Probability review

- Probability space Ω - a finite (or for us at most countable) set endowed with a measure $p: \Omega \rightarrow \mathcal{R}$ satisfying:

$$
\forall \omega \in \Omega ; p(\omega) \geq 0
$$

and

$$
\sum_{\omega \in \Omega} p(\omega)=1
$$

- An event $\mathbf{A} \subseteq \Omega-\operatorname{Pr}[A]=\sum_{\omega \in A} p(\omega)$.
- Random variable $\mathbf{X}-\mathbf{X}: \Omega \rightarrow \mathcal{R}$.

Example: If \mathbf{X} is a random variable then for a fixed $t, t^{\prime} \in \mathcal{R}, t \leq \mathbf{X} \leq t^{\prime}$ and $\mathbf{X}>t$ are probabilistic events.

- Two events \mathbf{A} and \mathbf{B} are independent $-\operatorname{Pr}[\mathbf{A} \cap \mathbf{B}]=\operatorname{Pr}[\mathbf{A}] \cdot \operatorname{Pr}[\mathbf{B}]$.
- Conditional probability of \mathbf{A} given $\mathbf{B}-\operatorname{Pr}[\mathbf{A} \mid \mathbf{B}]=\operatorname{Pr}[\mathbf{A} \cap \mathbf{B}] / \operatorname{Pr}[\mathbf{B}]$.

Example: \mathbf{A} and \mathbf{B} are independent iff $\overline{\mathbf{A}}$ and \mathbf{B} are independent iff \ldots iff $\operatorname{Pr}[\mathbf{A} \mid \mathbf{B}]=$ $\operatorname{Pr}[\mathbf{A}]$.

- For a random variable \mathbf{X} and an event \mathbf{A}, \mathbf{X} is independent of \mathbf{A} - for all $S \subseteq \mathcal{R}$, $\operatorname{Pr}[\mathbf{X} \in S \mid \mathbf{A}]=\operatorname{Pr}[\mathbf{X} \in S]$.
- Two random variables \mathbf{X} and \mathbf{Y} are independent - for all $S, T \subseteq \mathcal{R}, \mathbf{X} \in S$ and $\mathbf{Y} \in T$ are independent events.
- Events $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$ are mutually independent - for all $I \subseteq\{1, \ldots, n\}$,

$$
\operatorname{Pr}\left[\bigcap_{i \in I} A_{i} \cap \bigcap_{i \notin I} \overline{A_{i}}\right]=\prod_{i \in I} \operatorname{Pr}\left[A_{i}\right] \cdot \prod_{i \notin I} \operatorname{Pr}\left[\overline{A_{i}}\right] .
$$

- Random variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$ are mutually independent - for all $t_{1}, t_{2}, \ldots, t_{n} \in$ \mathcal{R}, events $\mathbf{X}_{1}=t_{1}, \mathbf{X}_{2}=t_{2}, \ldots, \mathbf{X}_{n}=t_{n}$ are mutually independent.
- Expectation of a random variable $\mathbf{X}-\mathbf{E}[\mathbf{X}]=\sum_{\omega \in \Omega} p(\omega) \mathbf{X}(\omega)$.

Three easy claims:
Claim: (Linearity of expectation) For random variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$

$$
\mathbf{E}\left[\mathbf{X}_{1}+\mathbf{X}_{2}+\cdots \mathbf{X}_{n}\right]=\sum_{i=1}^{n} \mathbf{E}\left[\mathbf{X}_{i}\right]
$$

Claim: For independent random variables \mathbf{X} and $\mathbf{Y}, \mathbf{E}[\mathbf{X} \cdot \mathbf{Y}]=\mathbf{E}[\mathbf{X}] \cdot \mathbf{E}[\mathbf{Y}]$.
Claim: For a random variable $\mathbf{X}: \Omega \rightarrow \mathcal{N}, \mathbf{E}[\mathbf{X}]=\sum_{k=1}^{\infty} \mathbf{E}[\mathbf{X} \geq k]$.
Theorem: (Markov Inequality) For a non-negative random variable \mathbf{X} and any $t \in \mathcal{R}$

$$
\operatorname{Pr}[\mathbf{X} \geq t] \leq \frac{\mathbf{E}[\mathbf{X}]}{t}
$$

Proof: $\mathbf{E}[\mathbf{X}]=\sum_{\omega \in \Omega} p(\omega) \mathbf{X}(\omega) \geq \sum_{\omega \in \Omega, \mathbf{x}(\omega) \geq t} p(\omega) \mathbf{X}(\omega) \geq t \cdot \sum_{\omega \in \Omega, \mathbf{X}(\omega) \geq t} p(\omega)=$ $t \cdot \operatorname{Pr}[\mathbf{X} \geq t]$.

- Variance $\operatorname{Var}[\mathbf{X}]$ of a random variable $\mathbf{X}-\operatorname{Var}[\mathbf{X}]=\mathbf{E}\left[(\mathbf{X}-\mu)^{2}\right]$ where $\mu=\mathbf{E}[\mathbf{X}]$.

Claim: For any random variable $\mathbf{X}, \operatorname{Var}[\mathbf{X}]=\mathbf{E}\left[\mathbf{X}^{2}\right]-(\mathbf{E}[\mathbf{X}])^{2}$.
Claim: For any random variable \mathbf{X} and a constant $c, \operatorname{Var}[c \mathbf{X}]=c^{2} \operatorname{Var}[\mathbf{X}]$.
Claim: (Linearity of variance) For mutually independent random variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$, $\operatorname{Var}\left[\mathbf{X}_{1}+\mathbf{X}_{2}+\cdots \mathbf{X}_{n}\right]=\mathbf{V a r}\left[\mathbf{X}_{1}\right]+\mathbf{V a r}\left[\mathbf{X}_{2}\right]+\cdots \operatorname{Var}\left[\mathbf{X}_{n}\right]$.
Theorem: (Chebyshev's inequality) Let \mathbf{X} be a random variable. For any real number $a>0$ it holds:

$$
\operatorname{Pr}(|\mathbf{X}-\mathbf{E}[\mathbf{X}]|>a) \leq \frac{\operatorname{Var}[\mathbf{X}]}{a^{2}}
$$

Proof: Let $\mu=\mathbf{E}[\mathbf{X}]$. Consider the non-negative random variable $\mathbf{Y}=(\mathbf{X}-\mu)^{2}$. Clearly $\mathbf{E}[\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]$. Using Markov inequality,

$$
\begin{aligned}
\operatorname{Pr}[|\mathbf{X}-\mu|>a] & =\operatorname{Pr}\left[\mathbf{Y}>a^{2}\right] \\
& \leq \frac{\mathbf{E}[\mathbf{Y}]}{a^{2}} \\
& =\frac{\mathbf{V a r}[\mathbf{X}]}{a^{2}}
\end{aligned}
$$

Theorem: (Chernoff Bounds) Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$ be independent 0-1 random variables. Denote $p_{i}=\operatorname{Pr}\left[\mathbf{X}_{i}=1\right]$, hence $1-p_{i}=\operatorname{Pr}\left[\mathbf{X}_{i}=0\right]$. Let $\mathbf{X}=\sum_{i=1}^{n} X_{i}$. Denote $\mu=\mathbf{E}[X]=\sum_{i=1}^{n} p_{i}$. For any $0<\delta<1$ it holds

$$
\operatorname{Pr}[\mathbf{X} \geq(1+\delta) \mu] \leq\left[\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}
$$

and

$$
\operatorname{Pr}[\mathbf{X} \leq(1-\delta) \mu] \leq \mathrm{e}^{-\frac{1}{2} \mu \delta^{2}}
$$

Proof: For any real number $t>0$,

$$
\begin{aligned}
\operatorname{Pr}[\mathbf{X} \geq(1+\delta) \mu] & =\operatorname{Pr}[t \mathbf{X} \geq t(1+\delta) \mu] \\
& =\operatorname{Pr}\left[\mathrm{e}^{t \mathbf{X}} \geq e^{t(1+\delta) \mu}\right]
\end{aligned}
$$

where based on \mathbf{X} we define new random variables $t \mathbf{X}$ and $\mathrm{e}^{t \mathbf{X}}$. Notice, $\mathrm{e}^{t \mathbf{X}}$ is a non-negative random variable so one can apply the Markov inequality to obtain

$$
\operatorname{Pr}\left[\mathrm{e}^{t \mathbf{X}} \geq e^{t(1+\delta) \mu}\right] \leq \frac{\mathbf{E}\left[e^{t \mathbf{X}}\right]}{e^{t(1+\delta) \mu}}
$$

Since all \mathbf{X}_{i} are mutually independent, random variables $e^{t \mathbf{X}_{i}}$ are also mutually independent so

$$
\mathbf{E}\left[\mathrm{e}^{t \mathbf{X}^{\prime}}\right]=\mathbf{E}\left[\mathrm{e}^{t \sum_{i} \mathbf{x}_{i}}\right]=\prod_{i=1}^{n} \mathbf{E}\left[\mathrm{e}^{t \mathbf{X}_{i}}\right] .
$$

We can evaluate $\mathbf{E}\left[\mathrm{e}^{t \mathbf{X}_{i}}\right]$

$$
\mathbf{E}\left[\mathrm{e}^{t \mathbf{X}_{i}}\right]=p_{i} \mathrm{e}^{t}+\left(1-p_{i}\right) \cdot 1=1+p_{i}\left(\mathrm{e}^{t}-1\right) \leq \mathrm{e}^{p_{i}\left(e^{t}-1\right)}
$$

where in the last step we have used $1+x \leq \mathrm{e}^{x}$ which holds for all x. (Look on the graph of functions $1+x$ and e^{x} and their derivatives in $x=0$.) Thus

$$
\begin{aligned}
\mathbf{E}\left[e^{t X}\right] & \leq \prod_{i=1}^{n} \mathrm{e}^{p_{i}\left(e^{t}-1\right)} \\
& =\mathrm{e}^{\sum_{i=1}^{n} p_{i}\left(e^{t}-1\right)} \\
& =\mathrm{e}^{\mu\left(e^{t}-1\right)}
\end{aligned}
$$

By choosing $t=\ln (1+\delta)$ and rearanging terms we obtain

$$
\begin{aligned}
\operatorname{Pr}[\mathbf{X} \geq(1+\delta) \mu] & =\operatorname{Pr}\left[\mathrm{e}^{t \mathbf{X}} \geq e^{t(1+\delta) \mu}\right] \\
& \leq \frac{\mathrm{e}^{\mu\left(e^{t}-1\right)}}{e^{t(1+\delta) \mu}} \\
& =\left[\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}
\end{aligned}
$$

That proofs the first bound. The second bound is obtained in a similar way:

$$
\begin{aligned}
\operatorname{Pr}[\mathbf{X} \leq(1-\delta) \mu] & =\operatorname{Pr}[-t \mathbf{X} \geq-t(1-\delta) \mu] \\
& =\operatorname{Pr}\left[\mathrm{e}^{-\mathbf{X} \mathbf{X}} \geq e^{-t(1-\delta) \mu}\right] \\
& \leq \frac{\mathbf{E}\left[e^{-t \mathbf{X}}\right]}{e^{-t(1-\delta) \mu}} .
\end{aligned}
$$

Bounding $\mathbf{E}\left[e^{-t \mathbf{X}}\right]$ as before gives

$$
\mathbf{E}\left[e^{-t X}\right] \leq \mathrm{e}^{\mu\left(e^{-t}-1\right)}
$$

By choosing $t=-\ln (1-\delta)$ and rearanging terms we obtain

$$
\begin{aligned}
\operatorname{Pr}[\mathbf{X} \leq(1-\delta) \mu] & =\operatorname{Pr}\left[\mathrm{e}^{-t \mathbf{X}} \geq e^{-t(1-\delta) \mu}\right] \\
& \leq \frac{\mathrm{e}^{\mu\left(e^{-t}-1\right)}}{e^{-t(1-\delta) \mu}} \\
& =\left[\frac{\mathrm{e}^{-\delta}}{(1-\delta)^{(1-\delta)}}\right]^{\mu}
\end{aligned}
$$

We use the well known expansion for $0<\delta<1$

$$
\ln (1-\delta)=-\sum_{i=1}^{\infty} \frac{\delta^{i}}{i}
$$

to obtain

$$
\begin{aligned}
(1-\delta) \ln (1-\delta) & =\sum_{i=1}^{\infty} \frac{\delta^{i+1}}{i}-\sum_{i=1}^{\infty} \frac{\delta^{i}}{i} \\
& =\sum_{i=2}^{\infty} \frac{\delta^{i}}{i(i-1)}-\delta
\end{aligned}
$$

Thus

$$
(1-\delta)^{(1-\delta)} \geq \mathrm{e}^{\frac{\delta^{2}}{2}-\delta}
$$

Hence

$$
\operatorname{Pr}[\mathbf{X} \leq(1-\delta) \mu] \leq \mathrm{e}^{-\frac{\delta^{2}}{2}+\delta-\delta}=\mathrm{e}^{-\frac{\delta^{2}}{2} \mu}
$$

