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A NEW PRACTICAL LINEAR SPACE ALGORITHM
FOR THE LONGEST COMMON SUBSEQUENCE
PROBLEM∗

Heiko Goeman and Michael Clausen

This paper deals with a new practical method for solving the longest common sub-
sequence (LCS) problem. Given two strings of lengths m and n, n ≥ m, on an alpha-
bet of size s, we first present an algorithm which determines the length p of an LCS in
O(ns + min{mp, p(n − p)}) time and O(ns) space. This result has been achieved before
[29, 30], but our algorithm is significantly faster than previous methods. We also pro-
vide a second algorithm which generates an LCS in O(ns + min{mp, m log m + p(n− p)})
time while preserving the linear space bound, thus solving the problem posed in [29, 30].
Experimental results confirm the efficiency of our method.

1. INTRODUCTION

Let x = x1 . . . xm and y = y1 . . . yn, n ≥ m, be two strings over an alphabet
Σ = {σ1, . . . , σs} of size s. A subsequence of x is a sequence of symbols obtained by
deleting zero or more characters from x. The Longest Common Subsequence (LCS)
Problem is to find a common subsequence of x and y which is of greatest possible
length.

It will be convenient to describe the problem in another way. An ordered pair
(k, `), 1 ≤ k ≤ m, 1 ≤ ` ≤ n, is called a match if xk = y`. The set M of all matches
can be identified with a matching matrix of size m×n in which each match is marked
with a dot. For example, if x = abacbcba and y = cbabbacac, then M is as shown
in Figure 1 (a). Define a partial order ¿ on N× N by establishing (k, `) ¿ (k′, `′)
iff both k < k′ and ` < `′. A chain C ⊆ M is a set of points which are pairwise
comparable, i. e., for any two distinct p1, p2 ∈ C, either p1 ¿ p2 or p1 À p2, where
p1 À p2 means p2 ¿ p1. Then the LCS problem can be viewed as finding a chain
of maximal cardinality in M . One such chain is indicated as a path in Figure 1 (b).

Finding an LCS is closely related with the computation of string edit distances [21,
24, 34, 36] and shortest common supersequences [14]. It was first used by biologists
to study amino acids [9, 10, 27, 31]. Other applications are in data compression
[1, 14, 23] and pattern recognition [13, 22].

∗Research supported by Deutsche Forschungsgemeinschaft, Grant CL 64/3-1.
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Fig. 1. (a) matching matrix, (b) path representing an LCS.

The LCS problem can be solved in O(mn) time by a dynamic programming
approach [32, 35], while the asymptotically fastest general solution uses the “four
russians” trick and takes O(nm/ log n) time [24]. A lot of other algorithms have also
been developed which are sensitive to other problem parameters, e. g., the length p of
an LCS. They usually perform much better than the latter algorithms, although they
all have a worst case time complexity at least of Ω(mn). To give an example, Hunt
and Szymanski [19] have presented an O((r + n) log n) algorithm, where r := |M |.
Thus their approch is fast when r is small, e. g., r = O(n), but its worst–case time
complexity is O(n2 log n). Later, this has been improved to O(mn) [2]. There are
also several routines [25, 26, 33, 37] which run in O(n(n+1−p)) or O(n(m+1−p))
time, and thus are efficient when an LCS is expected to be long. Other algorithms
have running times O(n(p + 1)) or O(m(p + 1)) and should be used for short LCS
[3, 4, 17, 18]. However, it might be very difficult to a priori select a good strategy
because in general the length p cannot be easily estimated. Also, when having
a small alphabet, we can expect p to be of intermediate size, e. g., for s = 4, the
average length of an LCS is bounded between 0.54·m ≤ p ≤ 0.71·m [7, 8, 11, 28, 32].
Then none of the above methods performs well. Therefore recent research has been
concentrated on more flexible algorithms which are efficient for short, intermediate,
and long LCS, such as the method proposed by Chin/Poon [6]. Another approach
from Rick [29, 30] with running time O(ns + min{mp, p(n − p)}) has been widely
accepted as the fastest algorithm for the general LCS problem.

In this paper, we shall develop a new algorithm which is based on a kind of
dualization of Rick’s method. A detailed description of the theoretical background
will be given in Sections 2 and 3. We do not improve the O(ns+min{mp, p(n−p)})
time bound, but two important advantages are obtained. First, the number of
matches processed while computing the length of an LCS is significantly decreased,
resulting in a faster execution speed. The corresponding algorithm will be presented
in Section 4. Second, when generating an LCS, we can achieve linear space through
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a divide–and–conquer scheme similar to that of several other (but slower) algorithms
[5, 16, 20]. This will be explained in Section 5. The methods mentioned before all
need at least Ω(nm/ log n) space in their worst cases (see [28] for a survey), and
most of them, including Rick’s approach, cannot be combined with the divide–and–
conquer technique. The open problem of a linear space implementation of Rick’s
algorithm [30] is hereby solved. Experimental results presented in Section 6 confirm
the efficiency of our method.

2. A NEW APPROACH TO THE LCS PROBLEM

As already mentioned in the introduction, the LCS problem is equivalent to finding
a chain of maximum cardinality in M . Dilworth’s fundamental theorem [12] states
that this cardinality equals the minimum number of disjoint antichains into which
M can be decomposed (an antichain of M consists of matches which are pairwise
incomparable). In our example, this number (called the Sperner number of M)
equals five. A suitable decomposition is shown in Figure. 2 (f). To find such a
minimum decomposition, we first split [1 : m] × [1 : n] into subsets denoted by T i,
Li, Bi, and Ri, where

T i := {i} × [i : n + 1− i]
Li := [i + 1 : m + 1− i]× {i}
Bi := {m + 1− i} × [i + 1 : n + 1− i]
Ri := [i + 1 : m− i]× {n + 1− i}

and 1 ≤ i ≤ dm/2e (see Figure 2 (a) for an illustration). Additionally, let

T≤i :=
⋃

j≤i
T j , L≤i :=

⋃
j≤i

Lj , B≤i :=
⋃

j≤i
Bj , R≤i :=

⋃
j≤i

Rj .

Now for i = 1, 2, . . . , dm/2e, we construct four sets of antichains AT,i, AL,i, AB,i, and
AR,i which decompose (a suitable subset of) T≤i, L≤i, B≤i, and R≤i, respectively.
The decompositions are generated by updating the previous sets, using the matches
found in T i, Li, Bi, and Ri (details are given below). We use AuAT,i to denote an
antichain in AT,i, where u is an index between 1 and the size eT,i := |AT,i| of AT,i.
Therefore eT,i is also called the end index of AT,i. For AL,i, AB,i, and AR,i, we
introduce analogous notations. Furthermore, there are two start indices sTL,i and
sBR,i. The first one is used to split both AT,i and AL,i into two parts. One part
contains all antichains with indices less than sTL,i, and the other part consists of the
rest. Only the latter part will be used for the updating process, whereas the former
one will be copied to AT,i+1 resp. AL,i+1 without change. sBR,i similarly splits AB,i

and AR,i.
Figure 2 (b), (c), (d), and (e) give a preview of the construction in the sample

matching matrix after step i = 1, 2, 3, and 4, respectively. The centered grey box
represents the remaining part of M which has not been processed so far. By our
construction, with each step, it shrinks by two rows and columns.



48 H. GOEMAN AND M. CLAUSEN

(e)

c b
1 2 3 4 5 6 9

b b a c a c

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a A
B,4

1

A
B,4

2

A
L,4
2

A
L,4

1

A
T,4

2

A
B,4

3

A
T,4

3

A

8

1

a

R,4
2

A
T,1

7

2L 3L

4L
B4

R2

R3

T4

T3

T1

T2

B3

B2

B1

1L R1

T,4

A

1

(a)

(c)

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a

a
b

b

b

a1

2

3

5

6

7

8

c

c

a

A
T,2

A
R,2

2

A
T,2

2

A
L,2

1

A
L,2
2

A
B,2

2

A
B,2

1

1

A
R,2

1

4

(b)

(d)

(f)

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a

A
L,1

1

A
T,1

1

A
R,1

1

A
B,1

1

A
T,3

1

A
T,3

2 A
T,3

3

A
L,3

1

A
L,3
2

A
B,3

2

A
B,3

A
R,3

2

1

A
R,3

1

Fig. 2. (a) splitting of M , (b)–(e) construction of antichains, (f) final decomposition.
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We need the following terminology for the description of the construction process.
For two antichains C, D ⊆ M the set

IP(C, D) := {p1 ∈ C | ∀ p2 ∈ D : ¬(p1 ¿ p2 ∨ p1 À p2)}

is called the incomparable part of C relative to D. Clearly, IP(C, D) ∪ D is the
greatest antichain above D contained in C ∪ D. We say C is incomparable to D
if IP(C, D) = C. Furthermore, a single match p1 ∈ M is incomparable to D if
IP({p1}, D) = {p1}.

We are now prepared to discuss the generation of the antichains in more detail.
Initially, there are no antichains, i. e., we have AT,0 = AL,0 = AB,0 = AR,0 = ∅ by
initializing each start and end index to 1 and 0, respectively. Then, for each step
i = 1, . . . , dm/2e, we start with T i to determine AT,i from AT,i−1. Let s := sTL,i−1

and e := eT,i−1. The first s− 1 antichains remain unchanged and are simply copied
from AT,i−1 to AT,i. Now define AsAT,i as AsAT,i−1 ∪ IP(T i ∩M,AsAT,i−1). For example,
when processing T 2 in Figure 2 (b), IP(T 2∩M, A1AT,1) = {(2, 2)}, and thus the match
(2, 2) combined with A1AT,1 makes up A1AT,2 as shown in Figure 2 (c). Next, setting
u = s+1, . . . , e, the antichain AuAT,i−1 is handled in the same way to set up AuAT,i, but
only those matches in T i not belonging to AsAT,i, . . . , AT,iAu−1 are considered. Finally,
we establish sTL,i := s and, if there are no matches left, eT,i := e. Otherwise, we
set eT,i to e + 1 and collect all remaining matches in a new antichain AT,iAe+1. Also, if
AR,i−1 6= ∅, we check whether its last antichain AẽAR,i−1, ẽ := eR,i−1, is incomparable
to AT,iAe+1. In this case we say AẽAR,i−1 is inactivated by AT,iAe+1, and we remove AẽAR,i−1

from AR,i by setting eR,i := eR,i−1. Continuing our example with T 2 in Figure 2 (b),
we see there are two matches (2, 4) and (2, 5) left after processing A1AT,2. Therefore
a new antichain A2AT,2 is created, but A1AR,1 remains unchanged because, for example,
(2, 4) ¿ (4, 9). The final set AT,2 is shown in Figure 2 (c) (the modifications to the
other antichains are described below). Now let us consider the work involved with
T 3. The match (3, 3) cannot be put into A1AT,3, but into A2AT,3, and the other match
(3, 6) makes up the new antichain A3AT,3. This time (3, 6) inactivates (3, 8), and thus
A2AR,2 is removed. The result is illustrated in Figure 2 (d) (all matches located in
deleted antichains are indicated by grey dots).

Having determined AT,i, we continue with the necessary calculations for AL,i

which are very similar. Again, the first s−1 antichains are copied. Then, by setting
u = s, . . . , eL,i−1, AuAL,i is defined as the union of AuAL,i−1 and the incomparable part
of Li relative to AuAL,i−1, where only those matches are considered which have not
already been used. Remaining matches form a new antichain and, if they are incom-
parable to the last antichain in AB,i−1, we decrease eB,i by one. The corresponding
algorithm in Figure 3 (a) also introduces two additional sets DTR and DBL which
contain all deleted matches. Details will be given in the next section.

Before processing AB,i−1 and AR,i−1 in an analogous way, we first check whether
the first antichain in AT,i or AL,i is TL–complete, i. e., whether one of them contains
a match (k, `) such that 1 ≤ k, ` ≤ i. For example, in the configuration shown in
Figure 2 (c), A1AT,2 is TL–complete due to the match (2, 2). As soon as AsAT,i is
detected to be TL–complete, sTL,i is increased by one, thus the first antichains in
both corresponding sets which are checked for additional matches remain unchanged
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S := T i ∩M ; (∗ Determine AT,i ∗)
For u := sTL,i−1 To eT,i−1 Do {
AuAT,i := AuAT,i−1 ∪ IP(S, AuAT,i−1);

S := S \ IP(S, AuAT,i−1);
5 };

If S 6= ∅ Then {
eT,i := eT,i−1 + 1; e := eT,i; AeAT,i := S;

eR,i := eR,i−1; ẽ := eR,i;

If sBR,i−1 ≤ eR,i−1 Then {
10 If IP(AẽAR,i−1, AeAT,i) = AẽAR,i−1 Then {

DTR := DTR ∪ AẽAR,i−1;

eR,i := ẽ− 1;
};
};

15 } Else { eT,i := eT,i−1; eR,i := eR,i−1 };
For u := 1 To sTL,i−1 − 1 Do AuAT,i := AuAT,i−1;

S := Li ∩M ; (∗ Determine AL,i ∗)
For u := sTL,i−1 To eL,i−1 Do {
AuAL,i := AuAL,i−1 ∪ IP(S, AuAL,i−1);

20 S := S \ IP(S, AuAL,i−1);
};
If S 6= ∅ Then {
eL,i := eL,i−1 + 1; e := eL,i; AeAL,i := S;

eB,i := eB,i−1; ẽ := eB,i;

25 If sBR,i−1 ≤ eB,i−1 Then {
If IP(AẽAB,i−1, AeAL,i) = AẽAB,i−1 Then {
DBL := DBL ∪ AẽAB,i−1;

eB,i := ẽ− 1;
};

30 };
} Else { eL,i := eL,i−1; eB,i := eB,i−1 };
For u := 1 To sTL,i−1 − 1 Do AuAL,i := AuAL,i−1;

33 sTL,i := sTL,i−1;

S := Bi ∩M ; (∗ Determine AB,i ∗)
For u := sBR,i−1 To eB,i Do {
AuAB,i := AuAB,i−1 ∪ IP(S, AuAB,i−1);

S := S \ IP(S, AuAB,i−1);
};
If S 6= ∅ Then {
eB,i := eB,i + 1; e := eB,i; AeAB,i := S;

If sTL,i ≤ eL,i Then {
ẽ := eL,i;

If IP(AẽAL,i, AeAB,i) = AẽAL,i Then {
DBL := DBL ∪ AẽAL,i;

eL,i := ẽ− 1;
};
};
};
For u := 1 To sBR,i−1 − 1 Do AuAB,i := AuAB,i−1;

S := Ri ∩M ; (∗ Determine AR,i ∗)
For u := sBR,i−1 To eR,i Do {
AuAR,i := AuAR,i−1 ∪ IP(S, AuAR,i−1);

S := S \ IP(S, AuAR,i−1);
};
If S 6= ∅ Then {
eR,i := eR,i + 1; e := eR,i; AeAR,i := S;

If sTL,i ≤ eT,i Then {
ẽ := eT,i;

If IP(AẽAT,i, AeAR,i) = AẽAT,i Then {
DTR := DTR ∪ AẽAT,i;

eT,i := ẽ− 1;
};
};
};
For u := 1 To sBR,i−1 − 1 Do AuAR,i := AuAR,i−1;

sBR,i := sBR,i−1;

(a) (b)

Fig. 3. The algorithms for generating AT,i & AL,i (a), and AB,i & AR,i (b).

from now on. If there is no such antichain in AL,i (i. e. s > eL,i), but sBR,i−1 ≤ eB,i,
then we additionally test whether AsAT,i is incomparable to the last antichain in AB,i−1

and, should this situation arise, delete this antichain from AB,i by decreasing eB,i.
Now assume AsAL,i is TL–complete. Then, as shown in Figure 4 (a), we also increase

sTL,i, and similarly, if s > eT,i and sBR,i−1 ≤ eR,i, we decrease eR,i if AsAL,i inactivates
the last antichain in AR,i.

The remaining work in step i concerns with the analogous construction of AB,i

and AR,i. (The analogue of TL–completeness is called BR–completeness. An an-
tichain is BR–complete if it contains a match (k, `) with m − i < k ≤ m and
n− i < ` ≤ n.) Details are available from the algorithms shown in Figure 3 (b) and
Figure 4 (b).

The main program shown in Figure 5 is straightforward. Our next task is to elab-
orate the connection between the generated antichains and a minimal decomposition
of M . This is done in the next section.



A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem 51

(∗ Check AT,i for TL–completeness ∗)
If sTL,i ≤ eT,i Then {
s := sTL,i;

If ∃ (k, `) ∈ AsAT,i : k, ` ≤ i Then {
5 If s > eL,i Then {

If sBR,i−1 ≤ eB,i Then {
ẽ := eB,i;

If IP(AẽAB,i−1, AsAT,i) = AẽAB,i−1 Then {
DBL,i := DBL,i ∪ AẽAB,i−1;

10 eB,i := ẽ− 1;
};
};
eL,i := s; AsAL,i := ∅;
};

15 sTL,i := s + 1;
};
};
(∗ Check AL,i for TL–completeness ∗)
If sTL,i ≤ eL,i Then {

20 s := sTL,i;

If ∃ (k, `) ∈ AsAL,i : 1 ≤ k, ` ≤ i Then {
If s > eT,i Then {
If sBR,i−1 ≤ eR,i Then {
ẽ := eR,i;

25 If IP(AẽAR,i−1, AsAL,i) = AẽAR,i−1 Then {
DTR,i := DTR,i ∪ AẽAR,i−1;

eR,i := ẽ− 1;
};
};

30 eT,i := s; AsAT,i := ∅;
};
sTL,i := s + 1;
};

34 };

(∗ Check AB,i for BR–completeness ∗)
If sBR,i ≤ eB,i Then {
s := sBR,i;

If ∃ (k, `) ∈ AsAB,i : k > m− i ∧ ` > n− i Then {
If s > eR,i Then {
If sTL,i ≤ eT,i Then {
ẽ := eT,i;

If IP(AẽAT,i, AeAR,i) = AẽAT,i Then {
DTR,i := DTR,i ∪ AẽAT,i;

eT,i := ẽ− 1;
};
};
eR,i := s; AsAR,i := ∅;
};
sBR,i := s + 1;
};
};
(∗ Check AR,i for BR–completeness ∗)
If sBR,i ≤ eR,i Then {
s := sBR,i;

If ∃ (k, `) ∈ AsAR,i : k > m− i ∧ ` > n− i Then {
If s > eB,i Then {
If sTL,i ≤ eL,i Then {
ẽ := eL,i;

If IP(AẽAL,i, AeAB,i) = AẽAL,i Then {
DBL,i := DBL,i ∪ AẽAL,i;

eL,i := ẽ− 1;
};
};
eB,i := s; AsAB,i := ∅;
};
sBR,i := s + 1;
};
};

(a) (b)

Fig. 4. The algorithms for handling complete antichains in AT,i & AL,i (a), and in AB,i

& AR,i (b).

3. ANALYSIS OF THE CONSTRUCTION

In this section, we study how to combine the antichains into larger ones such that a
minimal decomposition of M is obtained. We further establish some results which
later help us to construct an LCS in linear space.

Let us assume m is odd, and let i = dm/2e. For technical reasons, we then put
AuAB,i := AuAB,i−1 and AuAR,i := AuAR,i−1 for all 1 ≤ u ≤ eB,i−1 and 1 ≤ u ≤ eR,i−1.
We also set sBR,i := sBR,i−1, eB,i := eB,i−1, and eR,i := eR,i−1. Furthermore, for
0 ≤ i ≤ dm/2e, we define AuAT,i := ∅, AuAL,i := ∅, AuAB,i := ∅, and AuAR,i := ∅ for u > eT,i,
u > eL,i, u > eB,i, and u > eR,i, respectively.

Lemma 3.1. Let 1 ≤ i ≤ dm/2e. Then the following holds:

a) ∀ sTL,i−1 ≤ u < v ≤ eT,i ∀ p1 ∈ AvAT,i ∃ p2 ∈ AuAT,i : p1 À p2.

b) ∀ sTL,i−1 ≤ u < v ≤ eL,i ∀ p1 ∈ AvAL,i ∃ p2 ∈ AuAL,i : p1 À p2.
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sT,0 := 1; sL,0 := 1; sB,0 := 1; sR,0 := 1; (∗ Initialization ∗)
eT,0 := 0; eL,0 := 0; eB,0 := 0; eR,0 := 0;

For i := 0 To dm/2e Do DTL,i := ∅;
For i := 0 To bm/2c Do DBR,i := ∅;

5 i := 1;
While i ≤ bm/2c Do { (∗ Main loop ∗)
Determine AT,i and AL,i; (∗ see Figure 3 (a) ∗)
Look for TL-complete antichains in AT,i and AL,i; (∗ see Figure 4 (a) ∗)
Determine AB,i and AR,i; (∗ see Figure 3 (b) ∗)

10 Look for BR-complete antichains in AB,i and AR,i; (∗ see Figure 4 (b) ∗)
i := i + 1;
};
If Odd(m) Then {
Determine AT,dm/2e and AL,dm/2e; (∗ see Figure 3 (a) ∗)

15 Look for TL-complete antichains in AT,dm/2e and AL,dm/2e; (∗ see Figure 4 (a) ∗)
};

Fig. 5. The main program for decomposing M .

c) ∀ sBR,i−1 ≤ u < v ≤ eB,i ∀ p1 ∈ AvAB,i ∃ p2 ∈ AuAB,i : p1 ¿ p2.

d) ∀ sBR,i−1 ≤ u < v ≤ eR,i ∀ p1 ∈ AvAR,i ∃ p2 ∈ AuAR,i : p1 ¿ p2.

P r o o f . We only show the first claim, the other proofs are similar. Let p1 = (k, `).
Since AvAT,i ⊆ T≤dm/2e, p1 has been added to AvAT,k while processing T k in step k,
and k ≤ i. Clearly, from the way S is handled in lines 1–5 of Figure 3 (a), we have
p1 /∈ IP(T k ∩ M, AjAT,k−1), for sTL,k−1 ≤ j < v. Since sTL,k−1 ≤ sTL,i−1 ≤ u < v,
there is some p2 ∈ AuAT,k−1 such that p1 À p2 or p1 ¿ p2. But the second case
would imply p2 ∈ T k′ for some k′ > k which is impossible during the first k steps of
our construction. Finally observe that the algorithm never removes matches while
updating an antichain, thus p2 is still present in AuAT,i. 2

Lemma 3.2. The following holds:

a) ∀ 1 ≤ i ≤ dm/2e ∀ v : v < sTL,i ⇐⇒ AvAT,i or AvAL,i is TL–complete.

b) ∀ 1 ≤ i ≤ dm/2e ∀ v : v < sBR,i ⇐⇒ AvAB,i or AvAR,i is BR–complete.

P r o o f . We only prove the first claim, the other one is similar.
If. By contradiction, let i be the first step such that AvAT,i or AvAL,i is TL–complete,
but v ≥ sTL,i. Clearly v 6= sTL,i−1, otherwise the TL–completeness would have
been detected by the algorithm shown in Figure 4 (a), and thus, contradicting the
property of v, we would have v < sTL,i = sTL,i−1 + 1. Hence v > sTL,i−1. By the
TL–completeness, there is some match (k, `) ∈ AvAT,i ∪ AvAL,i such that 1 ≤ k, ` ≤ i.
Furthermore, by Lemma 3.1, there exists some match (k′, `′) ∈ AT,iAv−1 ∪ AL,iAv−1 such
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that (k′, `′) ¿ (k, l). But then 1 ≤ k′, `′ < i, and therefore either AT,iAv−1 or AL,iAv−1

would be TL-complete after step i− 1, a contradiction to the choice of i.
Only if. Obvious from the management of the start indices. 2

Lemma 3.3. For all i, u define AuATL,i := AuAT,i ∪ AuAL,i and AuABR,i := AuAB,i ∪ AuAR,i.
Then

a) ∀ 0 ≤ i ≤ dm/2e ∀ 1 ≤ u ≤ min{eT,i, eL,i} : AuATL,i is an antichain.

b) ∀ 0 ≤ i ≤ dm/2e ∀ 1 ≤ u ≤ min{eB,i, eR,i} : AuABR,i is an antichain.

P r o o f . We prove the first claim by induction on i. The base i = 0 it trivial
because AT,0 = AL,0 = ∅. For the induction step i − 1 → i, we consider three
different cases.
Case a: 1 ≤ u < sTL,i−1. Then AuAT,i = AuAT,i−1 and AuAL,i = AuAL,i−1 (see lines 15
and 30 in Figure 3 (a), respectively). Thus, by the induction hypothesis, AuATL,i is an
antichain.
Case b: sTL,i−1 ≤ u ≤ min{eT,i−1, eL,i−1}. By definition the set T := IP(S, AuAT,i−1)
added to AuAT,i in line 3 (Figure 3 (a)) is incomparable to AuAT,i−1, but it is also incom-
parable to AuAL,i as we now demonstrate. Let (k, `) ∈ IP(S,AuAT,i−1) and (k′, `′) ∈ AuAL,i.
Observe k = i and ` ≥ i. Also note that k′ > `′ and `′ ≤ i because AuAL,i ⊆ L≤i.
Thus (k, `) ¿ (k′, `′) would contradict ` ≥ i ≥ `′. Furthermore, (k′, `′) ¿ (k, `)
would imply `′ < k′ < k = i, i. e., AuAL,i−1 would be TL-complete, a contradic-
tion to Lemma 3.2 and the choice of u. Similar arguments can be used for the set
L := IP(S, AuAL,i−1) added to AuAL,i in line 19. Finally note that T ⊆ T i and L ⊆ Li

are also incomparable.
Case c: min{eT,i−1, eL,i−1} < u ≤ min{eT,i, eL,i}. Clearly, this case is only possible
if u = eT,i = eT,i−1 + 1 or u = eL,i = eL,i−1 + 1. If both conditions hold, then
AuAT,i ⊆ T i ∩M (lines 1 and 7) and AuAL,i ⊆ Li ∩M (lines 17 and 23), thus their union
obviously makes up an antichain. Otherwise, only one new antichain is generated
whereas the other one is updated, and we can argument as in the second case to
show that both antichains are incomparable.

The proof of the second claim is similar. 2

Lemma 3.4. Let 1 ≤ i ≤ dm/2e. Then the following holds:

a) ∀ j ≤ max{eT,i, eL,i} ∀ pj ∈ AjATL,i ∃ p1 ∈ A1ATL,i, . . . , pj−1 ∈ Aj−1ATL,i :
p1 ¿ · · · ¿ pj .

b) ∀ j ≤ max{eB,i, eR,i} ∀ pj ∈ AjABR,i ∃ p1 ∈ A1ABR,i, . . . , pj−1 ∈ Aj−1ABR,i :
p1 À · · · À pj .

P r o o f . We prove the first claim by choosing pv for v = j − 1, . . . , 1.
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Consider step j′ ≤ i when pv+1 was added to Av+1ATL,j′ ⊆ Av+1ATL,i. Then Lemma 3.1
implies the existence of pv if v ≥ sTL,j′−1. Otherwise, by Lemma 3.2, AvAT,j′−1 or
AvAL,j′−1 has been detected to be TL–complete before step j′, i. e., AvATL,j′−1 contains
a match (k′, `′) such that k′, `′ < j′. But pv+1 is of the form (k, `) with k, ` ≥ j′,
thus we can choose pv := (k′, `′).

Similar arguments can be used for the second claim. 2

Lemma 3.5. For 0 ≤ i ≤ dm/2e, there are two chains

CTR,i, CBL,i ⊆ T≤i ∪ L≤i ∪B≤i ∪R≤i

of length eT,i + eR,i and eB,i + eL,i, respectively.

P r o o f . We prove the existence of the first chain CTR,i by induction on i. The
base i = 0 is trivial. For the induction step (i − 1) → i, we have to analyse the
situations which cause eT,i + eR,i to be greater than eT,i−1 + eR,i−1. One such
situation is given in lines 7–14 of Figure 3 (a) if the condition in line 10 is not
satisfied because then e := eT,i = eT,i−1 + 1 and ẽ := eR,i = eR,i−1. But since
IP(AẽAR,i−1, AeAT,i) 6= AẽAR,i−1 there exist two comparable matches cT ∈ AeAT,i and cR ∈
AẽAR,i−1. More precisely, since cT ∈ T i and cR ∈ R≤i−1, we must have (k, `) ¿ (k′, `′).
Thus, by Lemma 3.4, we can construct a chain

p1 ¿ · · · ¿ pe−1 ¿ cT ¿ cR ¿ p′ẽ−1 ¿ · · · ¿ p′1

of length e + ẽ.
Similar arguments can be used for the remaining situations and for the other

chain. 2

Our next task is to reveal the structure in DTR and DBL. We shall show that
for each deleted match there always is some antichain which is incomparable to
this match. In order to prove this property, we keep track of each deleted match
by assigning it to some antichain during the construction process. More precisely,
whenever an antichain A is removed due to the existence of some other antichain
B which inactivates it, all matches in A are assigned to B, e. g., considering the
situation in Figure 2 (d), the match (3, 8) is assigned to A3AT,3. Furthermore, all pre-
viously deleted matches assigned to A now also belong to B. The assigned matches
are inherited when an antichain is updated, e. g., in Figure 2 (e), (3, 8) also belongs
to A3AT,4. These rules guarantee that after step i, each deleted match is assigned to
exactly one antichain in AT,i ∪AL,i ∪AB,i ∪AR,i. We write D(A) to denote the set
of matches assigned to an antichain A.

Lemma 3.6. Let 1 ≤ i ≤ dm/2e, and assume (k, `) ∈ D(A) for some antichain A
in AT,i, AL,i, AB,i, or AR,i. Then

a) (k, `) ∈ DTR =⇒ ∀ (k′, `′) ∈ A : k ≤ k′ ∧ ` ≥ `′.
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b) (k, `) ∈ DBL =⇒ ∀ (k′, `′) ∈ A : k ≥ k′ ∧ ` ≤ `′.

P r o o f . For the first claim, let us assume (k, `) was assigned to A while executing
line 11 in Figure 3 (a) during step j ≤ i (the following arguments can analogously
be applied to the other instructions which modify DTR). Thus A = AeAT,i, where
e = eT,j . Now we consider two cases concerning the status of (k, `) before step j.
Case a: (k, `) ∈ AẽAR,j−1 ⊆ R≤j−1, ẽ = eR,j−1. Then ` > n − j + 1. From lines 1,
6, 7, and 10 we see that (k, `) is incomparable to any match (k′′, `′′) in AeAT,j . But
AeAT,j ⊆ T j , thus k′′ = j and `′′ ≤ n − j + 1. Hence, the incomparability implies
k ≤ j. Now observe that AeAT,j is the first constructed part of AeAT,i, later extensions
are taken from T j+1, . . . , T i. Thus every match (k′, `′) ∈ AeAT,i fulfills k′ ≥ j and
`′ ≤ n− j + 1, and the claim follows.
Case b: (k, `) is assigned to AẽAR,j−1. We can inductively assume

∀ (k′′, `′′) ∈ AẽAR,j−1 : k ≤ k′′ ∧ ` ≥ `′′.

Deleted matches are never assigned to empty antichains. Thus there is at least one
match (k′′, `′′) ∈ AẽAR,j−1, and we can prove as in the first case that k′′ ≤ k′ and
`′′ ≥ `′. Hence we have k ≤ k′ and ` ≥ `′.

The proof of the second claim is similar and therefore omitted. 2

Lemma 3.7. Let 1 ≤ i ≤ dm/2e. Then the following holds:

a) ∀ 1 ≤ u ≤ eT,i : DBL ∩D(AuAT,i) 6= ∅ =⇒ AuAL,i = ∅ ∧ AuAT,i is TL–complete.

b) ∀ 1 ≤ u ≤ eL,i : DTR ∩D(AuAL,i) 6= ∅ =⇒ AuAT,i = ∅ ∧ AuAL,i is TL–complete.

c) ∀ 1 ≤ u ≤ eB,i : DTR ∩D(AuAB,i) 6= ∅ =⇒ AuAR,i = ∅ ∧ AuAB,i is BR–complete.

d) ∀ 1 ≤ u ≤ eR,i : DBL ∩D(AuAR,i) 6= ∅ =⇒ AuAB,i = ∅ ∧ AuAR,i is BR–complete.

P r o o f . We again only show the first claim. From lines 10 and 11 in Figure 3 (a),
we see that all matches assigned there to AuAT,i are either placed into DTR, or they
have been assigned before to some non–complete antichain in AR,i−1. But concerning
the latter case, we see from lines 26 and 27 in Figure 3 (b) that any such match has
been put into DTR as well, or again belongs to some non–complete antichain in AT,j ,
j < i. Repeating this argument, we conclude that all matches assigned to AT,i are
contained in DTR. The only exception is given by lines 8 and 9 in Figure 4 (a), where
deleted matches are assigned to AuAT,i, but added to DBL. But then, from lines 3, 4,
and 13, the claim follows. 2
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Lemma 3.8. All matches assigned to an antichain A are pairwise incomparable,
thus by Lemma 3.6, they extend the antichain to a larger one.

P r o o f . Whenever a match is deleted, the algorithm always removes a complete
antichain. By induction, this antichain B together with its assigned matches forms a
larger antichain C. If there already is a set of matches D assigned to A (which is only
possible when A is detected to be complete), then, following the arguments given
in the proof of Lemma 3.7, C ⊆ DBL and D ⊆ DTR or vice versa, and Lemma 3.6
immediately implies that B and D are pairwise incomparable. 2

We are now prepared to construct a minimal decomposition of M . We start
by decomposing M \ (DTR ∪ DBL), the deleted matches are later considered in
Thmeorem 3.9 below. The construction is as follows. Using Lemma 3.3, we com-
bine the first eTL := min{eT,dm/2e, eL,dm/2e} antichains in AT,dm/2e and AL,dm/2e to
larger ones. We also connect the first eBR := min{eB,dm/2e, eR,dm/2e} antichains in
AB,dm/2e to the corresponding ones in AR,dm/2e. For example, in Figure 2 (e), we
have eT,dm/2e = eB,dm/2e = 3 and eL,dm/2e = eR,dm/2e = 2, thus this generates four
combined antichains. Concerning the remaining antichains we consider four different
cases.
Case a: eT,dm/2e ≤ eL,dm/2e and eB,dm/2e ≥ eR,dm/2e. Then we leave the remaining
antichains as they are and have p := eL,dm/2e + eB,dm/2e antichains in total. But by
Lemma 3.5, there also exists a chain of this length. Thus, by Dilworth’s theorem,
the decomposition is minimal.
Case b: eT,dm/2e > eL,dm/2e and eB,dm/2e ≤ eR,dm/2e. Similar to the first case we
have p := eT,dm/2e + eR,dm/2e antichains, and also a chain of this length.
Case c: eT,dm/2e ≤ eL,dm/2e and eB,dm/2e < eR,dm/2e. From the management of
the start and end indices, we have eT,dm/2e ≥ sTL,dm/2e − 1. Thus, by Lemma 3.2,
AuAL,dm/2e is not TL–complete for u > eT,dm/2e. This implies k > dm/2e and ` ≤
dm/2e for any match (k, `) ∈ AuAL,dm/2e ⊆ L≤dm/2e. For all v > eB,dm/2e and
(k′, `′) ∈ AvAR,dm/2e we similarly have k′ ≤ dm/2e and `′ > n − bm/2c ≥ dm/2e.
Thus AuAL,dm/2e and AvAR,dm/2e are incomparable. Now assume eL,dm/2e ≥ eR,dm/2e.
Then we can connect all remaining antichains in AR,dm/2e to corresponding ones in
AL,dm/2e and obtain p := eL,dm/2e+eB,dm/2e antichains in total, thus again a minimal
decomposition. If eL,dm/2e < eR,dm/2e, then similarly p := eT,dm/2e+ eR,dm/2e is the
optimal length of a chain in M \ (DTR ∪DBL).
Case d: eT,dm/2e > eL,dm/2e and eB,dm/2e > eR,dm/2e. Finding a minimal decompo-
sition is slightly more complicated in this case. Consider the following algorithm.
Starting with u := eT,dm/2e and v := eR,dm/2e + 1, we check whether AuAT,dm/2e and
AvAB,dm/2e are incomparable. If they are not, then we backup u and v in ũ and ṽ,
respectively, and increase v by one. Otherwise the antichains are connected, u is set
to u−1, and v is set to v +1. We repeat this until all remaining antichains in either
AT,dm/2e or AB,dm/2e have been used, i. e., u = eL,dm/2e or v > eB,dm/2e. Then
the total number of antichains is p := u + eB,dm/2e. Thus, if u = eL,dm/2e, we have
p = eL,dm/2e+eB,dm/2e, and the decomposition is optimal. Now assume u > eL,dm/2e.
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If ũ and ṽ are unused, then all remaining antichains in AB,dm/2e have been connected
to corresponding antichains in AT,dm/2e, and we have p = eT,dm/2e+eR,dm/2e. Hence,
in this case the decomposition is also a minimal one. Finally assume that ũ and ṽ
have been used for saving u and v at least once. Then for j = ṽ + 1, . . . , eB,dm/2e,
AjAB,dm/2e has been connected to Aũ+ṽ−jAT,dm/2e, and we have u = ũ− (eB,dm/2e− ṽ). Thus
p = ũ − (eB,dm/2e − ṽ) + eB,dm/2e = ũ + ṽ. But from the properties of ũ and ṽ, it
can be shown (similar to the proof of Lemma 3.5) that there is a chain of length
ũ + ṽ which contains two matches p1 ∈ AũAT,dm/2e and p2 ∈ AṽAB,dm/2e. Hence, the
constructed decomposition is optimal.

Let us consider our example. Case d applies to the situation in Figure 2 (e),
and A3AT,4 is compared with A3AB,4. Since these antichains are incomparable, they are
connected, and we obtain a decomposition consisting of 5 antichains in total.

Theorem 3.9. The length of an LCS in M equals p as defined in the four cases
above.

P r o o f . Consider a combined antichain A of the decomposition. Assume an
antichain AuAT,dm/2e ∈ AT,dm/2e is one component of it (otherwise, we can handle the
following construction in a similar way).
Case a: AuAT,dm/2e is the only component of A. Then we extend A with the set B of
deleted matches assigned to AuAT,dm/2e. Lemma 3.8 guarantees that the result is still
an antichain.
Case b: AuAT,dm/2e has been combined with AuAL,dm/2e. By Lemma 3.7, B ⊆ DTR. Let
(k, `) ∈ AuAL,dm/2e and (k′, `′) ∈ AuAT,dm/2e. Now (k, `) ∈ Ldm/2e, the incomparability
of (k, `) and (k′, `′), and (k′, `′) ∈ T dm/2e imply that k ≥ k′ ∧ ` ≤ `′. Now consider
a match (k′′, `′′) ∈ B. By Lemma 3.6, we have k ≥ k′ ≥ k′′ and ` ≤ `′ ≤ `′′.
Hence, AuAL,dm/2e is incomparable to B. We can use a similar way to show that the
set C of deleted matches assigned to AuAL,dm/2e is a subset of DBL and incomparable
to AuAT,dm/2e. Finally, B and C are clearly incomparable as well. This implies that
AuAT,dm/2e ∪AuAL,dm/2e ∪B ∪ C is still an antichain.
Case c: AuAT,dm/2e has been combined with some other antichain D ∈ AB,i. Then,
similar to the proof of the second case, we can show that the union of A and the
two corresponding sets of assigned matches still make up an antichain.

By handling each combined antichain in this way, we can construct a decompo-
sition of M without generating any additional antichains. The proof is complete.

2

Figure 2 (f) illustrates the corresponding decomposition for our example.

4. IMPLEMENTATION

We now describe an efficient implementation for the given algorithm and analyse its
time and space complexity.

All new antichains created in step i are extensions from antichains generated
during step i−1. Furthermore, the only antichains used for decomposing M are from
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the last step. Thus for the implementation it is sufficient to update the antichains
of interest. The same is true for the start and end indices, and we thus sometimes
drop the index i from now on. The necessary information for each actual antichain
can be kept in one single number as follows. Let 1 ≤ i ≤ dm/2e and 1 ≤ u ≤ eT,i.
We define ThreshT[u] as the leftmost column used by some match in AuAT,i, i. e.,

ThreshT[u] := min{` | ∃ k : (k, `) ∈ AuAT,i}.
For example, in Figure 2 (b), ThreshT[1] = 3, and in Figure 2 (d), Top-Thresh[1] = 2,
ThreshT[2] = 3, and ThreshT[3] = 6. To update this array in each step, we use an
auxiliary array LeftPos on Σ× [1 : n + 1] given by

LeftPos[c, `] := min({n + 1} ∪ {j | ` ≤ j ≤ n ∧ yj = c}),
i. e., LeftPos[ai, `] equals the column number of the leftmost occurence of a match
in row i located right to column `, and equals n + 1 if there is no such match. In
our example (y = cbabbacac), we obtain the following values:

a 3 3 3 6 6 6 8 8 10 10
b 2 2 4 4 5 10 10 10 10 10
c 1 7 7 7 7 7 7 9 9 10

Now it is not difficult to see that the following routine correctly updates ThreshT
when processing T i, representing lines 1–7 in Figure 3 (a). (Similar procedures are
used in [4, 29, 30] to determine contours which correspond to the antichains used
here.)

k := LeftPos[ai, i];

For u := sTL To eT Do {
j := ThreshT[u];
If k ≤ j And k ≤ n− i + 1 Then {
ThreshT[u] := k; k := LeftPos[ai, j + 1];
};
};
If k ≤ n− i + 1 Then { eT := eT + 1; ThreshT[eT ] := k };

For AL,i, AB,i, and AR,i we introduce additional arrays ThreshL, ThreshB, and
ThreshR which similarly store the topmost rows, rightmost columns, and bottom-
most rows used by the corresponding antichains. To handle them analogously to
ThreshT, we also need three more auxiliary arrays given by

TopPos[c, k] := min({m + 1} ∪ {j | k ≤ j ≤ m ∧ xj = c}), (1 ≤ k ≤ m + 1) ,
RightPos[c, `] := max({0} ∪ {j | 1 ≤ j ≤ ` ∧ yj = c}), (0 ≤ ` ≤ n) ,
BottomPos[c, k] := max({0} ∪ {j | 1 ≤ j ≤ k ∧ xj = c}), (0 ≤ k ≤ m) .

Note that in Figure 3 and Figure 4, each test for the incomparability of two antichains
can be replaced by a rather simple conditional statement. For example, considering
line 10 in Figure 3 (a), we know that all matches in T i are located to the left of any
match in R≤i−1. Thus, with e := eT,i and ẽ := eR,i, AeAT and AẽAR are incomparable if
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and only if AẽAR is also completely contained in the first i rows, i. e., ThreshR[ẽ] ≤ i.
The algorithm presented in Figure 6 shows how the other situations are handled.
It also makes use of some special implementation details which cannot be discussed
here, e. g., the construction starts with the bottommost row instead of the topmost
one when m is even. In Figure 6 some lines are marked with a dot (•) on their left
sides. These lines are used for the construction of an LCS and should be ignored for
the moment.

The complexity of the algorithm may be deduced as follows. The four auxiliary
arrays can be easily preprocessed in O(ns) time and space, where s = |Σ|. Clearly,
during one of the dm/2e iterations of the main loop, none of the four inner While–
loops takes more than O(p) time, and when determining p, at most dm/2e pairs of
antichains have to be compared. Thus the algorithm takes at most O(ns+mp) time.
Furthermore, observe that the j–th antichain in AT (which is added to AT during
some step i ≥ j) must contain a match (k, `) with ` ≤ n− (p− j), otherwise it would
be impossible to construct a chain of length p. But then this antichain is detected
to be TL–complete after step n− (p− j), therefore it is only considered for at most
n− (p− j)− i ≤ n−p times in the corresponding While–loop (lines 59–65). Similar
arguments can be given for antichains in AL, AB , and AR. Hence, we have shown
the following theorem.

Theorem 4.1. Let x, y ∈ Σ+, m = |x|, n = |y|, m ≤ n, and s = |Σ|. Then the
length p of an LCS of x and y can be computed in O(ns + min{mp, p(n− p)}) time
and O(ns) space.

This result has been achieved before by Rick [29, 30], and in fact, the algorithm
presented here is some kind of dualization of Rick’s method, but our algorithm is
significantly faster as we shall show in Section 6.

5. CONSTRUCTION OF AN LCS IN LINEAR SPACE

This section deals with the generation of an LCS. The idea is to apply the divide–
and–conquer scheme [5, 16, 20] which first identifies at least one point of an LCS such
that this LCS is splitted into two parts of roughly the same size. Then the remainder
is computed by recursive calls. The method presented here usually determines two
LCS–neighbouring matches cTL and cBR which are located in T≤dm/2e ∪ L≤dm/2e

and B≤dm/2e ∪R≤dm/2e, respectively. This is accomplished as follows.
In each step i of the construction described in Section 2, we subsequently update

the following variables:

– pTL is the match which caused AsAT,i or AsAL,i to become TL–complete, where
s = sTL,i − 1. For example, in Figure 2 (c), pTL = (2, 2), and in Figure 2 (d)
and (e), pTL = (3, 3).

– pBR has a corresponding meaning for the last BR–complete antichain in AB,i

and AR,i, e. g., in Figure 2 (d), pBR = (6, 7).
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Determine TopPos and LeftPos;
Determine BottomPos and RightPos;
For u := 0 To dm/2e Do {
ThreshT[u] := 0; ThreshL[u] := 0;

5 };
For u := 0 To bm/2c Do {
ThreshB[u] := n + 1; ThreshR[u] := m + 1;
};
t := 1; ` := 1; b := m; r := n;

10 sTL := 1; eT := 0; eL := 0;

sBR := 1; eB := 0; eR := 0;

If Odd(m) Then Goto Line 57;

While t ≤ b Do { (∗ Main loop ∗)
k := RightPos[xb, r]; (∗ Update AB ∗)

15 u := sBR;

While u ≤ eB Do {
j := ThreshB[u];
If k ≥ j Then {
ThreshB[u] := k; k := RightPos[xb, j − 1];

20 };
u := u + 1;
};
If k ≥ ` Then {
eB := u; ThreshB[eB ] := k;

25 If ThreshL[eL] ≥ b Then eL := eL − 1

• Else Update cB , cL, `BL;
};
k := BottomPos[yr, b− 1]; (∗ Update AR ∗)
u := sBR;

30 While u ≤ eR Do {
j := ThreshR[u];
If k ≥ j Then {
ThreshR[u] := k; k := BottomPos[yr, j − 1];
};

35 u := u + 1;
};
If k ≥ t Then {
eR := u; ThreshR[eR] := k;

If ThreshT[eT ] ≥ r Then eT := eT − 1

• Else Update cT , cR, `TR;
};
(∗ Check for BR–complete antichains ∗)
If ThreshB[sBR] = r Then {
If sBR > eR Then {

45 If ThreshT[eT ] ≥ r Then eT := eT − 1

• Else Update cT , cR, `TR;
};
sBR := sBR + 1;

} Else If ThreshR[sBR] = b Then {
50 If sBR > eB Then {

If ThreshL[eL] ≥ b Then eL := eL − 1

• Else Update cB , cL, `BL;
};
sBR := sBR + 1;

55 };
t := t + 1; ` := ` + 1;

k := LeftPos[xt, `]; (∗ Update AT ∗)
u := sTL;

While u ≤ eT Do {
60 j := ThreshT[u];

If k ≤ j Then {
ThreshT[u] := k; k := LeftPos[xt, j + 1];
};
u := u + 1;

65 };
If k ≤ r Then {
eT := u; ThreshT[eT ] := k;

If ThreshR[eR] ≤ t Then eR := eR − 1

• Else Update cT , cR, `TR;
70 };

k := TopPos[yl, t]; (∗ Update AL ∗)
u := sTL;

While u ≤ eL Do {
j := ThreshL[u];

75 If k ≤ j Then {
ThreshL[u] := k; k := TopPos[yl, j + 1];
};
u := u + 1;
};

80 If k ≤ b Then {
eL := u; ThreshL[eL] := k;

If ThreshB[eB ] ≤ ` Then eB := eB − 1

• Else Update cB , cL, `BL;
};

85 (∗ Check for TL–complete antichains ∗)
If ThreshT[sTL] = ` Then {
If sTL > eL Then {
If ThreshB[eB ] ≤ ` Then eB := eB − 1

• Else Update cB , cL, `BL;
90 };

sTL := sTL + 1;

} Else If ThreshL[sTL] = t Then {
If sTL > eT Then {
If ThreshR[eR] ≤ t Then eR := eR − 1

• Else Update cT , cR, `TR;
};
sTL := sTL + 1;
};
b := b− 1; r := r − 1;

100 };
(∗ Determine length p of an LCS ∗)
If eT > eL And eB > eR Then {
If sTL ≤ eL Then sTL := eL + 1;

If sBR ≤ eR Then sBR := eR + 1;

105 u := eT ; v := sBR;

While u ≥ sTL And v ≤ eB Do {
If ThreshT[u] ≥ ThreshB[v]
Then u := u− 1

• Else { ũ := u; ṽ := v };
110 v := v + 1;

};
p := u + eB ;

113 } Else p := max{eL + eB , eT + eR};

Fig. 6. The O(ns+min{mp, p(n−p)}) algorithm for determining the length p of an LCS.
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– cT and cR are the two matches introduced in the proof of Lemma 3.5. They
both lie in CTR,i and are neighbours in this chain. Furthermore, cT and cR

are always located in the first i topmost rows and i rightmost columns of M ,
respectively.

– cB and cL have analogous properties for CBL,i.

– `TR and `BL is the position of cT in CTR,i and of cL in CBL,i, respectively.
Also, `TR + 1 and `BL + 1 is the position of cR in CTR,i and of cB in CBL,i,
respectively.

Variables pTL and pBR can be easily updated. For example, consider lines 85–98 in
Figure 6 where new TL–complete antichains are handled. Let pTL = (u, v). If the
condition in line 86 is satisfied, then we know pTL has to be set to the bottommost
match located in the first t rows and column `. Therefore two additional statements
can be inserted between lines 86 and 87 such that u is set to BottomPos[y`, t] and v is
set to `. Similar statements apply for the situation in lines 92–98, and this completes
the description of the management for pTL. pBR can be handled in a similar way.

cT , cR, and `TR must be updated whenever the length of CTR,i increases. These
situations are indicated in lines 40, 46, 69, and 95 in Figure 6, and here we only
sketch how to manage them. By arguments analogous to the ones given in the proof
of Lemma 3.4, we have to distinguish two cases when updating cT . If sTL,i > eT,i,
then cT is set to pTL, otherwise cT can be determined by some additional statements
which are similar to the ones used for updating pTL. In either case, we set `TR to
eT,i because eT,i is the position of cT in CTR,i, as seen in the proof of Lemma 3.5.
The management of cB , cL, and `BL is similar.

Now let us review the construction of the final decomposition given in the end
of Section 3. If p is set to eT,dm/2e + eR,dm/2e, then we can use cT and cR as the
appropriate matches for cTL and cBR. Similarly, if p = eB,dm/2e + eL,dm/2e, we
establish cTL = cL and cBR = cB . Finally, if a longest chain is determined by
the algorithm described in case d of the construction (corresponding to lines 103–
112 in Figure 6), and p is not set to one of the above values, then we can use
the backup values ũ and ṽ to determine cTL := (BottomPos[yû, b], yû) and cBR :=
(TopPos[yv̂, t], yv̂), where û := ThreshT[ũ] and v̂ := ThreshB[ṽ].

Before recursively calling the algorithm for the remaining parts of the LCS, we
see it is necessary for our routine to not only work on the complete matrix of size
[1 : m]× [1 : n], but also on any subarea [k1 : k2]× [`1 : `2]. The necessary changes
are quite straightforward, and we do not provide any details here. Moreover, it
might be impossible to locate both cTL and cBR (e. g., when |M | = 1), but then one
recursive call can simply be skipped.

Theorem 5.1. An LCS can be constructed in O(ns + min{mp, p(n − p)}) time
and O(ns) space.

P r o o f . Clearly, for the top–level call, the additional overhead needed to keep
track of the new variables is bounded by O(m). Thus, not taking into account the
time consumed by preprocessing or any recursive calls, we can assume the number
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of elementary operations to be bounded by d(m + min{mp, p(n − p)}), for some
appropriate constant d. We first examine the bound d(m + mp). Let cTL = (k, `)
and cBR = (k′, `′) (if only one match has been determined, the analysis is similar).
Consider the two first–level recursive calls concerning the areas M1 and M2, where
M1 := [1 : k − 1] × [1 : ` − 1] and M2 := [k′ + 1 : m] × [`′ + 1 : n]. Let p1 and p2

denote the length of an LCS in M1 and M2, respectively, i. e., p1 +p2 = p−2. Recall
that cTL is located in the first dm/2e rows and columns, i. e., the length of one side
of M1 is bounded by dm/2e − 1. The same is true for M2, and thus the number of
operations taken for both first–level calls is bounded by

d(dm/2e − 1)(p1 + 1) + d(dm/2e − 1)(p2 + 1) ≤ dp
m

2
.

Repeating this argument, we obtain a dmp/2i bound for the at most 2i ith–level
recursive calls. Since recursion ends at level dlog(m/2)e, this sums up to at most
2 · dmp for the complete algorithm.

Similar (but somewhat more complicated) arguments can be used to show the
other bound d(m + p(n− p)). We refer to [15] for details.

Now finally observe that when comparing the divide–and–conquer routine with
the algorithm which determines the length p of an LCS, we only need O(log m)
additional stack space, and thus the O(ns) space bound is still valid. 2

6. EXPERIMENTAL RESULTS

We compared our routine with the algorithm proposed by Rick [29, 30] which clearly
outperforms any other method when constructing longest common subsequences of
intermediate lengths. Rick’s algorithm is also a flexible one, being very efficient
for short and long LCS as well. It uses a strategy similar to the one presented
here, but only constructs antichains (or contours) from the top and left side of M .
While this substantially simplifies the implementation and also the preprocessing
phase (i. e., we only have to compute LeftPos and TopPos), there are two severe
drawbacks. First, in order to recover an LCS after determining its length, the so–
called dominant matches must be saved during the construction of the contours,
and this might take Ω(mn) space. Second, the number of checks of Thresh–values is
significantly increased when decomposing M from only two sides. For an alphabet of
size 8, Table 1 shows some sample results when determining p for different settings
of m, n, and p.

The corresponding running times are presented in Table 2. Both algorithms were
programmed in a straightforward way, using no special optimizations, and were
tested on an Intel Pentium II at 300 MHz. It can be seen that our algorithm only
takes about 70 % of the time needed by Rick’s method when computing the length of
an LCS which is of intermediate length. For very short or very long LCS our method
slightly suffers from the additional overhead during the preprocessing phase, but is
still very efficient.

Finally, we checked the running times and the consumed space when generating
an LCS. Table 3 shows that in spite of the linear space restriction, our algorithm
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Table 1. Frequency of checks of Thresh–values.

m n p Rick [30] New method
500 500 100 16864 14983
500 500 200 28962 23078
500 500 300 33276 23394
500 500 400 20384 13276
1500 1500 300 145129 126796
1500 1500 600 265107 216845
1500 1500 900 280026 207000
1500 1500 1200 172846 121516

Table 2. Running times in microseconds

for determining the length p of an LCS.

m n p Rick [30] New method
500 500 100 3352 3626
500 500 200 5659 4725
500 500 300 6978 4890
500 500 400 5000 3516
1500 1500 300 24451 21868
1500 1500 600 46099 34835
1500 1500 900 54176 33791
1500 1500 1200 38791 22308

sometimes runs more than twice as fast as Rick’s method. This is due to the sig-
nificant overhead in Rick’s routine which is caused by the additional statements
responsible for saving the contours in memory.

Table 3. Running times in microseconds

for constructing an LCS of length p.

m n p Rick [30] New method
500 500 100 6319 6044
500 500 200 14341 9066
500 500 300 19505 9890
500 500 400 15769 7802
750 750 250 23132 16374
750 750 400 39835 20495
750 750 550 38516 16758
750 750 700 16319 9945
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Table 4. Allocated space in bytes

for constructing an LCS of length p.

m n p Rick [30] New method
500 500 100 64284 34072
500 500 200 143820 34072
500 500 300 199464 34072
500 500 400 176328 34072
750 750 250 219244 51072
750 750 400 390172 51072
750 750 550 396136 51072
750 750 700 193780 51072

7. CONCLUSION

We have investigated a new algorithm for the Longest Common Subsequence Prob-
lem. In spite of the quite complicated technical details necessary for the construction
and analysis, the final routines proved to be very practical. More precisely, we have
shown three results. First, we have presented a new fast method for determining
the length of an LCS. Second, we have developed a linear space algorithm for con-
structing an LCS in O(ns+min{mp, p(n−p)}) time, thus solving a previously open
problem. And third, we have shown by some experimental results that this algorithm
seems to be well–suited for many usual applications.

The presented method can be extended to find all LCS of two given strings while
preserving the time complexity O(ns + min{mp, p(n− p)}), which is the same time
complexity as for Rick’s algorithm. Details can be found in [15].
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