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a b s t r a c t

The paper deals with co-derivative formulae for normal cone mappings to smooth
inequality systems. Both the regular (Linear Independence Constraint Qualification
satisfied) and nonregular (Mangasarian–Fromovitz Constraint Qualification satisfied) cases
are considered. A major part of the results relies on general transformation formulae
previously obtained by Mordukhovich and Outrata. This allows one to derive exact
formulae for general smooth, regular and polyhedral, possibly nonregular systems. In the
nonregular, nonpolyhedral case a generalized transformation formula by Mordukhovich
and Outrata applies, however, a major difficulty consists in checking a calmness condition
of a certain multivalued mapping. The paper provides a translation of this condition in
terms of much easier to verify constraint qualifications. The final section is devoted to the
situation where the calmness condition is violated. A series of examples illustrates the use
and comparison of the presented formulae.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The Mordukhovich co-derivative has become an important tool for the characterization of stability and optimality in
variational analysis. We refer to the basic monograph [1] for definitions, properties, calculus rules and applications of
this object. When dealing with generalized equations or variational inequalities, the multivalued mappings for which the
co-derivative is to be calculated are typically given by normal cones NΩ to certain closed sets Ω . For complementarity
problems, e.g., Ω = Rn

+
, an explicit, ready-to-use formula for the co-derivative D∗NRn

+
is available. However, in many

applications, Ω is often more complicated than just Rn
+
. For example, Ω may be a general polyhedron or a set described

by a finite number of smooth inequalities. In such cases (see [2,1]), given that certain constraint qualifications hold true, the
existence of convenient calculus rules for the co-derivative allow similar formulae to be obtained as well. IfΩ is defined via
a smooth inequality system satisfying the Linear Independence Constraint Qualification (LICQ), then the co-derivativeD∗NΩ
can be led back to the well-known formula for D∗NRn

+
with the addition of a second order term and a linear transformation.

In the nonregular case, i.e., LICQ is violated, a slightly more complicated transformation formula (involving a union over
nonuniquely definedmultipliers) can be applied provided that theMangasarian–Fromovitz Constraint Qualification (MFCQ)
holds as well as the additional requirement that a certain associated multifunction is calm (see [3]). In general, this
transformation formula holds true as an inclusion only, thus leaving a gap between the precise expression for the co-
derivative and the one comfortably calculated from the formula. Closing this gap amounts to calculating the co-derivative
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‘from scratch’. Important examples where precise formulae for the co-derivative could be obtained in the nonregular case
are general polyhedra where LICQ may be violated (see [4]) and the second order cone, which also admits no description
satisfying LICQ (see [5]).
The aim of this paper is to provide explicit, readily-applicable co-derivative formulae for normal cone mappings to

possibly nonregular inequality systems. The first part reviews some precise expressions for the co-derivative in the regular
and nonregular polyhedral setting. Similar to the reduction approach by Bonnans and Shapiro ([6], p. 240), it is illustrated
how nonregularity of the given set Ω can be shifted in certain special situations to the simpler image set, which might
happen to be polyhedral, thus allowing one to apply the previously mentioned co-derivative formula for certain nonregular,
nonpolyhedral setsΩ as well.
A second part of the paper deals with the transformation formula for the nonregular systems mentioned above. The

formula is first used to derive an alternative explicit expression for the co-derivative in case ofΩ being polyhedral (possibly
nonregular). Some examples are then furnished with the intent of contrasting the formula’s ease-of-use versus its possible
lack of precision when compared to that which one obtains by applying the precise formula.
In the polyhedral case, the mentioned calmness condition required for the application of the transformation formula

happens to be automatically satisfied. However, for nonlinear inequality systems this is no longer true and one is therefore
required to verify calmness.
The original calmness condition is formulated for a multifunction of complicated structure involving primal and dual

variables. A major part of the paper is therefore devoted to a reformulation of this condition as a constraint qualification,
i.e., in terms of primal variables only. More precisely, by associating the respective equality system with the original
inequality system describing Ω , one then checks calmness of this equality system along with that for all its subsystems.
A reasonable constraint qualification ensuring this property is derived for the special case that the number of binding
inequalities exceeds the spacial dimension.
The final section of the paper addresses the most complicated situation: where MFCQ holds true but the mentioned

calmness condition is violated. Partial, albeit less precise, upper estimates for the coderivative are then discussed for this
situation.

2. Some concepts and tools of variational analysis

We start with the definitions of the main objects in our investigation. For a closed set Λ ⊆ Rn and a point x̄ ∈ Λ, the
Fréchet normal cone toΛ at x̄ ∈ Λ is defined by

N̂Λ(x̄) := {x∗ ∈ Rn |
〈
x∗, x− x̄

〉
≤ o (‖x− x̄‖)∀x ∈ Λ}.

TheMordukhovich normal cone toΛ at x̄ ∈ Λ results from the Fréchet normal cone in the following way:

NΛ(x̄) := Limsup
x→x̄,x∈Λ

N̂Λ(x).

The ‘Limsup’ in the definition above is the upper limit of sets in the sense of Kuratowski-Painlevé, cf. [7].
For a multifunction Φ : Rn ⇒ Rp, consider a point of its graph: (x, y) ∈ gphΦ . The Mordukhovich normal cone induces

the following co-derivative D∗Φ (x, y) : Rp ⇒ Rn ofΦ at (x, y):

D∗Φ (x, y)
(
y∗
)
= {x∗ ∈ Rn|

(
x∗,−y∗

)
∈ NgphΦ (x, y)} ∀y∗ ∈ Rp.

Similarly, the more elementary Fréchet normal cone induces the Fréchet co-derivative

D̂∗Φ (x, y)
(
y∗
)
= {x∗ ∈ Rn |

(
x∗,−y∗

)
∈ N̂gphΦ (x, y)} ∀y∗ ∈ Rp.

The relation between both concepts is given by

D∗Φ (x̄, ȳ)
(
ȳ∗
)
= Limsup

(x,y)→(x̄,ȳ)
y∈Φ(x)
y∗→ȳ∗

D̂∗Φ (x, y)
(
y∗
)
.

Moreover, the co-derivative enjoys the following robustness property:

D∗Φ (x̄, ȳ)
(
ȳ∗
)
= Limsup

(x,y)→(x̄,ȳ)
y∈Φ(x)
y∗→ȳ∗

D∗Φ (x, y)
(
y∗
)
.

A multifunction Z : Y ⇒ X between metric spaces is said to be calm at a point (ȳ, x̄) belonging to its graph, if there exist
L, ε > 0, such that

d(x, Z(ȳ)) ≤ Ld(y, ȳ) ∀x ∈ Z(y) ∩ B (x̄, ε)∀y ∈ B (ȳ, ε) .

Here ‘d’ and ‘B’ refer to the distances and balls with corresponding radii in the respective metric space. For the special
multifunction Z : Rn × Rm ⇒ Rp, defined by

Z (α, β) := {x ∈ Rp|G1(x) = α,G2(x) ≤ β},
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where G1 : Rp → Rn and G1 : Rp → Rm are continuous mappings, it is easy to see that calmness of Z at (0, 0, x̄) for some x̄
satisfying G1 (x̄) = 0 and G2 (x̄) = 0 is equivalent with the existence of L, ε > 0, such that

d(x, Z(0, 0)) ≤ L

(∑
i

|G1i(x)| +
∑
i

[G2i(x)]+

)
∀x ∈ B (x̄, ε) . (1)

Here, [y]+ := max{y, 0}.

3. On the co-derivative of normal cone mappings

3.1. Regular constraint systems

The following theorem recalls a basic transformation formula for co-derivatives that was established first as an inclusion
by Mordukhovich and Outrata in [2] (Theorem 3.4) and later as an equality in [1] (Theorem 1.127):

Theorem 3.1. Let C = F−1(P), where F : Rn → Rm is twice continuously differentiable and P ⊆ Rm is some closed subset.
Consider points x̄ ∈ C and v̄ ∈ NC (x̄). If the Jacobian ∇F(x̄) is surjective, then

D∗NC (x̄, v̄)(v∗) =

(
m∑
i=1

λ̄i∇
2Fi(x̄)

)
v∗ +∇T F (x̄)D∗NP

(
F(x̄), λ̄

) (
∇F (x̄) v∗

)
. (2)

Here, the Fi are the components of F and λ̄ is the unique solution of the equation ∇T F(x̄)λ̄ = v̄, i.e.,

λ̄ =
(
∇F(x̄)∇T F(x̄)

)−1
∇F(x̄)v̄.

The value of transformation formula (2) relies on the fact that, starting with the co-derivative for normal cone mappings
to simple objects (such as an orthant), one may pass to nonlinearly transformed constraint systems (such as differentiable
inequalities). So, for instance, if

C = {x ∈ Rn | Fi(x) ≤ 0 (i = 1, . . . ,m)},

where the Fi are twice continuously differentiable and x̄ ∈ C satisfies the Linear Independence Constraint Qualification, then,
putting

F := (F1, . . . , Fm)T P := Rm
−
,

one may calculate D∗NC from D∗NRm
−
via Theorem 3.1. To do so, one may access the following representation (see, e.g., [8,3,

4, (Cor. 3.5)]) for any (x, v) ∈ grNRm
−
:

D∗NRm
−
(x, v)(v∗) =

{
∅ if ∃i : viv∗i 6= 0
{x∗|x∗i = 0 ∀i ∈ I1, x

∗

i ≥ 0 ∀i ∈ I2} else (3)

where

I1 := {i|xi < 0} ∪ {i|vi = 0, v∗i < 0}, I2 := {i|xi = 0, vi = 0, v∗i > 0}.

Formula (2) is of use even in the linear case:

Corollary 3.1. Let C := {x ∈ Rn | Ax ≤ b}, where b ∈ Rm and A is some matrix of order (m, n) having rank m. Then, for x̄ ∈ C
and v̄ ∈ NC (x̄), it holds that

D∗NC (x̄, v̄)(v∗) =
{
∅ if ∃i : λ̄i

〈
ai, v∗

〉
6= 0

{AT x∗|x∗i = 0 ∀i ∈ Ĩ1, x
∗

i ≥ 0 ∀i ∈ Ĩ2} else

where

Ĩ1 := {i| 〈ai, x̄〉 < bi} ∪ {i|λ̄i = 0,
〈
ai, v∗

〉
< 0}, Ĩ2 := {i| 〈ai, x̄〉 = bi, λ̄i = 0,

〈
ai, v∗

〉
> 0},

λ̄ =
(
AAT

)−1 Av̄ and the ai refer to the rows of A.
Proof. Putting F(x) := Ax− b, (2) yields that

D∗NC (x̄, v̄)(v∗) = ATD∗NRm
−

(
Ax̄− b, λ̄

) (
Av∗

)
.

Now, the result follows from (3). �

The full-rank assumption in the corollary can in fact be localized, thus allowing the formula to be applied to any regular
polyhedra defined by possibly many inequalities. Of course in this case, the matrix Amust then replaced by the submatrix
corresponding to active inequalities.
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3.2. Nonregular constraint systems — polyhedral image sets

Corollary 3.1 does not, however, apply to nonregular polyhedra. For example, one cannot derive a co-derivative formula
for the polyhedral set x3 ≥ max{|x1|, |x2|}. Nevertheless, by using the well-known representation of polyhedral normal
cone mappings from Dontchev and Rockafellar ([8], proof of Theorem 2), one may derive an explicit co-derivative formula
for arbitrary polyhedra

C := {x ∈ Rn | Ax ≤ b},
where b ∈ Rm and A is some matrix of order (m, n). To this aim, denote by ai the rows of A and consider arbitrary x̄ ∈ C and
v̄ ∈ NC (x̄). Then, v̄ = ATλ for some λ ∈ Rm+. Define, the index sets I := {i|〈ai, x̄〉 = bi} and J := {j|λj > 0}, then it is easily
noted that J ⊆ I . Finally, with each I ′ ⊆ I associate its characteristic index set χ(I ′) consisting of those indices j ∈ I such
that for all h ∈ Rn the following implication holds true:

〈ai, h〉 ≤ 0 (i ∈ I \ I ′), 〈ai, h〉 = 0 (i ∈ I ′) H⇒ 〈aj, h〉 = 0.

Clearly, I ′ ⊆ χ(I ′) ⊆ I , χ(I ′) ⊆ χ(I
′′

) for I ′ ⊆ I
′′

and I ′ = χ(I ′) if the submatrix {ai}i∈I has full rank. Given this setting, the
following relations hold true ([4], Prop. 3.2 and Cor. 3.4):

Theorem 3.2. With the notation introduced above, one has that

D∗NC (x̄, v̄) (v∗) =

{
x∗
∣∣∣∣∣ (x∗,−v∗) ∈ ⋃

J⊆I1⊆I2⊆I

PI1,I2 × QI1,I2

}
, (4)

where

PI1,I2 = con {ai|i ∈ χ (I2) \ I1} + span {ai|i ∈ I1}
QI1,I2 = {h ∈ R

n
| 〈ai, h〉 = 0 (i ∈ I1) , 〈ai, h〉 ≤ 0 (i ∈ χ (I2) \ I1)}

and ‘con’ and ‘span’ refer to the convex conic and linear hulls, respectively.
A more convenient expression avoiding the union above can be used in the following upper estimation:

D∗NC (x̄, v̄) (v∗) ⊆ con {ai|i ∈ χ
(
Ia(v∗) ∪ Ib(v∗)

)
\ Ia(v∗)} + span {ai|i ∈ Ia(v∗)} (5)

if 〈ai, v∗〉 = 0 for all i ∈ J and 〈ai, v∗〉 ≥ 0 for all i ∈ χ(J) \ J , whereas D∗NC (x̄, v̄) (v∗) = ∅ otherwise. Here,

Ia(v∗) := {i ∈ I|〈ai, v∗〉 = 0}, Ib(v∗) := {i ∈ I|〈ai, v∗〉 > 0}.

Corollary 3.2. D∗NC (x̄, v̄) (0) = span {ai|i ∈ I}.
Proof. Since 0 ∈ QI1,I2 for any index sets I1, I2, it follows from (4) that

D∗NC (x̄, v̄) (0) =
⋃

J⊆I1⊆I2⊆I

PI1,I2 = PI,I .

Here, the last equality relies on the fact that PI1,I2 ⊆ PI3,I4 , whenever I1 ⊆ I3 and I2 ⊆ I4. �

To illustrate these characterizations, consider the following two examples:

Example 3.1. Let C := Ax ≤ 0, where

A :=

−1 0 1
1 0 1
0 −1 1
0 1 1

 .
Put x̄ := 0 and v̄ := a1 + a2 = (0, 0, 2). Then, I = {1, 2, 3, 4}, J = {1, 2} and χ(J) = I . Referring to (5), the condition
‘〈ai, v∗〉 = 0 for all i ∈ J and 〈ai, v∗〉 ≥ 0 for all i ∈ χ(J) \ J ’ reduces to ‘v∗ = 0’. Moreover, Ia(0) = I and Ib(0) = ∅.
Consequently, D∗NC (x̄, v̄) (v∗) = ∅ for v∗ 6= 0. On the other hand, by Corollary 3.2,

D∗NC (x̄, v̄) (0) = span {ai|i ∈ I} = Im AT = R3.

Example 3.2. In the previous example, put x̄ := 0 and v̄ := a1 + a3 = (−1,−1, 2). Then, I = {1, 2, 3, 4}, J = {1, 3} and
χ(J) = J . Now, the condition ‘〈ai, v∗〉 = 0 for all i ∈ J and 〈ai, v∗〉 ≥ 0 for all i ∈ χ(J) \ J ’ reduces to v∗1 = v∗2 = v∗3 .
Consequently, D∗NC (x̄, v̄) (v∗) = ∅ if this last identity is violated. If it holds true, then D∗NC (x̄, v̄) (0) = R3 by Corollary 3.2
and

D∗NC (x̄, v̄) (t, t, t) ⊆
{
con {a2, a4} + span {a1, a3} if t > 0
span {a1, a3} if t < 0.

This follows easily from (5), from the definition of A and from the already stated identity χ({1, 3}) = {1, 3}.
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Fig. 1. Illustration of the boundary of the constraint set in Example 3.3.

We combine the previous results for general linear and regular nonlinear constraint systems in order to calculate the
co-derivative in a special nonregular, nonlinear setting. We assume that

C := {x ∈ Rn | AF(x) ≤ b}, (6)

where F : Rn → Rs is twice continuously differentiable, b ∈ Rm and A is some matrix of order (m, s). Suppose also that
∇F(x̄) is surjective. Note that in order to calculate D∗NC , we cannot invoke Theorem 3.1 because surjectivity of ∇(AF)(x̄)
may be violated. Nevertheless, we may rewrite the constraint set as

C := F−1(P), P := {y ∈ Rs | Ay ≤ b} (7)

and then apply Theorem 3.1, recalling that we are able to calculate D∗NP via Theorem 3.2. We illustrate this fact in the
following example:

Example 3.3. Let

C := {(x1, x2, x3) | x3 ≤ −‖(x1 + x31 + x
4
2, x

3
1 + x2 − x

3
2)‖∞}.

Evidently, C can be equivalently represented by the nonlinear inequality system

−x1 − x31 − x
4
2 + x3 ≤ 0

x1 + x31 + x
4
2 + x3 ≤ 0

−x31 − x2 + x
3
2 + x3 ≤ 0

x31 + x2 − x
3
2 + x3 ≤ 0.

Fig. 1 illustrates the boundary of this constraint set. At x̄ = 0 ∈ C , all inequalities are active, so their gradients cannot be
linearly independent (the nonregularity can also be recognized from Fig. 1, where the graph exhibits four creasesmeeting at
x̄). This prevents an application of Theorem 3.1. However, wemaywrite C in the form (7), where b = 0, A is as in Example 3.1
and

F(x) = (x1 + x31 + x
4
2, x

3
1 + x2 − x

3
2, x3)

T .

Evidently, ∇F(0) = I3 is surjective. As a normal vector v̄ ∈ NC (0) choose for example v̄ = (−1,−1, 2). Because of
∇
2Fi(0) = 0 for i = 1, 2, 3, Theorem 3.1 provides the formula

D∗NC (0, v̄)(v∗) = D∗NP (0, v̄)
(
v∗
)
.

Hence, we may use for D∗NC (0, v̄) exactly the same estimates as obtained in Example 3.2.

3.3. Nonregular constraint systems — the use of calmness

In [3] (Th. 3.1), it was shown how the assumption of calmness for a certain multifunction allows one to weaken
the surjectivity condition in a result like Theorem 3.1 to a condition that, in the setting of Theorem 3.1, amounts to
the Mangasarian–Fromovitz Constraint Qualification (MFCQ). Specifying those ideas to our setting, one gets the following
generalization of Theorem 3.1:

Theorem 3.3. Consider the set C = {x ∈ Rn | Fi(x) ≤ 0 (i = 1, . . . ,m)}, where F : Rn → Rm is twice continuously
differentiable. Fix some x̄ ∈ C and v̄ ∈ NC (x̄) such that, without loss of generality, F(x̄) = 0 and suppose that the following two
constraint qualifications are fulfilled:

1. The rows of {∇F(x̄)} are positively linearly independent (i.e., MFCQ is satisfied at x̄)
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2. The multifunction

M(ϑ) := {(x, λ) | (F(x), λ)+ ϑ ∈ GrNRm
−
}

is calm at
(
0, x̄, λ̄

)
for all λ̄ ≥ 0 with ∇T F(x̄)λ̄ = v̄.

Then,

D∗NC (x̄, v̄)(v∗) ⊆
⋃

λ̄≥0,∇T F(x̄)λ̄=v̄

{(
m∑
i=1

λ̄i∇
2Fi(x̄)

)
v∗ +∇T F (x̄)D∗NRm

−

(
0, λ̄

) (
∇F (x̄) v∗

)}
.

As a first application of Theorem 3.3, we recover an alternative estimate of (4) and (5) in terms of dual (multipliers) rather
than primal (characteristic index sets) objects.

Corollary 3.3. Let

C := {x ∈ Rn | Ax ≤ b},

where b ∈ Rm and A is some matrix of order (m, n). Fix some x̄ ∈ C and v̄ ∈ NC (x̄) with Ax̄ = b. If there exists some ξ ∈ Rn
such that Aξ < 0 (component-wise), then, with the notation of Theorem 3.2,

D∗NC (x̄, v̄)(v∗) ⊆ con {ai|〈ai, v∗〉 > 0} + span {ai|〈ai, v∗〉 = 0},

whenever there exists some λ̄ ≥ 0 such that AT λ̄ = v̄ and λ̄i 〈ai, v∗〉 = 0 for all i = 1, . . . ,m. Otherwise, D∗NC (x̄, v̄)(v∗) = ∅.
Proof. In the setting of Theorem 3.3, put F(x) := Ax − b. Observe, that the existence of ξ ∈ Rn such that Aξ < 0
implies via Gordan’s Theorem the first constraint qualification of the Theorem. Moreover, the multifunction considered
in the second constraint qualification happens to be polyhedral, so it is calm by Robinson’s well-known upper Lipschitz
result for polyhedral multifunctions. Hence, one may conclude that

D∗NC (x̄, v̄)(v∗) ⊆
⋃

λ̄≥0,AT λ̄=v̄

ATD∗NRm
−

(
0, λ̄

) (
Av∗

)
. (8)

From (3) we derive that the union on the right-hand side takes place only if λ̄i 〈ai, v∗〉 = 0 for all i = 1, . . . ,m, in which
case

ATD∗NRm
−

(
0, λ̄

) (
Av∗

)
= {AT x∗|x∗i = 0 ∀i : λ̄i = 0,

〈
ai, v∗

〉
< 0; x∗i ≥ 0 ∀i : λ̄i = 0, 〈ai, v

∗
〉 > 0}

= con {ai|〈ai, v∗〉 > 0} + span {ai|〈ai, v∗〉 = 0}.

This yields the assertion of the corollary. �

The last corollary provides a more handy formula for calculating the coderivative of normal cone mappings to polyhedra
when compared to Theorem 3.2, where characteristic index sets need to be calculated, on the other hand, it may be less
precise than the latter in certain circumstances. This shall be illustrated by revisiting Examples 3.1 and 3.2:

Example 3.4 (Example 3.2 Revisited). With the data from Example 3.2, the only λ̄ ≥ 0 with AT λ̄ = v̄ is λ̄ = (1, 0, 1, 0).
Hence, by Corollary 3.3,

D∗NC (x̄, v̄) (v∗) 6= ∅⇐⇒ 〈a1, v∗〉 = 〈a3, v∗〉 = 0⇐⇒ v∗1 = v
∗

2 = v
∗

3 .

Moreover,

D∗NC (x̄, v̄)(t, t, t) ⊆

span {a1, a2, a3, a4} = R
3 if t = 0

con {a2, a4} + span {a1, a3} if t > 0
span {a1, a3} if t < 0.

Thus, we completely recover the results of Example 3.2 obtained via Theorem 3.2.

Example 3.5 (Example 3.1 Revisited). With the data from Example 3.1, there are three possibilities for λ̄ ≥ 0 with AT λ̄ = v̄:
λ̄ = (0, 0, 1, 1), λ̄ = (1, 1, 0, 0) and λ̄ = (r, r, s, s) for r, s > 0 and r + s = 1. Now, Corollary 3.3 implies

D∗NC (x̄, v̄)(v∗) ⊆



span {a1, a2, a3, a4} = R3 if v∗ = 0
con {a1} + span {a3, a4} if v∗2 = v

∗

3 = 0, v
∗

1 < 0
con {a2} + span {a3, a4} if v∗2 = v

∗

3 = 0, v
∗

1 > 0
con {a3} + span {a1, a2} if v∗1 = v

∗

3 = 0, v
∗

2 < 0
con {a4} + span {a1, a2} if v∗1 = v

∗

3 = 0, v
∗

2 < 0
∅ else.

In contrast to this result, the application of Theorem3.2 in Example 3.1 has shown thatD∗NC (x̄, v̄)(v∗) = ∅wheneverv∗ 6= 0.
In other words, the formula of Corollary 3.3 creates some additional artificial expressions in the coderivative formula.
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We now turn to an application of Theorem 3.3 in a nonlinear setting. The crucial calmness condition required there has
been investigated in [9] (see Th. 2, Th. 6, Ex. 6). In general, the conditions for calmness used there may be difficult to verify.
Therefore, we provide a different characterization here, where the calmness property needs to be verified only for certain
constraint systems defined as subsystems of the original inequality constraints in the space of x-variables. For the definition
of calmness used in the following, we refer to Section 2.

Proposition 3.1. If for all ∅ 6= I ⊆ {1, . . . ,m} the multifunctions

HI(α) = {x | Fi(x) = αi(i ∈ I), Fi(x) ≤ 0(i ∈ Ic)}

are calm at (0, x̄), then the multifunction M introduced in Theorem 3.3 is calm at
(
0, x̄, λ̄

)
for any λ̄ specified there.

Proof. Throughout this proof we use the 1-norm of vectors. Note first, that for I = ∅, HI is trivially calm as a constant
multifunction. Hence, this special case can be excluded from the assumption. Next, observe that, by F (x̄) = 0, one has
indeed (0, x̄) ∈ grHI for all I ⊆ {1, . . . ,m}. The calmness assumption means that for any I ⊆ {1, . . . ,m}, there exist
constants δI , εI , LI > 0 such that

d(x,HI(0)) ≤ LI ‖α‖ ∀x ∈ BδI (x̄) ∩ HI(α) ∀α : αi ∈ (−εI , εI) (i ∈ I).

Putting

δ := min
I⊆{1,...,m}

δI , ε := min
I⊆{1,...,m}

εI , L := max
I⊆{1,...,m}

LI ,

one obtains that δ, ε, L > 0 and

d(x,HI(0)) ≤ L ‖α‖ (9)
∀x ∈ Bδ (x̄) ∩ HI(α) ∀α : αi ∈ (−ε, ε) (i ∈ I),∀I ⊆ {1, . . . ,m}.

Due to F (x̄) = 0, we may further shrink δ > 0 such that

|Fi(x)| ≤ ε ∀x ∈ Bδ (x̄) ∀i ∈ {1, . . . ,m}. (10)

Now, consider any λ̄ ≥ 0. Then, λ̄ ∈ NRm
−
(0) and so

(
x̄, λ̄

)
∈ M(0). We show that

d((x, λ) ,M(0)) ≤ (L+ 1) ‖ϑ‖ (11)
∀ (x, λ) ∈ M(ϑ) ∩

(
Bδ (x̄)× Rm

)
∀ϑ = (ϑ1, ϑ2) ∈ Bε (0)× Rm.

This would prove the asserted calmness of M at
(
0, x̄, λ̄

)
. To this aim, choose arbitrary ϑ = (ϑ1, ϑ2) ∈ Bε (0) × Rm and

(x, λ) ∈ M(ϑ) ∩ (Bε (x̄)× Rm). Note first that (x, λ) ∈ M(ϑ) amounts to λ+ ϑ2 ∈ NRm
−
(F(x)+ ϑ1). Accordingly,

F(x)+ ϑ1 ≤ 0, λ+ ϑ2 ≥ 0, (λi + ϑ2i) (Fi(x)+ ϑ1i) = 0 ∀i ∈ {1, . . . ,m}. (12)

For the fixed x, define

Ix := {i ∈ {1, . . . ,m}|Fi(x)+ ϑ1i = 0 or Fi(x) ≥ 0}.

Choose x̃ ∈ HIx(0) such that
∥∥x− x̃∥∥ = d(x,HIx(0)). Note that by definition of Ix, Fi(x) < 0 for all i ∈ (Ix)c . Consequently,

x ∈ Bε (x̄) ∩ HIx(α) for α defined by

αi := Fi(x) (i ∈ Ix).

Since also (10) ensures that αi ∈ (−ε, ε) for all i ∈ Ix, we may apply (9) to derive that

d(x,HIx(0)) ≤ L ‖α‖ = L
∑
i∈Ix

|Fi(x)| .

Now, if i ∈ Ix is such that Fi(x) + ϑ1i = 0, then |Fi(x)| = |ϑ1i|. Otherwise, by (12), Fi(x) + ϑ1i < 0 and, by definition of Ix,
Fi(x) ≥ 0. This implies |Fi(x)| ≤ |ϑ1i|. In any case we may conclude that∥∥x− x̃∥∥ = d(x,HIx(0)) ≤ L ‖ϑ1‖ .
Next, define λ̃ ∈ Rm by λ̃i := λi + ϑ2i if i ∈ Ix and λ̃i := 0 if i ∈ (Ix)c . Then, λ̃ ≥ 0 by (12). Moreover, x̃ ∈ HIx(0) entails that
Fi(x̃) = 0 if i ∈ Ix and Fi(x̃) ≤ 0 if i ∈ (Ix)c . In particular, λ̃iFi(x̃) = 0 for all i ∈ {1, . . . ,m}. This means that λ̃ ∈ NRm

−

(
F(x̃)

)
and, hence, (x̃, λ̃) ∈ M(0). Finally, observe that, for i ∈ (Ix)c , one has Fi(x) + ϑ1i < 0 and, thus, by (12), λi = −ϑ2i. This
proves that λ̃− λ = ϑ2. Consequently,

d((x, λ) ,M(0)) ≤ ‖ (x, λ)− (x̃, λ̃)‖ = ‖x− x̃‖ + ‖λ− λ̃‖
≤ L‖ϑ1‖ + ‖ϑ2‖ ≤ (L+ 1) ‖ϑ‖

which shows (11). �



1220 R. Henrion et al. / Nonlinear Analysis 71 (2009) 1213–1226

We refer the reader to [10] for methods to check calmness of constraint systems like those given by the multifunctions
HI in the previous proposition. The next proposition shows how to get rid of inequalities for the verification of calmness
in the previous proposition. More precisely, calmness must only be checked for all equality subsystems. This proposition,
which yields a slightly stronger result than needed, requires a technical lemma, the proof of which is shifted to the Appendix
(Lemma 3.1).

Proposition 3.2. If for all I ⊆ {1, . . . ,m} the multifunctions

H̃I (α) := {x|Fi (x) = αi (i ∈ I)}

are calm at (0, x̄), then the multifunctions

H̄I (α) =
{
x|Fi (x) = αi (i ∈ I) , Fi (x) ≤ αi

(
i ∈ Ic

)}
are also calm at (0, x̄) for all I ⊆ {1, . . . ,m}. In particular, the multifunctions HI (α) introduced in Proposition 3.1 are calm at
(0, x̄) for all I ⊆ {1, . . . ,m}.

Proof. We proceed by induction over the number m of components of F . Consider first the case m = 1. We either have
I = ∅ or I = {1}. In the second case, one has H̄I = H̃I due tom = 1, hence calmness of H̄I follows from that of H̃I . In the first
case, we apply Lemma 3.1 proved in the Appendix. Referring to the notation of this lemma, we put I∗ = ∅ and check the two
assumptions made there. As the only set I ⊆ {1}with I 6= I∗ is given by I = {1} and then, as before, H̄I = H̃I , calmness of H̄I
follows from that of H̃I . This shows the first assumption of Lemma 3.1 to hold true. Concerning the second assumption, one
has i′ = 1 and, hence,M reduces to the trivial constant multifunctionM (α, β) ≡ Rn which is calm. On the other hand, the
second multifunction introduced there reduces to M̄ = H̃I , hence calmness of M̄ follows from that of H̃I . As a consequence,
Lemma 3.1 yields calmness of H̄I∗ = H̄∅. Summarizing, the assertion of our proposition follows for the case m = 1. Next
assume that the Proposition holds true for all m ≤ k and consider the case m = k + 1. By assumption, the H̃I are calm at
(0, x̄) for all I ⊆ {1, . . . , k+ 1}. In particular, the multifunction M̄ considered in the second assumption of Lemma 3.1 and
corresponding to the case #I = 1 is calm at (0, x̄). Moreover, the induction hypothesis ensures that also the multifunctions

{x|Fi (x) = αi (i ∈ I) , Fi (x) ≤ αi (i ∈ J�I)} (13)

are calm at (0, x̄) for all subsets I ⊆ J and all J ⊆ {1, . . . , k+ 1} with #J = k. Since the multifunction M considered in
the second assumption of Lemma 3.1 is of type (13) with J = {1, . . . , k+ 1}�

{
i′
}
, it follows that M is calm at (0, 0, x̄).

Summarizing, the second assumption of Lemma 3.1 is always satisfied no matter how the index set I∗ ⊆ {1, . . . , k+ 1} is
chosen in the Lemma. Therefore, it is enough to check the first assumption for its application.
Now, choose an arbitrary I∗ ⊆ {1, . . . , k+ 1}. We have to show that H̄I∗ is calm at (0, x̄). If I∗ = {1, . . . , k+ 1}, then

H̄I∗ = H̃I∗ and calmness of H̄I∗ follows from that of H̃I∗ . If #I∗ = k, then the only choice for the index set I considered in the
first assumption of Lemma 3.1 is I = {1, . . . , k+ 1}. According to what we have shown just before, H̄I is calm, so we have
shown that the H̄I∗ are calm at (0, x̄) whenever #I∗ ≥ k. Passing to the case #I∗ = k − 1 and recalling that the index set I
considered in the first assumption of Lemma 3.1 is always strictly larger than I∗, one derives calmness of H̄I on the basis of
what we have shown before due to #I > #I∗ = k − 1 which amounts to #I ≥ k. So, the first assumption of Lemma 3.1 is
satisfied again and we derive calmness of H̄I∗ whenever #I∗ ≥ k− 1. Proceeding this way until #I∗ = 0, we get the desired
calmness at (0, x̄) for all subsets I∗ ⊆ {1, . . . , k+ 1}.
That the calmness of the H̄I implies the calmness of the corresponding HI introduced in Proposition 3.1, is an immediate

consequence of the calmness definition and of the evident relations H̄I(α, 0) = HI(α). �

We emphasize that without considering subsystems, a result analogous to Proposition 3.2 cannot be obtained for a single
constraint system. For instance, for F(x) := (x2, x) one has that the equality system F1(x) = α1, F2(x) = α2 is calm at (0, 0),
whereas the inequality system F1(x) ≤ α1, F2(x) ≤ α2 is not. The reason is that subsystems need not inherit calmness (for
instance, the equality subsystem F1(x) = α1 fails to be calm at (0, 0)).
We may combine Theorem 3.3, Propositions 3.1 and 3.2 to get an assumption which completely relies on constraint

systems induced by F and thus can be considered to be a CQ (weaker than surjectivity) for the mapping F .

Theorem 3.4. In the setting of Theorem 3.3 assume that
1. MFCQ is satisfied at x̄;
2. all perturbed equality subsystems

{x | Fi(x) = αi(i ∈ I)} I ⊆ {1, . . . ,m}

are calm at (0, x̄).
Then, the coderivative formula of Theorem 3.3 holds true.

Remark 3.1. If we consider the couple of constraint qualifications imposed in Theorem 3.4 as a single one and give it the
name CQ∗, then the following holds true for the inequality system F(x) ≤ 0:

LICQ H⇒ CQ∗ H⇒ MFCQ,
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where MFCQ and LICQ refer to the Mangasarian–Fromovitz and Linear Independence constraint qualifications, respectively,
with the latter being the same as the surjectivity condition imposed in Theorem 3.1. Indeed, the second implication being
evident, suppose that F(x) ≤ 0 satisfies LICQ at x̄. Then, all gradients {∇Fi(x̄)}i=1,...,m – and trivially all subsets of gradients –
are linearly independent. But linear independence of a set of gradients implies the Aubin property and, hence, calmness for
the corresponding set of equations. Consequently, CQ ∗ follows from LICQ. Summarizing, CQ∗ is something in between LICQ
and MFCQ and it seems that it is closely related to the constant rank constraint qualification CRCQ (see [11]).

At the end of this section, we provide a useful and easy to check constraint qualification ensuring condition 2. in
Theorem 3.4.

Proposition 3.3. Assume that at x̄ the following full rank constraint qualification is satisfied:

rank {∇Fi (x̄)}i∈I = min {n,#I} ∀I ⊆ {1, . . . ,m} . (14)

Then, the multifunctions H̃I introduced in Proposition 3.2 are calm at (0, x̄) for all I ⊆ {1, . . . ,m}.

Proof. Choose an arbitrary I ⊆ {1, . . . ,m}. Consider first the case that #I ≤ n. Then, by (14), the set of gradients {∇Fi (x̄)}i∈I
is linearly independent. Consequently, H̃I is calm at (0, x̄). Now, if #I > n, then select an arbitrary J ⊆ I with #J = n. By (14),
the set of gradients {∇Fi (x̄)}i∈J is linearly independent, hence H̃J(0) = {x̄} by the inverse function theorem. Since F (x̄) = 0
and H̃I(0) ⊆ H̃J(0), it follows that H̃I(0) = H̃J(0). Moreover, according to what has been mentioned before, H̃J is calm at
(0, x̄). Consequently, there are constants L, ε > 0 such that

d(x, H̃J(0)) ≤ L ‖α̃‖ ∀x ∈ H̃J(α̃) ∩ Bε (x̄) ∀α̃ ∈ Bε (0) .

From here it follows with H̃I(α) ⊆ H̃J(α̃), where α̃ is the subvector of α according to the index set J ⊆ I , that

d(x, H̃I(0)) = d(x, H̃J(0)) ≤ L ‖α̃‖ ≤ L ‖α‖ ∀x ∈ H̃I(α) ∩ Bε (x̄) ∀α ∈ Bε (0) .

This, however, amounts to calmness of H̃I at (0, x̄). �

As an illustration, we revisit Example 3.3. Because this example is nonlinear, we cannot take for granted that
assumption 2. of Theorem 3.3 will be automatically satisfied as we could in Examples 3.4 and 3.5. On the other hand, the
four constraint gradients in this example, though linearly dependent in R3 satisfy the full rank constraint qualification (14).
Indeed, any of the 4 triples that can be selected from the original set of gradients happens to be a linearly independent set.
Therefore, the second assumption of Theorem 3.4 is satisfied by virtue of Proposition 3.3. Since the Mangasarian–Fromovitz
Constraint Qualification is easily seen to be fulfilled at x̄, we may apply the co-derivative formula of Theorem 3.3. Doing so
would yield the same result as in the linearized examples discussed before.

3.4. Beyond calmness

Before we address the issue of computing the co-derivative in the event that the calmness condition is violated, we
provide an instructive counterexample to Theorem 3.3 showing that the provided formula does not holdwhen the calmness
condition is dropped.

Example 3.6. Let F (x1, x2) := (−x2, ϕ(x1)− x2), where ϕ(t) := t5 sin(1/t) for t 6= 0 and ϕ(0) := 0. Since ϕ is twice
continuously differentiable, so is F and one has

∇F1 (x1, x2) = (0,−1) , ∇F2 (x1, x2) =
(
ϕ′(x1),−1

)
. (15)

We choose x̄ := (0, 0). Then, F (x̄) = (0, 0) and, taking into account that ϕ′(0) = 0, it holds that

∇F1 (x̄) = ∇F2 (x̄) = (0,−1) . (16)

This means that both gradients are positively linearly independent (i.e., MFCQ is satisfied). Of course they are linearly
dependent, thus preventing us from applying (2). Summarizing, all assumptions of Theorem3.3 are fulfilled except calmness
(this could be easily checked directly, but we shall see it as a consequence of the conclusion of that theorem being violated).
We choose v∗ := 0 and v̄ := ∇F1 (x̄)+∇F2 (x̄) (implying that v̄ ∈ NC (x̄) in view of MFCQ). Formally applying Theorem 3.3
would yield the inclusion

D∗NC (x̄, v̄) (0) ⊆
⋃

λ̄≥0,∇T F(x̄)=v̄

∇
T F (x̄)D∗NR2

−

(
0, λ̄

)
(0).

Given the fact that D∗NR2
−

(
0, λ̄

)
(0) = R2, regardless of the value of λ̄ ≥ 0 (see (3)), and taking into account (16), we end

up at the inclusion

D∗NC (x̄, v̄) (0) ⊆ {0} × R. (17)
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To see that this is wrong, consider the sequences

xk := (1/ (kπ) , 0) , vk := ∇F1
(
xk
)
+∇F2

(
xk
)
.

Then taking into account that ϕ(xk1) = 0 and, thus, F
(
xk
)
= (0, 0), it follows that

xk → x̄, xk ∈ C, vk → v̄, vk ∈ NC
(
xk
)
.

Here, the last relation relies on the fact that MFCQ is an open property and and pertains to hold at xk close to x̄. Furthermore,
we observe that ϕ′(xk1) 6= 0, which, as a consequence of (15), implies ∇F

(
xk
)
is surjective; in fact, ∇F

(
xk
)
is even a regular

matrix. This allows to apply (2) at
(
xk, vk

)
:

D∗NC
(
xk, vk

)
(0) = ∇T F

(
xk
)
D∗NR2

−
(0, (1, 1)) (0) = ∇T F

(
xk
)
R2 = R2,

where the last equality follows from the fact that, rank∇T F
(
xk
)
= rank∇F

(
xk
)
= 2. Exploiting the robustness property of

the co-derivative, we let k→∞ and thus derive

R2 ⊇ D∗NC (x̄, v̄) (0) ⊇ Limsup
k→∞

D∗NC
(
xk, vk

)
(0) = R2,

therefore D∗NC (x̄, v̄) (0) = R2, contradicting (17).

We see then that by dropping the calmness condition, one can no longer expect the formula of Theorem 3.3 to hold true.
Nevertheless, the formula may serve as a part of calculating the co-derivative in a more elementary (according to its basic
definition) aggregation process. More precisely, by introducing the set

C∗ := {x ∈ bd C |∇F (x) is surjective} ,

we have for any v̄∗ ∈ Rn (see Section 2),

D∗NC (x̄, v̄) (v̄∗) = Limsup
x→x̄,v→v̄,x∈C,v∈NC (x),v∗→v̄∗

D̂∗NC (x, v) (v̄∗)

= Limsup
x→x̄,v→v̄,x∈int C,v∈NC (x),v∗→v̄∗

D̂∗NC (x, v) (v̄∗) ∪

{
Limsup

x→x̄,x∈C\C∗,v→v̄,v∈NC (x),v∗→v̄∗
D̂∗NC (x, v) (v̄∗)

}
︸ ︷︷ ︸

P(v̄∗)

∪

{
Limsup

x→x̄,x∈C∗,v→v̄,v∈NC (x),v∗→v̄∗
D̂∗NC (x, v) (v̄∗)

}

= {0} ∪ P(v̄∗) ∪

{
Limsup

x→x̄,x∈C∗,v→v̄,v∈NC (x),v∗→v̄∗
D∗NC (x, v) (v̄∗)

}
︸ ︷︷ ︸

R(v̄∗)

.

Here, the first term is trivial and follows easily from the definition of the Fréchet coderivative evaluated in the interior of the
feasible set, whereas the last equality results from the robustness (outer semicontinuity) of the co-derivative. In this way,
we have subdivided the computation of the co-derivative into a pathological part P(v̄∗), where Fréchet coderivatives have
to be calculated and aggregated in an elementary way, and a regular part R(v̄∗), where we may exploit formula (2) in the
aggregation process. It is important to observe that the pathological part is small in the following sense ([12], Th. 2.1): If the
MFCQ is satisfied everywhere in the feasible set C , then the subset of points around which the feasible set may be locally
described by a regular constraint system (i.e., with surjective Jacobian∇F(x)) is open and dense in the boundary of C . In the
following, we derive some upper estimates of the regular part.

Proposition 3.4. Let C = {x ∈ Rn|F(x) ≤ 0}, where F ∈ C2 (Rn,Rm). Consider some x̄ ∈ C with F(x̄) = 0 and v̄ ∈ NC (x̄).
Assume that MFCQ is satisfied at x̄. Then, for all v̄∗ ∈ Rn,

R
(
v̄∗
)
⊆

⋃
λ̄≥0,∇F(x̄)λ̄=v̄

{(
m∑
i=1

λ̄i∇
2Fi (x̄)

)
v̄∗ + Limsup

x→x̄,x∈C∗

[
∇
T F (x)D∗NRm

−

(
0, λ̄

) (
∇F (x̄) v̄∗

)]}
.

Proof. Let v̄∗ ∈ Rn and x∗ ∈ R (v̄∗) be arbitrarily given. By definition, there are sequences

xk → x̄, xk ∈ C∗, vk → v̄, vk ∈ NC (xk), v∗k → v̄∗, x∗k → x∗, x∗k ∈ D
∗NC (xk, vk)

(
v∗k
)
.
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By the definition of C∗, ∇F (xk) is surjective. Then, applying the transformation formula (2), we obtain

x∗k ∈

(
m∑
i=1

λki∇
2Fi (xk)

)
v∗k +∇

T F (xk)D∗NRm
−

(
F (xk) , λk

) (
∇F (xk) v∗k

)
,

where λk ≥ 0 is the unique solution of the equation ∇F(xk)λ = vk. Therefore, we may write

x∗k =

(
m∑
i=1

λki∇
2Fi (xk)

)
v∗k + w

∗

k

for some

w∗k ∈ ∇
T F (xk)D∗NRm

−

(
F (xk) , λk

) (
∇F (xk) v∗k

)
. (18)

MFCQ being satisfied at x̄ guarantees boundedness of the sequence
{
λk
}
(see, e.g., Prop. 4.43 in [6]). Therefore, upon passing

to a subsequence, which we do not relabel, we may assume that λk → µ for some µ ≥ 0. It follows thatw∗k → w∗ for

w∗ := x∗ −

(
m∑
i=1

µi∇
2Fi (x̄)

)
v̄∗. (19)

Moreover, ∇F(xk)λk = vk entails that

∇F (x̄) µ = v̄. (20)

We claim that, for k large enough,

D∗NRm
−

(
F (xk) , λk

) (
∇F (xk) v∗k

)
⊆ D∗NRm

−
(0, µ)

(
∇F (x̄) v̄∗

)
. (21)

According to (3), we may write

D∗NRm
−

(
F (xk) , λk

) (
∇F (xk) v∗k

)
= Ak1 × · · · × A

k
m,

where

Aki =


∅ if λki∇Fi (xk) v

∗

k 6= 0
{0} if λki = 0 and ∇Fi (xk) v

∗

k < 0
R+ if λki = 0 and ∇Fi (xk) v

∗

k > 0
R if ∇Fi (xk) v∗k = 0.

Similarly,

D∗NRm
−
(0, µ)

(
∇F (x̄) v̄∗

)
= A1 × · · · × Am,

where

Ai =


∅ if µi∇Fi (x̄) v̄∗ 6= 0
{0} if µi = 0 and ∇Fi (x̄) v̄∗ < 0
R+ if µi = 0 and ∇Fi (x̄) v̄∗ > 0
R if ∇Fi (x̄) v̄∗ = 0.

In order to verify (21) it is enough to show that Aki ⊆ Ai for all large enough k ∈ N and all i ∈ {1, . . . ,m}. Let i be an arbitrary
such index. We proceed by case distinction. If ∇Fi (x̄) v̄∗ = 0, then Ai = R and Aki ⊆ Ai holds trivially. If ∇Fi (x̄) v̄

∗ < 0,
then ∇Fi (xk) v∗k < 0 for all large enough k. In particular, A

k
i ⊆ {0}. If, additionally, µi = 0, then Ai = {0} showing again the

inclusion to hold. Otherwise, if µi > 0, then λki > 0 for all large enough and, so, A
k
i = ∅which implies the inclusion a third

time. A similar reasoning applies to the remaining case of ∇Fi (x̄) v̄∗ > 0 upon replacing {0} by R+. This finally proves (21).
Multiplying (21) from the left by ∇T F (xk), we may infer from (18) that

w∗k ∈ ∇
T F (xk)D∗NRm

−
(0, µ)

(
∇F (x̄) v̄∗

)
.

In other words,

w∗ ∈ Limsup
x→x̄,x∈C∗

[
∇
T F (x)D∗NRm

−
(0, µ)

(
∇F (x̄) v̄∗

)]
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which entails via (19) and (20) that

x∗ ∈

(
m∑
i=1

µi∇
2Fi (x̄)

)
v̄∗ + Limsup

x→x̄,x∈C∗

[
∇
T F (x)D∗NRm

−
(0, µ)

(
∇F (x̄) v̄∗

)]
⊆

⋃
λ̄≥0,∇F(x̄)λ̄=v̄

{(
m∑
i=1

λ̄i∇
2Fi (x̄)

)
v̄∗ + Limsup

x→x̄,x∈C∗

[
∇
T F (x)D∗NRm

−

(
0, λ̄

) (
∇F (x̄) v̄∗

)]}
. �

If the mapping

x 7→ ∇T F (x)D∗NRm
−

(
0, λ̄

) (
∇F (x̄) v̄∗

)
happens to be outer semicontinuous, then one could replace the ‘Limsup’ in the formula of the last Proposition by the limiting
expression

∇
T F (x̄)D∗NRm

−

(
0, λ̄

) (
∇F (x̄) v̄∗

)
and would be back to the formula of Theorem 3.3. Unfortunately, this outer semicontinuity does not hold true in general
(without the calmness condition of Theorem 3.3), such that the ‘Limsup’ may become strictly larger (see Example 3.6).
Nevertheless, we may verify outer semicontinuity in a special situation:

Proposition 3.5. In the setting of Proposition 3.4, suppose that

∇Fi (x̄) v̄∗ 6= 0 i = 1, . . . ,m.

Then, for any λ̄ ≥ 0 with ∇F(x̄)λ̄ = v̄, one has that

Limsup
x→x̄,x∈C∗

[
∇
T F (x)D∗NRm

−

(
0, λ̄

) (
∇F (x̄) v̄∗

)]
⊆ ∇

T F (x̄)D∗NRm
−

(
0, λ̄

) (
∇F (x̄) v̄∗

)
.

Proof. Consider an arbitraryw∗ in the left-hand side of the asserted inclusion. Accordingly, there are sequences xk → x̄ and
w∗k → w∗ such that xk ∈ C∗ andw∗k = ∇

T F (xk) αk for certain

αk ∈ D∗NRm
−

(
0, λ̄

) (
∇F (x̄) v̄∗

)
.

Recalling the representation of the set D∗NRm
−

(
0, λ̄

)
(∇F (x̄) v̄∗) provided in the proof of Proposition 3.4 (with λ̄ replaced by

µ), we see that αk ∈ Rm
+
. Now an argument already used in the proof of Proposition 3.4 (based onMFCQ being satisfied at x̄)

allows to derive boundedness of the sequence {αk}. Hence, αkl → α for some subsequence and some α ≥ 0. It follows that
w∗ = ∇T F (x̄) α. Since α ∈ D∗NRm

−

(
0, λ̄

)
(∇F (x̄) v̄∗) by closedness of this latter set, we are done. �

Corollary 3.4. In the setting of Proposition 3.4 and under the additional assumption of Proposition 3.5, it holds true that

R
(
v̄∗
)
= ∅ if v̄ 6= 0

and

R
(
v̄∗
)
⊆ con

{
∇
T Fi (x̄) |i ∈ I

}
if v̄ = 0,

where ‘con’ denotes the convex conic hull and I := {i|∇Fi (x̄) v̄∗ > 0}.

Proof. If v̄ 6= 0, then in the representation ∇F(x̄)λ̄ = v̄ there must be at least one i such that λ̄i > 0. Since, by assumption
in Proposition 3.5 one also has that ∇Fi (x̄) v̄∗ 6= 0, it follows from (3) that D∗NRm

−

(
0, λ̄

)
(∇F (x̄) v̄∗) = ∅. As a consequence

of Propositions 3.4 and 3.5, R (v̄∗) = ∅. If, in contrast, v̄ = 0, then also λ̄ = 0 (by MFCQ being satisfied at x̄), hence (see (3)
again),

D∗NRm
−

(
0, λ̄

) (
∇F (x̄) v̄∗

)
= A1 × · · · × Am,

where either Ai = {0} (if ∇Fi (x̄) v̄∗ < 0) or Ai = R+ (if ∇Fi (x̄) v̄∗ > 0). This proves the second inclusion along with
Propositions 3.4 and 3.5. �

Unfortunately, it seems to be difficult to find similar meaningful upper estimates for R (v̄∗) if the assumption of
Proposition 3.5 is violated. Similarly, it remains an open question if there is a general characterization of the previously
mentioned contribution P (v̄∗) along the pathological set C \ C∗.
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Appendix

Lemma 3.1. Fix an arbitrary I∗ ⊆ {1, . . . ,m}. Referring back to the multifunctions H̄I introduced in Proposition 3.2, assume that

1. For all I 6= I∗ with I∗ ⊆ I ⊆ {1, . . . ,m} the H̄I are calm at (0, x̄) .
2. For some i′ ∈ I�I∗ the multifunctions

M(α, β) :=

{
x ∈ Rn

∣∣∣∣∣
{
Fi (x) = αi

(
i ∈ I∗

)
,

Fj (x) ≤ βj
(
j ∈ {1, . . . ,m}�

(
I∗ ∪

{
i′
}))} ,

M̄(t) :=
{
x ∈ Rn|Fi′ (x) = t

}
are calm at (0, 0, x̄) and (0, x̄), respectively.

Then, H̄I∗ is calm at (0, x̄).

Proof. Assume that H̄I∗ fails to be calm at (0, x̄). Then, by (1), there is a sequence xk → x̄ such that

d(xk, H̄I∗ (0)) > k

(∑
i∈I∗
|Fi (xk)| +

∑
j∈{1,...,m}�I∗

[
Fj (xk)

]
+

)
. (22)

Suppose there is some index j′ ∈ {1, . . . ,m}�I∗ and some subsequence xkl with Fj′
(
xkl
)
≥ 0. Put I ′ := I∗ ∪

{
j′
}
. Due to

H̄I ′ (0) ⊆ H̄I∗ (0) and to xkl ∈ H̄I ′
(
F
(
xkl
))
one would arrive from (22) at

d(xkl , H̄I ′ (0)) > kl

(∑
i∈I ′

∣∣Fi (xkl)∣∣+ ∑
j∈{1,...,m}�I ′

[
Fj
(
xkl
)]
+

)
,

a contradiction with assumption 1. Hence, there is some k0 such that

Fj (xk) < 0 ∀k ≥ k0 ∀j ∈ {1, . . . ,m}�I∗. (23)

Together with (22), this implies that

d(xk, H̄I∗ (0)) > k
∑
i∈I∗
|Fi (xk)| . (24)

We claim the existence of some ρ > 0 and k1 ≥ k0 such that∑
i∈I∗
|Fi (xk)| > ρ |Fi′ (xk)| ∀k ≥ k1, (25)

where i′ refers to assumption 2. Indeed, otherwise there was a subsequence xkl such that∑
i∈I∗

∣∣Fi (xkl)∣∣ ≤ l−1 ∣∣Fi′ (xkl)∣∣ .
In the following, we lead this relation to a contradiction. Now, justified by x̄ ∈ M̄(0) 6= ∅, where M̄ is defined in assumption
2, we may select for any l some yl ∈ M̄(0) such that

d(xkl , M̄(0)) =
∥∥xkl − yl∥∥ .

The assumed calmness at (0, x̄) of M̄ entails the existence of some L1 > 0 such that

d(xkl , M̄(0)) ≤ L1
∣∣Fi′ (xkl)∣∣→l 0

which in turn implies that yl → x̄. Consequently, for all large enough l,∣∣Fi′ (xkl)∣∣ = ∣∣Fi′ (xkl)− Fi′ (yl)∣∣ ≤ L2 ∥∥xkl − yl∥∥
where L2 is some Lipschitz modulus of Fi′ near x̄. Now, referring to themultifunctionM defined in assumption 2, we observe
by virtue of (23) that, for all large enough l, xkl ∈ M

(
α(l), 0

)
, where α(l)i := Fi

(
xkl
)
for i ∈ I∗. Now, the assumed calmness at

(0, x̄) ofM leads to

d(xkl ,M(0, 0)) ≤ L3
∥∥α(l)∥∥ = L3∑

i∈I∗

∣∣Fi (xkl)∣∣ ≤ l−1L3 ∣∣Fi′ (xkl)∣∣
≤ l−1L3L2

∥∥xkl − yl∥∥ = l−1L3L2d(xkl , M̄(0)),
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for all large enough l. If also l > L3L2, then

d(xkl ,M(0, 0)) < d(xkl , M̄(0)). (26)

Now, justified by x̄ ∈ M(0, 0) 6= ∅, we may select zl ∈ M(0, 0) such that

d(xkl ,M(0, 0)) =
∥∥xkl − zl∥∥ ∀l.

It follows from (26) that zl 6∈ M̄(0), whence Fi′ (zl) 6= 0. Recalling that Fi′
(
xkl
)
< 0 for large enough l (see (23)), one would

find in case of Fi′ (zl) > 0 some z ′ on the line segment
[
xkl , zl

]
with Fi′

(
z ′
)
= 0 and

∥∥xkl − z ′∥∥ < ∥∥xkl − zl∥∥ yielding a
contradiction with (26) due to z ′ ∈ M̄(0). Therefore, Fi′ (zl) < 0 and, hence, onemay invoke the definition ofM to infer from
zl ∈ M(0, 0) that zl ∈ H̄I∗ (0) for large enough l. Now, (23) and (24) provide, for large enough l that

kl

∑
i∈I∗
|Fi (xk)| +

∑
j∈{1,...,m}�(I∗∪{i′})

[
Fj
(
xkl
)]
+

 = kl∑
i∈I∗

∣∣Fi (xkl)∣∣ < d(xkl , H̄I∗ (0)) ≤ ∥∥xkl − zl∥∥ = d(xkl ,M(0, 0)),
a contradiction with the assumed calmness at (0, 0, x̄) ofM . This contradiction proves the desired relation (25). Using this,
we may continue (24) as

d(xk, H̄I∗ (0)) > k

(
1

ρ + 1

∑
i∈I∗
|Fi (xk)| +

ρ

ρ + 1

∑
i∈I∗
|Fi (xk)|

)

> k
ρ

ρ + 1

 ∑
i∈I∗∪{i′}

|Fi (xk)|


= k

ρ

ρ + 1

 ∑
i∈I∗∪{i′}

|Fi (xk)| +
∑

j∈{1,...,m}�(I∗∪{i′})

[
Fj (xk)

]
+


∀ k ≥ k1,

where in the last relation, we exploited again (23). Put I ′ := I∗ ∪
{
i′
}
. Due to H̄I ′ (0) ⊆ H̄I∗ (0)we end up at the relation

d(xk, H̄I ′ (0)) > k
ρ

ρ + 1

(∑
i∈I ′
|Fi (xk)| +

∑
j∈{1,...,m}�I ′

[
Fj (xk)

]
+

)
∀k ≥ k1.

This, however, is in contradiction with the assumed calmness at (0, x̄) of H̄I ′ (see assumption 1.) Hence, we have finally led
to a contradiction our initial assumption that H̄I∗ fails to be calm at (0, x̄). �
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