
WHAT IS Forcing?

Thomas Jech

What is forcing? Forcing is a remarkably pow-
erful technique for the construction of models of
set theory. It was invented in 1963 by Paul Cohen
who used it to solve the Continuum Hypothesis.
He constructed a model of set theory in which
the continuum hypothesis (CH) fails, thus show-
ing that CH is not provable from the axioms of
set theory.

What is the Continuum Hypothesis? In 1873
Georg Cantor proved that the continuum is un-
countable; that there exists no mapping of the
set N of all integers onto the set R of all real
numbers. Since R contains N, we have 2ℵ0 > ℵ0,
where 2ℵ0 and ℵ0 are the cardinalities of R and
N, respectively. A question arises whether 2ℵ0

is equal to the cardinal ℵ1, the immediate suc-
cessor of ℵ0. Cantor’s conjecture that 2ℵ0 = ℵ1

is the celebrated continuum hypothesis made fa-
mous by David Hilbert who put it on the top of
his list of major open problems in the year 1900.
Cohen’s solution of Cantor’s problem does not
prove 2ℵ0 = ℵ1, nor does it prove 2ℵ0 6= ℵ1. The
answer is that CH is undecidable.

What does it mean that a conjecture is un-
decidable? Whenever a new mathematical result
is established it is obtained by proving a theo-
rem. A proof is a sequence of logical steps us-
ing self-evident true facts. There is however no
reason why for every well formulated mathemati-
cal statement such a sequence should exist either
proving the statement or disproving it. To make
this vague discussion more precise we need first
to analyze the concepts of theorem and proof.

What are theorems and proofs? It is a use-
ful fact that every mathematical statement can
be expressed in the language of set theory. All
mathematical objects can be regarded as sets,
and relations between them can be reduced to
expressions that use only the relation ∈. It is
not essential how it is done, but it can be done:
For instance, integers are certain finite sets, ra-
tional numbers are pairs of integers, real numbers
are identified with Dedekind cuts in the rationals,

functions are some sets of pairs etc etc. Moreover
all “self-evident true facts” used in proofs can be
formally derived from the axioms of set theory.
The accepted system of axioms of set theory is
ZFC, the Zermelo-Fraenkel axioms plus the ax-
iom of choice. As a consequence every mathe-
matical theorem can be formulated and proved
from the axioms of ZFC.

When we consider a well formulated mathe-
matical statement (say, the Riemann Hypothesis)
there is a priori no guarantee that there exists
a proof of the statement or a proof of its nega-
tion. Does ZFC decide every statement? Is ZFC
complete? It turns out that not only ZFC is not
complete but it cannot be replaced by a complete
system of axioms. This was Gödel’s 1931 discov-
ery known as the Incompleteness Theorem.

What is Gödel’s Incompleteness Theorem? In
short, no system of axioms that is (i) recur-
sive and (ii) sufficiently expressive is incomplete.
“Sufficiently expressive” means that it includes
the “self-evident truths” about integers, and “re-
cursive” means roughly that a computer program
can decide whether a statement is an axiom or
not. (ZFC is one such system, Peano’s system
of axioms for arithmetic is another such system
etc.)

It is of course one thing to know that, by
Gödel’s theorem, undecidable statements exist,
and another to show that a particular conjecture
is undecidable. One way to show that some state-
ment is unprovable from given axioms is to find
a model.

What is a model? A model of a theory in-
terprets the objects of the theory, as well as the
language of the theory, in such a way that the
axioms of the theory are true in the model. Then
all theorems of the theory are true in the model,
and if a given statement is false in the model,
then it cannot be proved from the axioms of the
theory. A well known example is a model of non
Euclidean geometry.
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A model of set theory is a collection M with
the property that under the interpretation that
“sets” are all the sets belonging to M and only
those sets, then the axioms of ZFC are satisfied.
That is to say that M satisfies ZFC. If, for in-
stance, M also satisfies the negation of CH, then
CH cannot be provable in ZFC.

Here we mention another result of Gödel, from
1938: the consistency of CH. Gödel constructed
a model of ZFC, the constructible universe L,
that satisfies CH. The model L is basically the
minimal possible collection of sets that satisfies
the axioms of ZFC. Since CH is true in L, it fol-
lows that CH cannot be refuted in ZFC. In other
words, CH is consistent.

Cohen’s accomplishment was that he found a
method how to construct other models of ZFC.
The idea is to start with a given model M (the
ground model) and extend it by adjooining an ob-
ject G, a sort of imaginary set. The resulting
model M [G] is more or less a minimal possible
collection of sets that includes M , contains G,
and most importantly, also satisfies ZFC. Cohen
showed the way how to find (or imagine) the set
G so that CH fails in M [G]. Thus CH is unprov-
able in ZFC, and because it is also consistent, CH
is independent, or undecidable.

It should be pointed out that one consequence
of Gödel’s theorem about L is that it cannot be
proved that there exists a set outside the mini-
mal model L so we have to pull G out of thin air.
The genius of Cohen was to introduce so called
forcing conditions that give a partial information
about G and then assume that G is a generic set.
A generic set decides which forcing conditions are
considered true. With Cohen’s definition of forc-
ing and generic sets it is consistent that a generic
set exists, and if G is generic, then M [G] is a
model of set theory.

To illustrate the method of forcing, let us con-
sider the simplest possible example, and assume
that G should be a set of integers. As forcing
conditions we consider finite sets of expressions
a ∈ G and a /∈ G where a ranges over the set of all
integers. (Thus {1 ∈ G, 2 /∈ G, 3 ∈ G, 4 ∈ G} is a
condition that forces G ∩ {1, 2, 3, 4} = {1, 3, 4}.)
The genericity of G guarantees that the condi-
tions in G are mutually compatible, and, more
importantly, that every statement of the forcing

language is decided one way or the other. We
shall not define here what “generic” means pre-
cisely, but let me point out one important feature.
Let us identify the above generic set of integers G
with the set G of forcing conditions that describe
the initial segments of G. Genericity implies that
if A is a statement of the forcing language then
if every condition can be extended to a condition
that forces A then some condition p in G forces
A (and so A is true in M [G]). For instance, if S
is a set of integers and S is in the ground model
M then every condition p of the kind described
above can be extended to a condition that forces
G 6= S: simply add the expression “a ∈ G” for
some a /∈ S (or “a /∈ G” for some a ∈ S) where a
is an integer not mentioned in p. It follows that
the resulting set of integers G is not in M , no
matter what the generic set is.

Cohen showed how to construct the set of forc-
ing conditions so that CH fails in the resulting
generic extension M [G]. Soon after Cohen’s dis-
covery his method was applied to other state-
ments of set theory. The method is extremely
versatile: every partially ordered set P can be
taken as the set of forcing conditions, and when
G ⊂ P is a generic set then the model M [G] is a
model of ZFC. Moreover, properties of the model
M [G] can be deduced from the structure of P . In
practice, the forcing P can be constructed with
the independence result in mind; forcing condi-
tions usually “approximate” the desired generic
object G.

In the 45 years since Cohen, literally hundreds
of applications of forcing have been discovered,
giving a better picture of the universe of sets by
producing examples of statements that are unde-
cidable from the axioms of mathematics.

A word of caution: If after reading this you
entertain the idea that perhaps the Riemann Hy-
pothesis could be solved by forcing, forget it.
That conjecture belongs to a class of statements
that, by virtue of their logical structure, are ab-
solute for forcing extension: such a statement is
true in the generic extension M [G] if and only if
it is true in the ground model M . This is the
content of Shoenfield’s Absoluteness Theorem.

And what is Shoenfield’s Absoluteness Theo-
rem? Well, that is for someone else to explain,
some other time.


