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ASYMPTOTIC BEHAVIOR OF SOLUTIONS
TO AN AREA-PRESERVING MOTION
BY CRYSTALLINE CURVATURE

SHIGETOSHI YAZAKI

Asymptotic behavior of solutions of an area-preserving crystalline curvature flow equa-
tion is investigated. In this equation, the area enclosed by the solution polygon is preserved,
while its total interfacial crystalline energy keeps on decreasing. In the case where the ini-
tial polygon is essentially admissible and convex, if the maximal existence time is finite,
then vanishing edges are essentially admissible edges. This is a contrast to the case where
the initial polygon is admissible and convex: a solution polygon converges to the boundary
of the Wulff shape without vanishing edges as time tends to infinity.

Keywords: essentially admissible polygon, crystalline curvature, the Wulff shape, isoperi-
metric inequality
AMS Subject Classification: 34A26, 34A34, 34K25, 39A12, 53A04, 74N05, 82D25

1. INTRODUCTION

The present paper is an extension of [12, Part I] in which it has been proved that the
solution admissible polygon of an area-preserving crystalline curvature flow equation
converges to the prescribed Wulff shape. In the present paper, the asymptotic be-
havior of solutions starting from essentially admissible polygons will be investigated.
This flow is a generalized version introduced by Yazaki [11] in which we discussed
the gradient flow of the total length functional of convex polygon keeping the area
enclosed by the polygon constant, and showed that any polygon which evolves by
this gradient flow converges to the circumscribed polygon of a circle; This result is
corresponding to a semi-discrete version introduced by Gage [3].

The so-called curvature flow equation is a general term which describes a motion
of curves in the plane (or surfaces in space) which change its shape in time and
depend on its bend, especially on its curvature. It has been investigated by many
scientists and mathematicians since the 1950’s. At the end of 1980’s, J. E. Taylor,
and S. Angenent and M. E. Gurtin focused on motion of polygonal curves by crys-
talline curvature in the plane, and since then crystalline curvature flow equation
has been studied under various kinds of evolution law by several authors. We refer
the reader to the pioneer works Taylor [8, 9] and Angenent and Gurtin [2], and the
surveys by Taylor, Cahn and Handwerker [10] and the books by Gurtin [5] for a
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geometric and physical background. Also one can find essentially the same method
of crystalline as a numerical scheme for curvature flow equation in Roberts [7]. See
Almgren and Taylor [1] for detailed history. Besides this crystalline strategy, other
strategies by subdifferential and level-set method have been extensively studied. See
Giga [4] and references therein.

Polygons. Let P be an N-sided convex polygon in the plane R?, and label the po-
sition vector of vertices p; (i = 1,2,..., N) in an anticlockwise order: P = Uf\;l S,
where S; = [p;, pit1] is the ith edge (py+1 = p1). The length of S; is d; = |pi+1—pil,
and then the ith unit tangent vector is t; = (p;+1 — p;)/d; and the ith unit out-
ward normal vector is n; = —t}, where (a,b)* = (—b,a). We define a set of
normal vectors of P by N = {ny,ns,...,ny}. Let 6; be the exterior normal
angle of S; such as n; = n(6;) and t; = t(;), where n(f) = (cosf,sinf) and
t(0) = (—sinf,cos ). We define the ith hight function h; = p; - n; = p;+1 - n;. By
using N-tuple h = (hy, ho, ..., hy), d; is described as follows:

d;lh] = —(cot ¥; + cot ¥;11)h; + hi—1 cosec; + hjtq cosec¥itq, (1)

where ¢; =6, — 0,1 for i =1,2,..., N. Note that 0 < 1; < 7 holds for all i.

Interfacial energy. In the field of material sciences and crystallography, we need
to explain the anisotropy: phenomenon of interface motion which depends on the
normal direction nn. To explain the anisotropy, it is convenient to define an interfacial
energy on the interface or the curve which has line density v(n) > 0. The function
v(n) can be extended to the function & € R? by putting v(x) = |z|y(z/|z|) if  # 0,
otherwise (0) = 0. This extension is called the extension of positively homogeneous
of degree 1, since y(Az) = Ay(z) holds for A > 0 and = € R?. We will use the same
notation -y for the extended function. To observe the characteristic of v, the following
Frank diagram is useful: F, = {n(0)/v(n(9)); 0 € S'} = {x € R* y(x) = 1}. If
the Frank diagram F,, is a convex polygon, v is called crystalline energy. When F,
is a J-sided convex polygon, there exists a set of angles {¢; |d1 < o < -+ < ¢y <
@1 + 27} such that the position vectors of vertices are labeled n(¢;)/v(n(¢;)) in an
anticlockwise order (¢y41 = ¢1):

J

Fy = U1 [V(I;ii)"y(lzjjl)} .

K2

Here and hereafter, we denote v; = n(¢;) for all i. In this case, the Wulff shape
Wy =Npesi{z € R%; x-n(0) < v(n(0))} is also a J-sided convex polygon with the
outward normal vector of the ith edge being v;:

J
Wa,:ﬂ{meRQ; m~ui§'y(ui)}.

i=1

We define a set of normal vectors of W, by N, = {v1,vo,...,v5}.
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Admissibility. Following [6], we call P essentially admissible if and only if the
consecutive outward unit normal vectors n;, ;11 € N (nyi1 = ny) satisfy n/|n| ¢
N, where n = (1 — A\)n; + An;qq for A € (0,1) and ¢ = 1,2,..., N. Note that P
is an essentially admissible convex polygon if and only if A" D A/, holds. We call P
admissible if and only if P is an essentially admissible polygon and N' = A/, holds.
In other words, P is an admissible convex polygon if and only if n; = v; holds for
alli=1,2,...,N =J.

Gradient of the total interfacial energy. Let P be an essentially admissible
N-sided convex polygon with the N-tuple of hight functions h = (hy, he,...,hy).
Then the total interfacial (crystalline) energy on P is

N

En =" y(n)d;[h].

i=1

For two N-tuples ¢ = (¢1,02,...,0n), % = (1,02,...,%¥N) € RV let us define the
inner product on P as (¢, %) = EZ\LI wit;d;[h]. Furthermore, we define the rate of
variation of &,[h] in the direction ¢ and the first variation 6&, [h]/dh as follows:

= grad &,[h] - = (65571?]’“0)2'

Crystalline curvature. The first variation of £,[h] of P at S; is

5, d
§(p - digg’Y[h—i_sD]

e=0

N N

S S il = 3 didle = Y

i=1 1=1 i=1

S

Zﬁm%di[h], 7= 00200,

S

where v; = y(n,;) for all i. Hence we have (6&,[h]/0h); = d;[y]/d;[h] for all ¢ in this
metric (-,-)2. This quantity is called crystalline curvature on the ith edge S;, and
we denote it by A,(n;) = d;[y]/d;[h]. The numerator d;[v| is described as

4] = 1, ()

where [,(n) is the length of the jth edge of W, if n = v; for some j, otherwise
l,(n) = 0. Therefore if P = W, then the crystalline curvature is 1.

An area-preserving motion by crystalline curvature. The enclosed area A
of P is given by

Alb] = 53" hidi A,

Then the rate of variation of A[h] in the direction ¢ is

SAR  d N
650 - £A[h+@] O_;Wzdz[h]'

e=
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By taking ¢; = —(6&,[h]/dh); = —A,(n;), we have 6 A[R]/dp = — Zivzl A (n;)d;[h)].

Hence by taking ¢; = Ay — A, (n;), we have § A[h]/d¢ = 0. Here

N N
A, = Yz Ay(mi)dilh] 3ol ()
chvzl dk £
is the average of the crystalline curvature, and L is the total length of P, i.e.,
L= vazl d;. Thus we have the gradient flow of £, along P which encloses a fixed

area: _
Vi=A,—A,(n), i=12...,N, (2)

where V;(t) = h;i(t) is the normal velocity on S; in the direction n; at the time
t. Here and hereafter, we denote @ by du/dt. From (1), the time derivative of
d;(t) = d;[h] is given by

d; = —(cot ¥; + cot ¥;41)V; + Vi1 cosecd; + Vi1 cosec P41 (3)

for i =1,2,...,N. Note that (2) and (3) are equivalent each other.

Problem 1. For a given essentially admissible closed curve Py, find a family of
essentially admissible curves {P(t)}o<i<r satisfying (2) (or (3)) with P(0) = Py.
Since (3) are the system of ordinary differential equations, the maximal existence
time is positive T' > 0.

Main results. What might happen to P(¢) as ¢t tends to T' < co? For this question,
we have the following three results. The first result is the case where motion is
isotropic and polygon is admissible.

Proposition A. Let the interfacial energy be isotropic v = 1. Assume the initial
polygon Py is an N-sided admissible convex polygon. Then a solution admissible
polygon P(t) of Problem 1 exists globally in time keeping the area enclosed by
the polygon constant A, and P(t) converges to the shape of the boundary of the
Wulff shape OW,, in the Hausdorfl metric as ¢ tends to infinity, where 7v.(n;) =

\/ 2A/ Zszl l1(ng) is constant. In particular, if Py is centrally symmetric with
respect to the origin, then we have an exponential rate of convergence.

This proposition is proved by Yazaki [11] by using the isoperimetric inequality
and the theory of dynamical systems. We note that 0)V,, is the circumscribed
polygon of a circle with radius 7., and then this result is a semi-discrete version
introduced by Gage [3].

The second result is the case where motion is anisotropic and polygon is admis-
sible.
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Proposition B. Let the crystalline energy be v > 0. Assume the initial polygon
Py is an N-sided admissible convex polygon. Then a solution admissible polygon
P(t) of Problem 1 exists globally in time keeping the area enclosed by the polygon
constant A, and P(t) converges to the shape of the boundary of the Wulff shape
OW,, in the Hausdorff metric as ¢ tends to infinity, where v.(n;) = vy(n;)/W,
W = /IW,|/Aforalli=12...,N and |W,| = Z,iv:l v(ng)ly(ng)/2 is enclosed

area of W,.

This proposition is proved in Yazaki [12, Part I] by using the anisoperimetric
inequality or Briinn and Minkowski’s inequality and the theory of dynamical systems
which is a similar technique as in Yazaki [11].

The last result is the case where motion is anisotropic and polygon is essentially
admissible.

Theorem C. Let the crystalline energy be v > 0. Assume the initial polygon Py
is an NN-sided essentially admissible convex polygon. If the maximal existence time
of a solution essentially admissible polygon P(t) of Problem 1 is finite T' < oo, then
there exists the ith edge S; such that lim, .7 d;(¢) = 0 and ,(n;) = 0 hold. That is,
the normal vector of vanishing edge does not belong to N, and infoc¢<r di(t) > 0
holds for all ny € N,.

For any essentially admissible convex polygon Py, is T" a finite value? This is still
open. If the answer of this question is yes, then we have the finite time sequence
Ty < Ty < --- < Ty such that P(T;) is essentially admissible for i =1,2,..., M — 1
and P(Ths) is admissible. In the general case where V; = g(n;, A,(n;)) for all ¢
under certain conditions of g, the answer of the above question is yes. See Yazaki
[13]. However, g does not include A.,.

In the next section, we will prove this theorem.

2. PROOF OF THEOREM C

Suppose the assumption of Theorem C. From the general theory of ordinary differ-
ential equations, a solution of (3) exists uniquely and locally in time. Let T > 0 be
the maximal existence time.

Lemma 1. Assume that the maximal existence time is finite T' < co. Then there
exists ig € {1,2,..., N} such that liminf; ,7 d;,(t) = 0 holds.

Proof. By the CBS inequality, the time derivative of the total interfacial energy
&, (t) = &,[h] is decreasing in time:

5E, ] N
5 _ 'y _ ) . ) L ‘ A ‘
Em T = 2 Mk = 3 A (nVid <0
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Hence we have a finite upper bound of d;(t), since

N
E0)2 &(0= Lm0 2 min AmIL0 2w 2(md) (0

j=
holds for all ¢ = 1,2,..., N and t € [0,T]. Therefore diameter of P(t) is finite for
t € [0,T]. To prove the lemma, we assume that the lower bound of d;(t) is positive,
i.e., infocs<7 di(t) > 0 holds for all 4. Then from (3), we have supy.,.r |di(t)| < oo
for all i. Therefore a solution polygon P(t) exists up tot = T, and P(T) is an N-sided
essentially admissible convex polygon. Hence from the general theory of ordinary
differential equations, a solution polygon exists after 7. This is a contradiction.
Therefore there exists at least one edge S;, such that liminf, .7 d;,(¢) = 0 holds. O

Lemma 2. Assume the same assumption as in Lemma 1. Then lim;_,7 d;,(t) =0
holds.

Proof. If lim; 7 d;,(t) = 0 does not hold, then there exists a positive constant
D > 0 such that limsup,_ ,;d;,(t) = D holds. Hence there exist time sequences
{tm} and {s,,} converging to T as m — oo such that lim,, o di, (tm) = D and
limy, 00 diy(Sm) = 0 hold. Without loss of generality, we can assume that s,, <
tm < Sm41 and that di,(sm) < D/2 < diy(tm). Put ry = sup{t < t,; di (1) <
D/2}. Then ry, € (Sm,tm) and di, > D/2 holds for t € [ry,,ty,]. By mean value
theorem, there exists i, € (rim,tm) such that d;,(um) > D/2 and d;,(pm) =
(dig (tm) — diy (7)) / (tm — ) hold. This yields lim,, o0 di, (pim) = 0.

We will use repeatedly the following isoperimetric inequality:

& N,
= >1 = E =1,
WAzl 2 tan 5 (5)

See e.g., Yazaki [11, Lemma 2.4] for the proof. From (3), we have

g al (i) b e ly(nk) _ 2aly(ng,) b L (ng)
di, () < + < + )
dig (fm) L(pm) D 2vecA
where a = 1/sind;, + 1/sin?;, 41 and b = tan(v;,/2) + tan(dy,11/2). This contra-
dicts to limy,— oo dig (m) = 00. O

Lemma 3. Assume the same assumption as in Lemma 2. Put
Q= {ni € N; lim d;(¢) :O}.
t—T
Then Q C M\, holds.

Proof. By the isoperimetric inequality (5), it holds that maxj<i<n d;(t) >
2v/cA/N, and then there exists at least one k such that info<i<r di(t) > 0. There-
fore @ # N holds.
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One can represent Q as a disjoint sum of Qy; namely Q = @, Qx, where Q;’s
are maximal subsets having my, consecutive elements n; of the form

Qk:{nieg; Z:,]k7.]k+1a7.]k+mk_1}7

with the boundary of Qi: 09y = {n;; i = jr—1, jg+mg}. By the definition, my > 1
holds for each k. Since Q # N, we have 0Q; C N\Q, i.e., infocser d;(t) > 0 holds
for n; € @k 6Qk

Let L;(t) be the straight line extending the ith edge S; of P(¢) for n; € N, and
let p;(t) be the intersection point of L;(¢t) and L;_1(t), i.e., p;(t) is the ith vertex
of P(t) and is described as follows:

hioy — (i1 -ng)hi, hicos¥; — hi_1
Mn;,_1- tl tz - hlnl + sin 191 tl. (6)

p; = hin; +

We denote p = ji — 1 and ¢ = ji + my for simplicity.
By the isoperimetric inequality (5), we have

Vi — Zszl Ly(ng)  1y(ng) < Zg:l Ly(me) L (ny)
' L di 2vecA di ’

Therefore there exists a constant 6 € (0,7") such that supp, .. Vi(t) < 0 for p <
it < gand Ts = T — 6. Hence by the definition of Qy, vertices ppi1(t),...,pq(t)
converge to a point p, ast — 1"

p.€ () [) {zeR% (pi(t) — =) n; >0}

Ts<t<T p<i<q

p<t<q.

Note that the intersection is taken over p < ¢ < ¢ since the sign of V,, and Vj is
unknown. We denote |Qy| = |6, — 6,].

Claim: |Qy| < 7 holds.
Suppose |Qy| > . Without loss of generality, we may assume that 7 < 8, — 6, <
2. Then we have

(Pq — Ppt1) g = (Pqg — Pp) - Mg — dp(tp -mg) > _Tgi<%f<T dp(t)S > 0,
since S = sin(f, — 0,) < 0. Therefore infr, ;7 (pq(t) — Pp+1(t)) - 1y > 0 holds,
which contradicts lim;—,7 p;(t) = p« for i = p+ 1, q. Hence assertion holds.

Claim: |Qy| < 7 holds.

Suppose |Qk| = m. By a geometric inspection, there exist exactly two sets Q1, Qo
such that Q = @i:l Qr and M\ Q = {6,,6,} hold. Then lim;_,r d;(t) = 0 holds for
all i # p, q, and infg<s<7 d;(t) > 0 holds for ¢ = p, q. For any choice of ny € Q1 and
n; € Qq, one can construct a trapezoid surrounded by four lines Ly, (t), L (t), Lq(t)
and L;(t). Here we have assumed that 6, < 6;, < 6, = 0,+7 < 0; < 0,+2m, without
loss of generality. Then this trapezoid includes the enclosed region of P(t) at each
t. Let w(t) be the width between L,(t) and L,(t). Then the area of this trapezoid
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is greater than or equal to A, i.e., (Dp(t) + Dq(t))w(t)/2 > A, where D;(t) is the
length of the edge of this trapezoid on the line L;(t). Let y;;(t) be the intersection
point of L;(t) and L;(t):

(Pj(t) — Pit1(t)) - (£ — pajt;)
1 — pi?

Yij(t) = pit1(t) + aij ()i, ai(t) =

where p;; = t; - t; = cos(6; — 0;). Then we have

Dp = (ypk - ylp) by = (perl - pl+1) “tp + Gpk — Qipllip-

Note that |upr| < 1 and |wp| < 1 hold. Since p; = p; + Zi: dity, we have
lp; — pi|l < L for any j > i (mod N). Hence D, < CL and in the same way
D, < CL hold with a positive constant C' depending only on . By (4), we obtain
D; < C for i = p,q with a positive constant C depending only on N, Py and .
However, since lim;_,7w(t) = 0 and A is constant, lim; 7 D;(t) = oo holds for
i = p,q. This is a contradiction. Hence assertion holds.

Let y(t) be the intersection point of L,(t) and L,(t): y(t) = ype(t). Note that
|ttpg| < 1 holds since 0 < |6, — 0,| < 7, and that y(t) converges to p, ast — T.

By (6), the time derivative of the ith vertex is

) Vi — Vi_1cos v

pi = Vioini_1+ Tﬂitz—ly (7)
Vicost; — Vi

Vin, + bth (8)

sin ¥,

for i = 1,2,...,N. Note that (2), (3) and (7), (8) are equivalent each other. By

using Ppy1 with (7) and p, with (8), we have

cos(0q — 0,)V, — Vqt
sin(6, — 0,) P

y="Vymn,+

Claim: Either n, € N, or n, € N, hold. B
Suppose that n; € N\N, holds for i = p,q. Then we have V; = A, for i = p,q

and ) (6,6
— — 1 —cos(0, —

;= A _ Ny peia Sl S ZAp

Y=~y =Cty, C=A, sin(6, — 6,)

Hence y -m, = A, > 0 and y-t, = —C < 0 hold, and p, = y(T) is in the
region {x € R%* z-n, >0, z-t, <0, 2z = x — y(T5)}. On the other hand,
y-ng=A,>0and y-t, = C > 0 hold, and p. = y(T) is also in the region
{x €R%* 2-ny; >0, z-t, >0, z=x — y(Ts)}. This is a contradiction. Hence
assertion holds.

Since ny,,ng & Q, infr, 1o d;(t) > 0 holds for ¢ = p, ¢, and by the isoperimetric
inequality (5), supz, .;~7 |Vi(t)| < oo holds for i = p,q. Then there is a constant C,
such that supz, ;7 [9(t)| < C. holds.

Suppose that @ C N\N,, does not hold. Then we may choose a k such that
Qr NN, # 0. Hence there exists at least one normal vector, say n, € Qi NN, such
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that p < 7 < ¢ holds, and supy, ;.7 V;-(t) < 0 and lim; .7 V,.(t) = —oo hold. We
define

a(t) = (y(t) — p«) - n,,  b(t) = dist(ps, L (1)) = (pr(t) — ps) - 1.

Then a(t) > b(t) holds for t € (T5,T) and lim; 7 a(t) = lim; 7 b(t) = 0 holds.

Therefore by a(t) = —y(t) - n,, |a(t)| < Cx and b=V, <0, for ¢t € (T5,T) there
exists n € (¢,T) such that

T T
0< —/t V() dr = —/t b(r) dr = b(t) < a(t) = —a(n)(T —t) < Cu(T — 1).

This contradicts the fact V,, — —occ ast — T.
Hence Q; NN, =0 for all k, i.e., @ C N\N,, holds. O

Proof of Theorem C. By Lemma 2, if the maximal existence time if finite
T < oo, then there exists at least one edge S; such that lim; 7 d;(t) = 0 holds.
Furthermore, Lemma 3 follows that if the ith edge S; disappears at T', then n; €
N\N; holds, and info<i«7 di(t) > 0 holds for all ny, € N. O
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