On the joint spectral radius

Vladimir Miiller*

Abstract. We prove the £,-spectral radius formula for n-tuples of commuting Banach
algebra elements. This generalizes results of [6], [7] and [10].

Let A be a Banach algebra with the unit element denoted by 1. Let a = (ay,...,a
be an n-tuple of elements of A. Denote by o(a) the Harte spectrum of a, i.e. A
(A,..., ) ¢ o(a) if and only if there exist uq,...,u,,v1,...,v, € A such that

n)

n

Z(aj - )‘j)uj = Zvj(aj — )\j) =1.

j=1
Let 1 < p < co. The (geometric) spectral radius of a is defined by
rp(a) = max{[[All, : A € o(a)},

where

i maxi<j<n |Aj] (p = 00),
AMp = n 1/p
P ) (1<p <),

see [10], cf. also [4].

If o(a) is empty we put formally r,(a) = —oo.

Clearly r,(a) depends on p. On the other hand instead of the Harte spectrum we
can take any other reasonable spectrum (e.g. the left, right, approximate point, defect,
Taylor etc.) without changing the value of r,(a), see [4], [9].

For a single Banach algebra element the just defined spectral radius 7,(a) does not
depend on p and coincides with the ordinary spectral radius r(a;) = max{|\1]| : \; €
o(ay1)}. By the well-known spectral radius formula we have in this case

1/k kul/k
1 .

r(ar) = lim |af[]'/* = inf |l
The spectral radius formula for n-tuples of Banach algebra elements was studied by a
number of authors, see e.g. [1], [2], [6], [7], [8]. In this paper we generalize results [6],
[7] and [10].

Let a = (aq,...,a,) be an n-tuple of elements of a Banach algebra A. Instead of
powers of a single element it is natural to consider all possible products of aq, ..., a,.

Denote by F(k,n) the set of all functions from {1,...,k} to {1,...,n}. Denote
further

» 1/p
sep(@) = (D lagay-apwl?) T (1<p<o0)
feF (k,n)

1991 Mathematics Subject Classification: Primary 46HO05, 46J05
* The research was supported by the grant No.119106 of the Academy of Sciences
of the Czech Republic



and
Sk,oo(@) = max lagay - apmll-

fEF(k,n)
Lemma 1. s;1;, < s p(a) - s;p(a).
Proof. The statement is obvious for p = co. For p < oo we have
[skp(@) sip@])” = > llagayasml” D llagay - age”
fEF(k,n) geF(l,n)

> agay - apiyaga) - agll” = [ser1p(a)]”.
fg

It is well-known that the previous lemma implies that the limit limg_, o (s kyp(a)) L/k

exists and it is equal to infy (skyp(a))l/k.
Thus we may define

) 1/pk
(@)= Jim (0 llagyapnl?)

fEF(k,n)
Similarly we define
, ) 1/pk
ry(a) = hmsup( Z rP(agay - af(k))) (1)
B0 reF(hn)

(we write shortly 7P (z) instead of (r(z))? ).

In general the limit in (1) does not exist. The limit exists if aq, . .., a, are mutually
commuting. This can be proved analogously as in Lemma 1 by using the submultiplica-
tivity of the spectral radius.

Theorem 2. Let a = (ay,...,a,) be an n-tuple of elements of a Banach algebra A.
Let 1 < p < o0. Then

Proof. The case p = oo was proved in [7], Theorem 1.

Let p < co. The second inequality is clear.

Let A = (A\1,...,An) € 0(a). Denote by Ag the closed subalgebra of A generated by
the unit 1 and the elements ay, . .., a,. By [5], Proposition 2 there exists a multiplicative
functional h : Ag — C such that h(a;) =X; (j=1,...,n). Then

S Papayapy) = D>, |hlapa) - apm)l?

fEF(k,n) fEF(k,n)
= > Il Pl = (Al 4 P = ARE
feF(k,n)



Thus

> rPlagay - apm) = rhF(a)
feF(k,n)

and r;,(a) > rp(a).

If a = (a1,...,a,) is an n-tuple of mutually commuting elements then a better
result can be proved.
We use the standard multiindex notation. Denote by Z, the set of all non-negative

integers. For av = (aq,...,a,) € Z7 and m € Z, denote |a| = a1 + -+ + ay, a! =
arl- - ap!, a® =alt - - afr and ma = (masq, ..., may,). If k is an integer, k£ > |a| then
denote

(o) = 0T

(for n =1 this definition coincides with the classical binomial coefficients).
We shall use frequently the following formula (for commuting variables z;):

(w14 F o) =D (Z)xa

loe|=k

In particular, for 1y = --- = x,, = 1 we have Z|a|:k (];) = nk.
Ifa = (ay,...,ay,) is a commuting n-tuple of elements of a Banach algebra A, then
the definitions of 7, (a)

and 7, (a) assume a simpler form:

o= 5, ()]

k 1/pk
" T @
i@ = im [ 3 ()]

(1 <p<o0).

Theorem 3. Let a = (aq,...,a,) be an n-tuple of mutually commuting elements of a
Banach algebra A. Let 1 < p < co. Then

Proof. For p = oo the first equality was proved in [10] and the second in [7], Theorem 2.
We assume in the following p < oco.
Recall that the number of all partitions of the set {1,...,k} into n parts is equal
to (k+"_1) <(k+n-1)n"1

n—1

We have

k k k+n—1 k
ap < AP < P
ma (MYt < (S < (C70 T max (5o

| =k



Note that
. k+n—1 1/k
lim =1.

k—o0 n—1

k ]./kp k ]./kp
= Jim | 55 (Do) = i ] (1]

|a|=k

0= g [ (5) ]

k—oo |a|=k (6]

Thus

Similarly

We prove now the inequality r,(a) < r,(a):
Choose k and o € Z7}, |a| = k. Let pu € o(a®) satisfy |u| = r(a®). By the spectral
mapping property there exists A = (A1,...,\,) € o(a) such that u = AJ* -+ A%, Then

k k k k
(Srz@ =(E) e = (E) i phaper < 52 (B e o

8=k
k
=(IMalP + - af?)” = [ARY < P (a).

Thus .
¥ (a) = lim maka)rp(aa)] < rp(a).

k—oo |a|l=k | \

The remaining inequality r,(a) < r;,(a) will be proved by induction on n.

For n = 1 Theorem 3 reduces to the well-known spectral radius formula for a single
element.

Let n > 2 and suppose that the inequality r, < 7,
(n — 1)-tuples.

For each k there is a € Z}, |a| = k such that

k alp k 3
()11 = mas (5) 1”1

Using the compactness of < 0,1 >" we can choose a sequence

{a(@)}2y = {(aa1 (3),. .. ,an(i)}:zl CZy

is true for all commuting

such that lim; . |a(i)| = oo,

(S = s (5o (i=12..) @

a(i) B=lal \ B
and the sequences {%} are convergent for j = 1,...,n. Denote k(i) = |a(i)| and
i=1
t; = lim ;i) €<0,1> G=1,...,n).




By (2) we have

1— 00 a1

i) = tim | (M) e o

We distinguish two cases:

a) t; = 0 for some j, 1 < j < n. Without the loss of generality we may assume that
j
t, = 0.
Denote a’ = (ay,...,an-1), a'(i) = (@1(i),...,qn—1(3)) € Z7" and K'(i) =
|/ ()| = k(i) — (7). Clearly lim;_, oo IZ 5= 1. We have ||a®@|| < ||a’® is M| - @ || @,
Then

" k/(z) ra (i) Y
) = timsup (500 ) I O 2 b Lo L,

where
K’ (i) 7 1/K (3) . 1/ (3)
L, = limsup (CZ( )) , Ly = lim Kk(l)) Haa(i)Hp}
i—00 a((z))) i—oo | \ (1)
and
Ls = lim ||a, |~ ®Or/k @),
Since lim;_. o O,‘j((l)) 0, we have L3 = 1.
Further
N7 k(@) /K (1)
k(i ' 1/k(%)
4 A
Finally,
1/K (i N an ()7 1/K (0
L, =limsu —k/(i)! - (i)' Y > limsu —(an?)(l)) o
e B T6T = P (i)
(4) akn((')i)':’(Z'))
an (1 i i
:1. - 1
(5

k(i) _
since lim;_, o ok 1 and
(i) o7 :
. Qn(? Y. z 7 x _ 7 zlnz __
ilir?o(gk(i)) =l (3) = Jm xt = lim et =1,

Thus 7, (a") > 7, (a).
By the induction assumption 7, (a’) = r,,(a’) = rp(a’) and by the definition r,,(a’) <
rp(a) = r,(a). Hence r;(a) < ry(a).




a;(3)

(b) It remains the case t; > 0 (j = 1,...,n), where ¢t; = lim; O Choose ¢ > 0,

. t; . .
€ <minj<j<y, - For i sufficiently large we have

e aj(i) £
t,——< <t;+ -—.
74T kG T T3
We approximate t1,...,t, by rational numbers. Fix positive integers c1,...,c,,d
such that —_— e
- <2< - =1,.
Denote v = (c1,...,¢,) € Z} and u = a7 = ai*---a5*. For each i write k(i) =
m(i)d + z(i), where 0 < (i) < d 1. So, for ¢ sufficiently large, we have
6ol al) o3
d — k(i) k(7) d ~ 4
e ) - (1) () (0
, i) — z(1 a;(i) ¢ z(i)e
i) = mi)e; = ay(i) - T oy iy | G - 9| 4 2

Thus a; (i) —m(i)c; > 0 (1<j<mn) and

. . . : . L 3en < z(i)¢; .
k)~ m) bl = 305 0) — mli)es) < k() - =+ 30 A0 < g
j=1 J=1
for ¢ large enough. We have
la®@]| < ||a’1"(i)01 gl || |lgq [ @ mmGer g, || () mm@en < lgmG)|| L ek
where K = max{1, ||ai]|,...,||an||}. Then, since (m(i)w) < n, we have
; 1/m(i) |~ (i) 1/m (i)~
r?(a Zlimsup{(m(z?h’)?”p am(i)’Y :| = lim sup (m / 7) cr(u /||
p(a) 2limsn m(i)y ( ) i—oo \ ()7 "
; 1/m(i)[~|
= lim sup m(z?|fy| ||um(i)||p > Ly Ly- Ls,
i—oo L\ m(i)Y
where

Ly, = liminf

71— 00

Y

(m(i)\'ﬂ) 1/m(3)||
[ m(i)y ]
k(i
(a((i)))

: _ 1/m(i) ||

Ly = lim inf {(k(l)) ||a0‘(l) ||p}
e [\adi)

and

L3 = lim inf K—’nspk(i)/m(i)h‘.

1— 00

Since 1 < mk(:g|)'y| < 1_1n€ for ¢ sufficiently large, we have Lg >

6



Since

(]

71— 00

we have L > min{r{?(a), (7(a)/*~7<).
To estimate L;, we use the well-known Stirling formula

I =1'e='V27l(1 + o(l)).

Consequently,
ay; (i) \ @ (D /m @)l A 1/m()]] aj (i) \ @ () /m ()|
- S < (a;(7)! < et AN
(1= 9B e < (210
for j =1,...,n and for 7 sufficiently large. Similar estimates we can use for (m(i)c;)!,

(m(7)|y])! and |a(7)|!. Thus, for i sufficiently large, we have (to simplify the expressions
we write m, k and « instead of m(i), k(i) and «(7))

(TM) i B [ (mly)aq! - ! ]1/m|7|
(%) — LKk (mey)! - (mey,)!

>(1 _ 5>n+1 m|ry| . aclll/mh/' . agn/mh/' . ek/mh/' . ecl/|'Y| e ecn/|'7|

1 + g e - eal/m|7| e ean/mlrﬂ . kk/m\’y\ . (mcl)cl/|7| e (mcn)cn/"ﬂ
:(1 _5>”+1<&)01/'7'...< o >C"/'7a<a1—mc1)/mivl,..a(an—mcn>/m|v|, mly|
1+¢ mcey mep, ! " kk/mlv|
><]_ _ 5>n+1 <a1>(a1—mcl)/m|7| <an>(an—mcn)/m|’y| mh/’
“\1l+4¢ k k E -
Then
1 —eg\ntl _e
L > <1+€> (1= ne)(ty - t,) 7.
Hence
1—g\ntl e _ _nep_ . —n
rP(a) > (1 n 5) (L —ne)(ty---tn)™r - K~ T=n - min{r)?(a), (7“;,’1"(a))1/1 1.

Since € was an arbitrary positive number, we conclude that 7, (a) > ;) (a).

We apply now the previous result to the case of n-tuples of operators.
Let T'= (11,...,T,) be an n-tuple of bounded operators in a Banach space X.

Denote
n 1/p
T, = sup < T:x p) .
T[] » Sup Elll il

lel=1 7=

Equivalently, |7, is the norm of the operator 7' : X — Xy,

sum of n copies of X endowed with the ¢,-norm, ||z; & --- & x,|| = (Z;.Lzl Il |P

where X;‘ is the direct
) 1/p

and Te =Tz @ - & Tha (for p = oo the definitions are changed in the obvious way).

7



Let T = (Ty,...,T,) € B(X)" and S = (S1,...,Sm,) € B(X)™. Denote by T'S the
mn—tuple TS = (Tlsl, ce ,Tlsm,Tgsl, ce ,T2Sm, c. ,Tnsl, .. 7TnSm) Further, let
T? = TT and T+t = T - T*. With this notation we can state the spectral radius
formula in the familiar way:

Theorem 4. Let T'= (T4, ...,T,) be an n-tuple of mutually commuting operators in
a Banach space X, let 1 < p < oo. Then r,(T) = limy_,o0 HT’“H}/k.

Proof. We have

i k o p 1/p
17", = sup | > { JIIT"x]

[|z][=1 la|=k

and

k 1/kp k 1/kp
= 1 al|p — 11 a||lp
o) =i | 5 (o Jir] = i ] (L)

k 1/kp k 1/kp
= lim max sup {( )HTO‘:UHP] = lim sup ma,x{( )HTC“SCHP]
a a

koo lal=k |z)=1 B0 =1 lerl=h

k Hkp k| 1/k
= lim sup {Z (O)IIT%H”] :klijgoHT H}/ .
|a|=k

k=00 | z||=1

Remark. For p = 2 and Hilbert space operators the previous result was proved in [6],
cf. also [3].
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