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Abstract

The dual X∗ of a Banach space X admits a dual σ−LUR norm if (and
only if) X∗ admits a σ−weak∗ Kadets norm if and only if X∗ admits a dual
weak∗ LUR norm and moreover X is σ−Asplund generated.

1 Introduction

M. Raja proved, in two different ways, that a dual Banach space, with weak∗

Kadets norm, admits an equivalent dual LUR [13, 15]. Actually, he proved that
several assertions are equivalent each to other:

Theorem 1. (M. Raja [13, 15]) Let X be a Banach space, with the topological
dual X∗. Then the following assertions are equivalent:

(i) X∗ admits an equivalent dual LUR norm.

(ii) X∗ admits an equivalent (dual) weak∗ Kadets norm.

(iii) The closed dual unit ball (BX∗ , w∗) is a descriptive compact space and
moreover X is an Asplund space.

(iv) X∗ admits an equivalent dual weak∗ LUR norm and moreover X is an
Asplund space.

(v) X∗ admits and equivalent dual norm such that, on the corresponding dual
unit sphere SX∗, the weak and the weak∗ topologies coincide.
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In [9], we left open a question if a dual Banach space, with σ−weak∗ Kadets
norm, admits an equivalent dual norm which would be σ−LUR. Here we answer
this question positively. This allows us to provide a σ−analogue of Theorem 1.
Definitions of σ−concepts and of necessary topological notions are given below.

Theorem 2. Let X be a Banach space, with topological dual X∗. Then the
following assertions are equivalent:

(i) X∗ admits an equivalent dual σ−LUR norm.

(ii) X∗ admits an equivalent dual σ−weak∗ Kadets norm.

(iii) The closed dual unit ball (BX∗ , w∗) is a descriptive compact space and
moreover X is σ−Asplund generated.

(iv) X∗ admits an equivalent dual weak∗ LUR norm and moreover X is σ−Asplund
generated.

(v) The closed dual unit ball (BX∗ , w∗) is a descriptive compact space and
morever a quasi-Radon-Nikodým compact space.

Banach spaces which meet the statements of Theorem 2 are those with dual LUR
norm (trivially) and subspaces of weakly compactly generated spaces [6, page
438]. If a compact space K is both descriptive and quasi-Radon-Nikodým, then
X := C(K) also satisfies the statements of Theorem 2, see [15, 1], [5, Proposition
6].

Note that, if X is weakly Lindelöf determined, then the conditions of Theorem 2
are equivalent with X being a subspace of a weakly compactly generated space
[9].

2 Definitions and notation

The letters N, R are used for denoting the sets of positive integers and real
numbers, respectively.

Let (X, ‖ · ‖) be a real Banach space with topological dual X∗ and with the
dual norm denoted also by the symbol ‖ · ‖. The closed unit balls in X and X∗

are denoted by BX and BX∗ , respectively. SX and SX∗ mean the unit sphere in
X and X∗, respectively. The weak∗ topology on X∗ is denoted by w∗. We use
this symbol also for denoting the restriction of w∗ to BX∗ and SX∗ . The weak∗

convergence is denoted by the symbol ⇁. Let ε > 0 and let ∅ 6= M ⊂ BX be given.
We say that the norm ‖ · ‖ on X∗ is ε−M−LUR if lim supn→∞

∥∥x∗ − x∗n
∥∥

M
< ε

whenever x∗, x∗n ∈ BX∗ , n ∈ N, and limn→∞
∥∥x∗ + x∗n

∥∥ = 2; here and below, the
symbol ‖ · ‖M means sup |〈·,M〉| = sup{|〈·, x〉|; x ∈ M}. We say that the dual
norm ‖ · ‖ on X∗ is ε −M−weak∗ Kadets if lim supτ

∥∥x∗τ − x∗
∥∥

M
< ε whenever

x∗ and a net (x∗τ )τ∈T lie in SX∗ and x∗τ ⇁ x∗. We note that if the dual norm
is ε −M−LUR or is ε −M−weak∗ Kadets for every ε > 0, and M = BX , then
we get the usual concepts of LUR, and weak∗ Kadets property, respectively. The
norm ‖ · ‖ on X∗ is called weak∗ LUR if x∗n ⇁ x∗ whenever x∗, x∗n ∈ BX∗ , n ∈ N,
and limn→∞

∥∥x∗ + x∗n
∥∥ = 2.
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Given ε > 0, a nonempty subset M of BX is called ε−Asplund if for every at
most countable subset ∅ 6= A ⊂ M there exists a countable set C ⊂ BX∗ such
that for every x∗ ∈ BX∗ there is c ∈ C satisfying ‖x∗−c‖A < ε. We note that the
union of finitely many ε−Asplund sets is a 2ε−Asplund set. This follows from
[9, Propositions 6 and 8]. Clearly, if a set is ε−Asplund for every ε > 0, then it
is an Asplund set, see [4, Definition 1.4.1].

We say that a Banach space (X, ‖ ·‖) is σ−Asplund generated if for every ε > 0
there is a decomposition BX =

⋃
n∈N M ε

n where each M ε
n is an ε−Asplund set.

We say that the norm ‖ · ‖ on X∗, dual to ‖ · ‖, is σ−LUR if for every ε > 0
there is a decomposition BX =

⋃
n∈N M ε

n such that ‖ ·‖ is ε−M ε
n−LUR for every

n ∈ N. We say that the norm ‖ · ‖ on X∗ is σ−weak∗ Kadets if for every ε > 0
there is a decomposition BX =

⋃
n∈N M ε

n such that ‖ · ‖ is ε−M ε
n−weak∗ Kadets

for every n ∈ N.

A simple argument shows that a norm ‖·‖ on X∗ is σ−LUR (σ−weak∗ Kadets)
if and only if there exist sets Mn ⊂ BX , n ∈ N, such that for every ε > 0, every
k ∈ N, and every finite set F ⊂ BX there is n ∈ N so that n > k, Mn ⊃ F ,
and the norm ‖ · ‖ is ε−Mn−LUR (ε−Mn−weak∗ Kadets). Likewise, a Banach
space X is σ−Asplund generated if and only if there exist sets Mn ⊂ BX , n ∈ N,
such that for every ε > 0, every k ∈ N, and every finite set F ⊂ BX there is
n ∈ N so that n > k and Mn is an ε−Asplund set containing F . These conditions
will be useful in proofs. The ε−concepts and σ−concepts introduced above have
appeared naturally in studying and characterizing uniformly Gateaux smooth
Banach spaces, and subspaces of weakly compactly generated spaces, see [6, 9].
A sample result from [9] sounds as: A weakly Lindelöf determined Banach space
X is a subspace of a weakly compactly generated space, if and only if X∗ admits
a σ−weak∗ Kadets norm, if and oly if X is σ−Asplund generated.

Let X be a topological space with a topology τ . Consider a family F of
subsets of X. We say that F is discrete if every x ∈ X has a neighbourhood
which intersects at most one element of F . We say that F is isolated if every
x ∈

⋃
F has a neighbourhood which intersects exactly one element of F ; this is

equivalent with the requirement that N ∩
⋃

(F\{N}) = ∅ for every N ∈ F . The
family F is called σ−discrete or σ−isolated if it can be written as F =

⋃
n∈NFn

where each Fn is discrete and isolated, respectively. If U ⊂ τ is given, we say
that F is U−isolated if for every x ∈

⋃
F there is x ∈ U ∈ U so that U ∩N ′ = ∅

for every N ′ ∈ F\{N}. A σ −U−isolated family is the union of countably many
U−isolated families. F is called a network for the topology τ if for every U ∈ τ
there is F ′ ⊂ F so that

⋃
F ′ = U . Note that any basis for τ is a network

for τ . Also, one family F can serve as a network for several topologies on X. A
topological space is called descriptive if its topology admits a σ−isolated network.
We note that every Eberlein, even every Gull’ko compact space is descriptive [15]
and that descriptive compact spaces are Gruenhage [16]. The above topological
concepts recently proved to be very useful in renorming dual Banach spaces, see,
in particular, M. Raja’s works [13, 14, 15] and R. Smith’ paper [16].

A compact space K is called quasi-Radon-Nikodým if it admits a function
ρ : K ×K → [0,+∞) such that it distinguishes the points of K, is lower semi-
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continuous, and fragments K, that is, whenever ∅ 6= M ⊂ K and ε > 0 are given,
then there is an open set Ω ⊂ K so that M ∩ Ω 6= ∅ and sup{ρ(k1, k2); k1, k2 ∈
Ω ∩M} < ε. This concept is a formal generalization of the continuous image of
Radon-Nikodým compact space. It was introduced by A. Arvanitakis. He pro-
vided a topological proof of the theorem saying that a compact space is Eberlein
if (and only if) it is simultaneously Corson and quasi-Radon-Nikodým, see [5];
for an analytical proof of this, see [9].

For standard notations and results used and not explained in this paper we
refer to [2, 4, 7].

3 Tools

Proposition 3. Let (X, τ) be a topological space admitting a mapping G : N ×
X → τ such that

(a) ∀x ∈ X ∀m ∈ N G(m, x) 3 x, and

(b) ∀Ω ∈ τ ∀x ∈ Ω ∃m ∈ N ∀z ∈ X
[
G(m, z) 3 x ⇒ G(m, z) ⊂ Ω

]
Then (X, τ) admits a σ−discrete network.

Proof. We follow the argument and the notation from Gruenhage [10, Theorem
5.11]. Fix for a while any m ∈ N. Put Um = {G(m,x); x ∈ X} and let us well
order this family by “≺”, say. Fix for a while any n ∈ N and define

V U
n = U\

[ ⋃
{U ′ ∈ Um; U ′ ≺ U

}
∪

⋃ {
G(n, y); y ∈ X\U

}]
, U ∈ Um.

Put then Nm
n =

{
V U

n ; U ∈ Um

}
. We shall show that the family Nm

n is discrete.
So fix any x ∈ X. Since

⋃
Um = X by (a), there is U ∈ Um so that U 3 x and

U ′ 63 x whenever U ′ ∈ Um and U ′ ≺ U . Now, take any U ′ ∈ Um different from
U . First assume that U ′ � U . Then U ∩ V U ′

n ⊂ U ∩ (U ′\U) = ∅. Second, assume
that U ′ ≺ U . Since x 6∈ U ′, we have G(n, x) ∩ V U ′

n = ∅. Therefore the open set
W := U ∩G(n, x) contains x and has the property that W ∩ V U ′

n = ∅ whenever
U ′ ∈ Um and U ′ 6= U . (Note that U = G(m, z) where z may be different from
x.) Having the above done for every m ∈ N and every n ∈ N, we get a family⋃

m,n∈N Nm
n which is σ−discrete.

It remains to verify that this family is a network for the topology τ . So fix any
∅ 6= Ω ∈ τ and any x ∈ Ω. Let m ∈ N be found by (b) for these Ω and x. Find
U ∈ Um so that U 3 x and U ′ 63 x whenever U ′ ∈ Um and U ′ ≺ U . Now, for
these U and x find, by (b), n ∈ N so that

∀ y ∈ X
[
G(n, y) 3 x ⇒ G(n, y) ⊂ U

]
. (1)

Then x ∈ V U
n . Indeed, if not, then, by the definition of V U

n , we have x ∈ G(n, y)
for a suitable y ∈ X\U . But (1) yields G(n, y) ⊂ U ; so y ∈ U , a contradiction.
It remains to show that V U

n ⊂ Ω. We know that V U
n ⊂ U . Find z ∈ X so that

G(m, z) = U (may be that z is different from x). Then x ∈ G(m, z) and, by (b),
G(m, z) ⊂ Ω. Therefore x ∈ V U

n ⊂ U ⊂ Ω.
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The next proposition follows from Hansell [11, Theorem 7.2]. Here, imitating
his argument, we present a more direct (but not simpler) proof of it.

Proposition 4. Let (X, ‖ · ‖) be a Banach space. Let U ⊂ w∗ be a family such
that tU ∈ U for every U ∈ U and every t > 0. Assume that (SX∗ , w∗) admits a
σ − U−isolated network. Then (X∗, w∗) also admits a σ − U−isolated network.

Proof. Let a network N =
⋃

m∈N Nm witness for the premise. Fix, for a longer
while, any m ∈ N. We shall need to split every element of Nm into countably
many pieces. For i ∈ N and N ∈ Nm we put

DN
i =

{
x∗ ∈ N ; ∃U ∈ U so that U 3 x∗ and

(
U + 3

i BX∗
)
∩

(⋃(
Nm\{N}

))
= ∅

}
.

Since the family Nm is U−isolated, we easily get that
⋃∞

i=3 DN
i = N for every

N ∈ Nm. Fix for a while any i > 2. We shall show that the family
{(

1− 1
i , 1 +

1
i

)
DN

i ; N ∈ Nm

}
of subsets of X∗ is U−isolated. So fix any N ∈ Nm, with

DN
i 6= ∅, and any y∗ ∈

(
1− 1

i , 1 + 1
i

)
DN

i . We have to find V ∈ U so that V 3 y∗

and V ∩
(
1 − 1

i , 1 + 1
i

)
DN ′

i = ∅ for every N ′ ∈ Nm\{N}. Write y∗ = tx∗ where
x∗ ∈ DN

i and t ∈
(
1− 1

i , 1 + 1
i

)
. Find x∗ ∈ U ∈ U so that

(
U + 3

i BX∗
)
∩N ′ = ∅

whenever N ′ ∈ Nm and N ′ 6= N . Put V = tU . Note that y∗ ∈ V ∈ U . Fix any
N ′ ∈ Nm\{N}. Then

V ∩
(
1− 1

i , 1 + 1
i

)
DN ′

i ⊂ tU ∩
(
1− 1

i , 1 + 1
i

)
N ′ ⊂ tU ∩

(
N ′ + 1

i BX∗
)

= ∅.

This shows that our V works. The last equality here can be proved as follows.
Assume there is z∗ ∈ U so that tz∗ ∈ N ′ + 1

i BX∗ . Then

z∗ ∈ 1
t N

′ + 1
tiBX∗ ⊂ N ′ +

(∣∣1
t − 1

∣∣ + 1
ti

)
BX∗ ⊂ N ′ + 3

i BX∗ ,

which is in a contradiction with
(
U + 3

i BX∗
)
∩ N ′ = ∅. Here we used the fact

that |1− t| < 1
i .

Do all the above for every i ∈ N. Then do all the above for every m ∈ N.

Put now

Mm,i,r =
{
(r − r

2i , r + r
2i

)
DN

i ; N ∈ Nm

}
, i,m ∈ N, i > 2, r > 0 rational.

Note that there are countably many such families. And, of course, by the above,
each Mm,i,r is U−isolated as well. Thus M :=

⋃ {
Mm,i,r; i, m ∈ N, i > 2, r > 0

rational
}

is a σ − U−isolated family of subsets of X∗.

It remains to prove that M ∪ {{0}} is a network for (X∗, w∗). So take any
Ω ∈ w∗ and any 0 6= x∗ ∈ Ω. Find Ω′ ∈ w∗ and ∆ > 0 so that x∗ ∈ Ω′ ⊂
Ω′ + ∆‖x∗‖BX∗ ⊂ Ω. Find then m ∈ N and N ∈ Nm so that x∗

‖x∗‖ ∈ N ⊂ 1
‖x∗‖Ω

′.

Find i > 2 so that x∗

‖x∗‖ ∈ DN
i . As DN

3 ⊂ DN
4 ⊂ · · · , we may and do take i > 1

∆ .
Further pick a rational number r such that ‖x∗‖ · 2i

2i+1 < r < ‖x∗‖ · 2i+2
2i+1 . Then

x∗ = ‖x∗‖ x∗

‖x∗‖ ∈ ‖x
∗‖DN

i ⊂
(
r − r

2i , r + r
2i

)
DN

i

⊂ ‖x∗‖
(
1− 1

i , 1 + 1
i

)
DN

i ⊂ ‖x∗‖
(
DN

i + 1
i BX∗

)
⊂ ‖x∗‖

(
N + 1

i BX
∗) ⊂ ‖x∗‖

(
1

‖x∗‖Ω
′ + 1

i BX∗
)

= Ω′ + ‖x∗‖
i BX∗ ⊂ Ω.
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We thus verified that M is a network for (X∗, w∗).

The result below is known. We present a self-contained proof of it.

Proposition 5. ([15, 12]) Let (X, ‖·‖) be a Banach space such that its dual norm
on X∗ is weak∗ LUR. Then the dual ball (BX∗ , w∗) is descriptive.

Proof. For every x∗ ∈ SX∗ and every m ∈ N find v(m,x∗) ∈ SX so that
〈x∗, v(m,x∗)〉 > 1− 1

m and define

G(m,x∗) =
{
y∗ ∈ SX∗ ; 〈y∗, v(m,x∗)〉 > 1− 1

m

}
;

this is a relatively weak∗ open set. We shall verify the assumptions of Proposition
3 for the space (SX∗ , w∗). That (a) holds is obvious. As regards (b), fix any
nonempty relatively weak∗ open set Ω in SX∗ and any x∗ ∈ Ω. Since the norm
‖ · ‖ on X∗ is weak∗ LUR, there is m ∈ N so big that y∗ ∈ Ω whenever y∗ ∈ SX∗

and ‖x∗ + y∗‖ > 2− 2
m . We shall show that this m works. So take any z∗ ∈ SX∗

such that G(m, z∗) 3 x∗. Then for every y∗ ∈ G(m, z∗) we have ‖x∗ + y∗‖ ≥
〈x∗, v(m, z∗)〉+ 〈y∗, v(m, z∗)〉 > 2− 2

m , and hence y∗ ∈ Ω. The condition (b) was
thus verified.

Now, Proposition 3 and Proposition 4, with U := w∗, yield that (X∗, w∗) has
a σ − w∗−isolated network, and therefore (BX∗ , w∗) is descriptive.

For a Banach space X let H(X) denote the family of all halfspaces in X∗ of
the form {x∗ ∈ X∗; 〈x∗, x〉 > λ} where x ∈ SX and λ ∈ R.

Proposition 6. Let (X, ‖ · ‖) be a Banach space whose dual norm ‖ · ‖ is weak∗

LUR. Consider a family U ⊂ H(X) such that
⋃
U ⊃ SX∗ and assume that U is

well ordered by “≺”. Then the family
{
(SX∗∩H)\

⋃
{H ′ ∈ U ; H ′ ≺ H}; H ∈ U

}
has a σ−H(X)−isolated refinement, that is, there exists a family N =

⋃
m∈N Nm

of subsets of SX∗ such that

(i)
⋃

N = SX∗,

(ii) ∀N ∈ N ∃H ∈ U , with H\
⋃
{H ′ ∈ U ; H ′ ≺ H} ⊃ N , and

(iii) ∀m ∈ N ∀N ∈ Nm ∀x∗ ∈ N ∃R ∈ H(X) such that R 3 x∗ and

R ∩
⋃ (

Nm\{N}
)

= ∅.

Proof. Our argument profits from the proof of [12, Lemma 3.19]. Express each
H ∈ U as H =

{
u∗ ∈ X∗; 〈u∗, xH〉 > λH

}
, with suitable xH ∈ SX and λH ∈ R.

For H ∈ U put

MH =
(
SX∗ ∩H

)
\
⋃{

H ′ ∈ U ; H ′ ≺ H
}

and
Mn

H =
{
u∗ ∈ MH ; 〈u∗, xH〉 > λH + 1

n

}
, n ∈ N;

clearly, MH =
⋃

n∈N Mn
H . Also

⋃ {
MH ; H ∈ U

}
= SX∗ .

For the construction of the families Nm’s we shall need a further splitting of
each Mn

H into countably many pieces. To do so, fix for a while any n ∈ N. For
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x∗ ∈ SX∗ find Hx∗ ∈ U such that x∗ ∈ MHx∗ ; note that this Hx∗ is unique. Then
for p ∈ N define

Sn
p =

{
x∗ ∈ SX∗ ;

∣∣〈x∗−y∗, xHx∗

〉∣∣ < 1
n whenever y∗ ∈ SX∗ and ‖x∗+y∗‖ > 2− 1

p

}
.

Keeping n still fixed, fix for a while any p ∈ N.
Claim. The family

{
Mn

H ∩ Sn
p ; H ∈ U

}
is H(X)−isolated, which means that

for any x∗ ∈
⋃ {

Mn
H ∩ Sn

p ; H ∈ U
}

there is R ∈ H(X), with R 3 x∗, such that
Mn

H ∩Sp
n ∩R 6= ∅ for exactly one H ∈ U . So take any H ∈ U , with Mn

H ∩Sn
p 6= ∅,

and take any x∗ ∈ Mn
H ∩ Sn

p . Find x ∈ SX so that 〈x∗, x〉 > 1 − 1
2p and put

R =
{
u∗ ∈ X∗; 〈x∗, x〉 > 1− 1

2p

}
; thus R ∈ H(X) and x∗ ∈ R ∩Mn

H ∩ Sn
p . Take

any H ′ ∈ U different from H. Assume that R ∩ Mn
H′ ∩ Sn

p is a nonempty set;
take any y∗ in this intersection. We have ‖x∗ + y∗‖ ≥ 〈x∗ + y∗, x〉 > 2− 1

p , and,
as x∗ ∈ Sn

p , we get
∣∣〈x∗ − y∗, xHx∗

〉∣∣ < 1
n . Similarly, as y∗ ∈ Sn

p , we also get∣∣〈y∗ − x∗, xHy∗

〉∣∣ < 1
n . Thus

max
{∣∣〈x∗ − y∗, xHx∗

〉∣∣, ∣∣〈y∗ − x∗, xHy∗

〉∣∣} < 1
n . (2)

We know that x∗ ∈ Mn
H and y∗ ∈ Mn

H′ . Assume first that H ′ � H. Since
Mn

H′ ⊂ MH′ ⊂ H ′\H, we have y∗ 6∈ H. Thus 〈x∗ − y∗, xH〉 > λH + 1
n − λH = 1

n .
Second, let H ′ ≺ H. Then Mn

H ⊂ MH ⊂ H\H ′, and so x∗ 6∈ H ′. Thus we
get 〈y∗ − x∗, xH′〉 > λH′ + 1

n − λH′ = 1
n . And, since we necessarily have that

Hx∗ = H, Hy∗ = H ′, we get a contradiction with (2). Therefore R∩Mn
H′∩Sn

p = ∅
and the claim is proved.

Doing the above for every n ∈ N and then for every p ∈ N, let us enumerate
the set N× N as

{
(nm, pm); m ∈ N

}
and put

Nm =
{
Mnm

H ∩ Snm
pm

; H ∈ U
}
, m ∈ N,

and N =
⋃

m∈N Nm. These families satisfy the conclusion of our proposition.
Indeed, we already checked (iii), while (ii) is clear. And since the norm ‖ · ‖ on
X∗ is weak∗ LUR (Here is the only use of this property.), we have

⋃
p∈N Sn

p = SX∗

for every n ∈ N, and hence (i) is satisfied as well.

Lemma 7. (M. Raja [13, Lemma 5]) In a Banach space X, consider a nonempty
set M ⊂ BX , a nonempty bounded set A ⊂ X∗ and ε > 0. Then there exist
bounded convex sets Ck ⊂ X∗, k ∈ N, such that for every x∗ ∈ A and every
H ∈ H(X) satisfying H 3 x∗ and M−diam(A ∩ H) < ε there are k ∈ N and
R ∈ H(X) so that Ck ∩R 3 x∗ and M−diam(Ck ∩R) < 3ε.

The crucial theorem below is a σ−variant of the implication 5)⇒1) in M. Raja’s
[13, Theorem 2].

Theorem 8. Let X be a Banach space admitting sets Mm ⊂ BX and bounded
convex sets Dm

l ⊂ X∗, m, l ∈ N, such that for every ε > 0, every 0 6= x∗ ∈ X∗,
and every finite set F ⊂ BX there exist m, l ∈ N and R ∈ H(X) such that
Mm ⊃ F , Dm

l ∩R 3 x∗, and Mm−diam(Dm
l ∩R) < ε.

Then X∗ admits an equivalent dual σ−LUR norm.

Proof. Just follow the proof of the implication 5)⇒1) of [13, Theorem 2].
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4 Proof of Theorem 2

Proof. (iii)⇔(v) follows from Avilés’ result that σ−Asplund generated Banach
spaces are exactly those X for which (BX∗ , w∗) is a quasi-Radon-Nikodým com-
pact space, see [1], [5, Proposition 6].

(i)⇒(ii) is simple, see [9, Proposition 9].

(ii)⇒(iii). Assume (ii) holds, with sets Mm ⊂ BX , m ∈ N, witnessing for
that. Thus for every ε > 0, for every k ∈ N, and for every finite set F ⊂ BX

there is m ∈ N so that m > k, Mm ⊃ F , and ‖ · ‖ is ε−Mm−weak∗ Kadets. For
x∗ ∈ SX∗ , M ⊂ BX , and ε > 0 denote BM (x∗, ε) =

{
z∗ ∈ SX∗ ; ‖z∗−x∗‖M < ε

}
.

For m ∈ N define

εm = inf
{
ε > 0; ‖ · ‖ is ε−Mm − weak∗ Kadets

}
+ 1

m .

Using Proposition 3, we shall first prove that (SX∗ , w∗) has a σ−discrete network.
Hence we need to define a mapping G : N×SX∗ → w∗ and to verify the conditions
(a) and (b) therein. For any x∗ ∈ SX∗ and any m ∈ N find an open set G(m,x∗)
in (SX∗ , w∗) such that x∗ ∈ G(m,x∗) ⊂ BMm(x∗, εm). Such a set does exist.
Indeed, if not, then for every open set V in (SX∗ , w∗), with V 3 x∗, there is
x∗V ∈ V \BMm(x∗, εm). But then x∗V ⇁ x∗ when V ’s “approach” x∗. Hence, as
the norm ‖ · ‖ is εm −Mm−weak∗ Kadets, ‖x∗V − x∗‖Mm < εm for all x∗ ∈ V ∈
w∗ “sufficiently small”. Taking one such V , we get that x∗V ∈ BMm(x∗, εm), a
contradiction. Thus we have verified the condition (a) in Proposition 3.

As regards the condition (b) in Proposition 3, fix any weak∗ open set Ω in X∗,
with Ω∩SX∗ 6= ∅, and fix any x∗ ∈ Ω∩SX∗ . Find a finite set F ⊂ BX and ∆ > 0
such that BF (x∗,∆) ⊂ Ω. Find m ∈ N so that m > 6

∆ , Mm ⊃ F , and that ‖ · ‖
is ∆

3 −Mm−weak∗ Kadets; thus εm < ∆
3 + 1

m < ∆
3 + ∆

6 = ∆
2 . It remains to show

that G(m, z∗) ⊂ Ω whenever z∗ ∈ SX∗ and x∗ ∈ G(m, z∗). So fix any such z∗ and
x∗; then ‖x∗ − z∗‖Mm < εm. Now, for y∗ ∈ G(m, z∗) we have ‖y∗ − z∗‖Mm < εm,
and so

‖y∗ − x∗‖F ≤ ‖y∗ − z∗‖Mm + ‖z∗ − x∗‖Mm < 2εm < ∆,

and thus y∗ ∈ Ω. We verified (b), and therefore, by Proposition 3, (SX∗ , w∗) has
a σ−discrete network.

Now, according to Proposition 4, (BX∗ , w∗) is a descriptive compact space.

Finally, X is σ−Asplund generated according to [9, Proposition 9]. Thus we
obtained (iii).

(iii)⇒(iv). Here we refer to a deep result due to M. Raja that X∗ admits an
equivalent dual weak∗ LUR norm provided that (BX∗ , w∗) is descriptive [15].

(iv)⇒(i) can be done by adjusting the proof of [12, Corollary 3.24], which
says that X∗ admits an equivalent dual LUR norm provided that X is Asplund
and X∗ has a dual weak∗ LUR norm. For a reader’s convenience we include a
detailed proof. Let ‖ · ‖ be an equivalent dual weak∗ LUR norm on X∗. Let
Mm ⊂ BX , m ∈ N, witness that the space X is σ−Asplund generated. This
means that for every ε > 0, for every k ∈ N, and for every finite set F ⊂ BX
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there is m ∈ N so that m > k and Mm is an ε−Asplund set containing F . We
shall verify the assumptions of Theorem 8. For m ∈ N define

εm = inf
{
ε > 0; Mm is ε−Asplund

}
+ 1

m .

According to [9, Propositions 8 and 6], for every set ∅ 6= S ⊂ BX∗ there is
H ∈ H(X) such that the set S ∩H is nonempty and has Mm−diameter less than
2εm.

Fix for a while any m ∈ N. We (easily) find, by induction, a family Um ={
Hm

γ ; γ < ξm

}
of elements of H(X), indexed by ordinals, such that

⋃
γ<ξm

Hm
γ ⊃

SX∗ , and Mm−diam
((

SX∗ ∩Hm
γ

)
\

⋃
γ′<γ Hm

γ′

)
< 2εm for every γ < ξm. To this

Um, considered with the well order induced by the order of the ordinal subscripts,
by Proposition 6 (here the weak∗ LUR is used), find H(X)−isolated families
Nm

n , n ∈ N, of subsets of SX∗ such that
⋃

n∈N Nm
n = SX∗ . We recall that for

every n ∈ N and every N ∈ Nm
n there is γ < ξm such that Hm

γ \
⋃

γ′<γ Hm
γ′ ⊃ N .

Also, we know that, whenever n ∈ N and x∗ ∈ N ∈ Nm
n , then there is R ∈ H(X)

satisfying R 3 x∗ and R ∩
⋃ (

Nm
n \{N}

)
= ∅.

Keeping still m fixed, fix further for a while n ∈ N and put Am
n =

⋃
Nm

n
w∗
∩SX∗ .

Take N ∈ Nm
n . From the above, for every x∗ ∈ N find Rm

n,x∗ ∈ H(X) satisfying
Rm

n,x∗ 3 x∗ and Rm
n,x∗ ∩

⋃ (
Nm

n \{N}
)

= ∅. Put then Um
n,N =

⋃
x∗∈N Rm

n,x∗ . Note
that Um

n,N ⊃ N and Um
n,N ∩

( ⋃
Nm

n \{N}
)

= ∅. Do so for every n ∈ N.

Claim. For every x∗ ∈ SX∗ there are n ∈ N and H ∈ H(X) such that
H ∩Am

n 3 x∗ and Mm − diam
(
H ∩Am

n

)
< 2εm. Indeed, fix such an x∗. For sure

there are n ∈ N and N ∈ Nm
n so that x∗ ∈ N . And, taking H = Rm

n,x∗ , we have

x∗ ∈ H∩Am
n = (H∩N

w∗
∩SX∗)∪

(
H∩

⋃
(Nm

n \{N})
w∗
∩SX∗

)
= H∩N

w∗
∩SX∗ ⊂ N

w∗
.

But there is γ < ξm such that N ⊂
(
SX∗ ∩Hm

γ

)
\
⋃

γ′<γHm
γ′ , where the latter set

has the Mm− diameter less than 2εm. This proves the claim.

Keep still m fixed. For every n ∈ N, from Lemma 7 applied for M := Mm, A :=
Am

n , and ε := 2εm, we find the corresponding bounded convex sets C1, C2, . . .,
called now Cm,n

1 , Cm,n
2 , . . .

Do all the above for every m ∈ N.

Thus, using the Claim, for every m ∈ N and every x∗ ∈ SX∗ there are n ∈ N
and H ∈ H(X) such that Am

n ∩ H 3 x∗ and Mm−diam(Am
n ∩ H) < 2εm, and

hence, by Lemma 7, there are k ∈ N and R ∈ H(X) so that Cm,n
k ∩ R 3 x∗ and

Mm−diam(Cm,n
k ∩R) < 6εm.

Now, we are ready to verify the assumptions of Theorem 8. Fix any ε > 0,
any 0 6= x∗ ∈ X∗, and any finite set F ⊂ BX . From the σ−Asplund generat-
ing, find m ∈ N such that m > 12‖x∗‖/ε, that Mm ⊃ F , and that Mm is an
ε/(12‖x∗‖)−Asplund set. We observe that εm < 2ε/(12‖x∗‖) = ε/(6‖x∗‖). From
the previous paragraph find n, k ∈ N and R ∈ H(X) so that Cm,n

k ∩R 3 x∗/‖x∗‖
and Mm − diam

(
Cm,n

k ∩ R
)

< 6εm (< ε/‖x∗‖). Put R′ = ‖x∗‖R and note that
R′ ∈ H(X).
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Claim. There are rational numbers 0 < s < ‖x∗‖ < t such that such
that (s, t) Cm,n

k ∩ R′ 3 x∗ and Mm − diam
(
(s, t) Cm,n

k ∩ R′) < ε. Assume
this not true. Then there are sequences 0 < s1 < s2 < · · · < ‖x∗‖ and
t1 > t2 > · · · > ‖x∗‖ of rational numbers such that limj→∞ sj = limj→∞ tj = ‖x∗‖
and Mm − diam

(
(sj , tj) Cm,n

k ∩ R′) ≥ ε for every j ∈ N. For every j ∈ N
find s′j , t

′
j ∈ (sj , tj) and aj , bj ∈ Cm,n

k so that s′jaj , t
′
jbj ∈ (sj , tj)C

m,n
k ∩ R′ and

‖s′jaj − t′jbj‖Mn > ε − 1
j . Then limj→∞ s′j = limj→∞ t′j = ‖x∗‖, and hence

lim infj→∞
∥∥‖x∗‖aj−‖x∗‖bj

∥∥
Mn

≥ ε. Therefore Mm−diam
(
Cm,n

k ∩R
)
≥ ε/‖x∗‖,

which is a contradiction. This proves the claim.

At this moment, we have verified the assumptions of Theorem 8. Indeed,
given a fixed m ∈ N, for the sets Dm

l , l ∈ N, we take the (countable) family
(s, t) Cm,n

k , n, k ∈ N, 0 < s < t rational. Therefore X∗ admits and equivalent
weak∗ LUR norm, that is, (i) holds.

Remarks. 1. (iii)⇒(i) in Theorem 2 can be proved directly by following M.
Raja’s method from [15]. It needs just an adaptation of Lemma 2.2, Lemma 3.2,
Theorem 3.3, and their proofs from this paper.

2. Let D,RN ,QRN , IRN denote the class of compact spaces which are descrip-
tive, Radon-Nikodým, quasi-Radon-Nikodým, or continuous images of Radon-
Nikodým compact spaces, respectively. J. Orihuela asked ifQRN∩D is a subclass
of RN . Note that a converse is false as the long interval [0, ω1] shows. We do not
know of any Banach space counterpart to this. Yet a (weaker) question “whether
QRN ∩D ⊂ IRN” is equivalent with the question “whether a σ−Asplund gen-
erated Banach space X, with

(
BX∗ , w∗) ∈ D, is already a subspace of an Asplund

generated space”. This follows from [15, 1], and [4, Theorem 1.5.4]. If, in the
second question, the word “subspace” is dropped, we get a false statement —
take any subspace of a WCG space which is not WCG, see [4, Section 1.6].

3. The following facta complete our knowledge; proofs are simple conseqeuences
of [4, Theorem 1.5.4], [1], [5, Proposition 6], and [9, Theorem 2 (ii)].

Fact 1. Given a compact space K, then
(i) K ∈ RN if and only if C(K) is Asplund generated.
(ii) K ∈ QRN if and only if C(K) is σ−Asplund generated.
(iii) K ∈ IRN if and only if C(K) is a subspace of an Asplund generated space.

Fact 2. Given a Banach space X, then
(i)

(
BX∗ , w∗) ∈ QRN if and only if X is σ−Asplund generated.

(ii)
(
BX∗ , w∗) ∈ IRN if and only if X is a subspace of an Asplund generated

space.
(iii) If

(
BX∗ , w∗) ∈ RN , then X is a subspace of an Asplund generated space.

(iv)
(
BX∗ , w∗) ∈ RN provided that X is Asplund generated.
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115 67 Prague 1, Bohemia; e-mail: zizler@math.cas.cz

12


