and let a = lim supn an. For each k let bk =∧∞

n=1 fk(n). Since an∩fk(n) = 0 for all n ≥ k, we have
∨∞

n=k an∩bk =
0, and it follows that a ∩ bk = 0. Hence a = 0.

In the proof of Theorem 1.8 we showed that if B is uniformly con-
centrated then B is σ-bounded cc. It turns out that a weak version
of uniformly concentrated is equivalent to the σ-bounded cc, and uni-
formly concentrated is equivalent to conditions (i) and (ii) of Theorem
1.2:
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Proposition 4.4. (a) A Boolean algebra B is σ-bounded cc if and
only if there exists a function F such that for each finite antichain A,
F (A) ∈ A, and if {An}n is a sequence of finite antichains of increasing
size then lim infn F (An) = 0.

(b) A Boolean algebra B is uniformly concentrated if and only if
B+ is the union of a countable family {Cn}n with C1 ⊂ C2 ⊂ . . . such
that for every n,

(i) every antichain in Cn has fewer than 2n elements, and

(ii) if {an}n is a sequence with an /∈ Cn for each n, then limn an = 0.

Proof. (a) First assume that B is σ-bounded cc, and let {Cn}n be
a witness. We may assume that each Cn is upward closed and that
C1 ⊂ C2 ⊂ ... If A is a finite antichain, let n be the least n such that
A ⊂ Cn and let F (A) = a ∈ A be such that a /∈ Cn−1. Hence for all
N , if F (A) ∈ CN then A ⊂ CN .

Now let {An}n be a sequence of finite antichains increasing in size,
and let an = F (An). We claim that lim infn an = 0. If not then there
exist some a 6= 0 and some k such that a ⊂ an for all n ≥ k. Let
N be such that a ∈ CN ; then an ∈ CN for all n ≥ k. It follows that
An ⊂ CN for all n ≥ k, and so CN has antichains of arbitrary size, a
contradiction.

Conversely, let F be a function that satisfies the condition. If we
let Cn = {a ∈ B+ : a 6= F (A) for every antichain of size ≥ n + 1}
then the same argument we used in the proof of Theorem 1.8 shows
that

⋃∞
n=1 Cn = B+ and that every antichain in Cn has at most n

elements.
(b) For one direction, see the proof of Theorem 1.8. For the other

direction, given the Cn, we let F (A) = a ∈ A be such that a /∈ Cn−1

where n is the least n with A ⊂ Cn. Now if |An| ≥ 2n then An 6⊂ Cn

and so F (An) /∈ Cn. Hence limn F (An) = 0.

Weak distributivity has a formulation in terms of forcing: a com-
plete ccc Boolean algebra B is weakly distributive if and only if for
every B-name ḟ for a function from ω to ω there exists a function
g : ω → ω such that

 ∃N∀n ≥ Nḟ(n) < g(n).

(The last formula is equivalent to limn ||ḟ(n) < g(n)|| = 1.)
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Similarly, B is concentrated if and only if for every B-name ḟ for
a function from ω to ω there exists a function g : ω → ω such that
g(n) < 2n for each n and

 ∃N∀n ≥ Nḟ(n) 6= g(n).

The following result shows that the existence of a finitely additive
measure does not imply that B is concentrated. The Cohen algebra
carries a finitely additive measure but is not concentrated:

Proposition 4.5. The Cohen algebra is not concentrated.

Proof. We use this representation of the Cohen algebra: Let P be the
forcing where the forcing conditions are finite sequences p of integers
such that p(n) < 2n for each n ∈ dom(p). We let ḟ be the following
name for a function from ω to ω: for each n and each k < 2n let

||ḟ(n) = k|| =
∨

{p : p(n) = k}.

Now if g : ω → ω is such that g(n) < 2n for all n then for every condi-
tion p and every N there exist a stronger condition q and some n > N
such that q  ḟ(n) = g(n). This shows that ḟ is a counterexample.

Maharam algebras have a characterization in terms of infinite games.
Using [1], David Fremlin proved in [5] that a strategic version of
weak distributivity implies the existence of a Maharam submeasure
for Boolean σ-algebras that satisfy ccc (see [4], p. 261, for details).
In [3] it is shown that the “strategic diagonal property” implies ccc.
Combining this with the proof of Theorem 1.7, we obtain the following
characterization of measure algebras:

Let B be a complete Boolean algebra and consider the infinite game
G in which the nth move of Player I is a B-name ḟ(n) for an integer
and the nth move of Player II is an integer g(n). Thus I produces
a B-name ḟ for a function from ω to ω and II produces a function
g : ω → ω. Player II wins if

 ∃N∀n ≥ N ḟ(n) < g(n) and (ḟ(n) 6≡ g(n) mod 2n).

Theorem 4.6. A complete Boolean algebra B is a measure algebra if
and only if Player II has a winning strategy in the game G.
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[10] L. V. Kantorovič, B. Z. Vulikh, and A. G. Pinsker. Functional
Analysis in Partially Ordered Spaces. 1950. (in Russian).

[11] J. L. Kelley. Measures on Boolean algebras. Pacific J. Math.,
9:1165–1177, 1959.

[12] D. Maharam. An algebraic characterization of measure algebras.
Ann. of Math. (2), 48:154–167, 1947.

[13] D. Mauldin, editor. The Scottish Book. Birkhäuser Boston, Mass.,
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