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THE MULTISAMPLE VERSION OF THE LEPAGE TEST

Frantǐsek Rubĺık

The two-sample Lepage test, devised for testing equality of the location and scale pa-
rameters against the alternative that at least for one of the parameters the equality does
not hold, is extended to the general case of k > 1 sampled populations. It is shown that
its limiting distribution is the chi-square distribution with 2(k − 1) degrees of freedom.
This k-sample statistic is shown to yield consistent test and a formula for its noncentral-
ity parameter under Pitman alternatives is derived. For some particular alternatives, the
power of the k-sample test is compared with the power of the Kruskal–Wallis test or with
the power of the Ansari–Bradley test by means of simulation estimates. Multiple compar-
ison methods for detecting differing populations, based on this multisample version of the
Lepage test or on the multisample version of the Ansari–Bradley test, are also constructed.

Keywords: multisample rank test for location and scale, Lepage statistic, consistency, non-
centrality parameter, multiple comparisons for location and scale parameters

AMS Subject Classification: 62G10

1. INTRODUCTION

Perhaps the most widely used two-sample rank test of equality of location parameters
is the Wilcoxon–Mann–Whitney test, constructed by Wilcoxon in [24] and by Mann
and Whitney in [16]. Its practical use is explained in currently used monographs
like [3] or [10]. When it is desirable to test the equality of the scale parameters of
two underlying populations by means of a rank test, then in the case of the equal
medians usually the Ansari–Bradley test, constructed in [1] is used, the formulas and
tables for this test can be found also in [10]. However, while the Wilcoxon–Mann–
Whitney test does not react well to changes in the scale parameters when the location
remains constant, analogously the Ansari–Bradley test has not good sensitivity to
changes in the location parameters when the scale remains constant. For testing the
hypothesis of equality both of the location and scale parameters of two populations
against the alternative that at least for one of the parameters the equality does not
hold, the monograph [10] recommends to use the Lepage test constructed in [14].
The Lepage test statistic is a combination of the Wilcoxon–Mann–Whitney and the
Ansari–Bradley test statistics; a version of this two-sample test, based on general
scores, has been studied also in [5].

Since the Lepage test statistic has under the null hypothesis asymptotically the
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chi-square distribution with 2 degrees of freedom, it can be used either by means
of tables from [15] and [10], or with the help of the asymptotic approximation by
means of the critical values of the chi-square distribution. A multisample version
of the Ansari–Bradley test statistic was proposed by Puri in [18] (more detailed
computational formulas for this multisample statistic are given in [23]). Further, it
is well known that the multisample extension of the Wilcoxon–Mann–Whitney test
is the Kruskal–Wallis test (described in [12] and [13]), because in the two sample case
both the tests yield the same critical region for testing the equality of the location
parameters. In an analogy with the two-sample case, the multisample version of
the Lepage statistic is in the Section 2 proposed to be the sum of the Kruskal–
Wallis and the Ansari–Bradley statistics. Consistency of the resulting test, limiting
distribution of this multisample statistic and its behaviour under Pitman alternatives
are the topic of Theorem 2.1 of the mentioned section.

A general assertion on multiple comparison procedure is in Theorem 2.2, a pro-
cedure for detecting populations differing in scale parameters (when the location
parameters are assumed to be equal but can be unknown) is derived by means of
Theorem 2.3 (II) and labelled as (2.42) and (2.43). A multiple comparison proce-
dure for detecting difference either in the location or in the scale parameter (and
aimed also at the use in conjunction with the multisample version of the Lepage
test statistic) is derived by means of Theorem 2.4 and labelled as (2.46) – (2.47). In
principle, all the comparison rules constructed in this paper can be used with their
exact critical constants based on the uniform distribution of the ranks of the pooled
random sample, but similarly as in the case of the multisample tests, only the crit-
ical constants of the constructed rules based on the asymptotic approximation are
mentioned, because the tables of the exact constants including all possible sample
sizes with values in a chosen bounded range would be very extensive.

The Section 2 contains also some simulation results on the power of the Kruskal–
Wallis, the Ansari–Bradley and the multivariate extension of the Lepage test. The
proofs of the assertions of the Section 2, as well as some assertions on limiting
distribution of location-scale problem test statistics based on general score functions,
can be found in the Section 3.

2. MAIN RESULTS

It is supposed throughout the paper that Xj1, . . . , Xjnj is a random sample from
the distribution with a continuous distribution function Fj(x) and these j = 1, . . . , k
random samples are independent. The topic is the statistical inference on the null
hypothesis

H0 : F1 ≡ F2 ≡ . . . ≡ Fk . (2.1)

Behaviour of the tests under the alternative will be described by means of the fol-
lowing assumption.
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(A1) For j = 1, . . . , k the sample Xj1, . . . , Xjnj is a random sample from the dis-
tribution of the random variable

ζj = σjεj + µj (2.2)

where σj > 0, µj are real numbers and ε1, . . . , εk are independent identically dis-
tributed random variables with the continuous distribution function

F (x) = P (εj < x) . (2.3)

Let
N = n1 + . . .+ nk (2.4)

denote the total sample size. The sample sizes are such that

min(n1, . . . , nk) −→∞ , (2.5)

and for the relative sample sizes
p̂j =

nj
N

(2.6)
the relations

lim p̂j = pj > 0 , j = 1, . . . , k (2.7)

hold.

It is assumed in (A1) that nj = n
(u)
j , where u = 1, 2, . . . denotes the index of

the experiment. Hence also N = N (u), p̂j = p̂
(u)
j and by the limit in (2.7) one

understands the limit as u tends to infinity. The location and scale parameters µj ,
σj are in (2.2) described as being fixed, and this is how (A1) will be used in the
assertion (II) of Theorem 2.1. However, in the third part of the mentioned theorem
they are allowed to vary with u in the way, described in (2.21). For the sake of
brevity, in most cases the index u of the experiment will be omitted.

Under validity of (A1) the null hypothesis (2.1) can be expressed as

H0 : µ1 = µ2 = . . . = µk , σ1 = σ2 = . . . = σk . (2.8)

Now assume that

X = (X11, . . . , X1n1 , . . . , Xj1, . . . , Xjnj , . . . , Xk1, . . . , Xknk) (2.9)

denotes the pooled random sample and

R(N) = (R11, . . . , R1n1 , . . . , Rj1, . . . , Rjnj , . . . , Rk1, . . . , Rknk) (2.10)

denotes its ranks, i. e., Rj1, . . . , Rjnj are the ranks of the sample from the jth pop-
ulation.

The multisample Ansari–Bradley statistic will be defined by means of the score
vector

bN =





(1, 2, 3, . . . ,m,m, . . . , 3, 2, 1) N = 2m,

(
1, 2, 3, . . . ,m, N+1

2 ,m, . . . , 3, 2, 1
)

N = 2m+ 1 ,
(2.11)
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and the partial sums

S
(b)
j =

nj∑

i=1

bN (Rji) , j = 1, . . . , k . (2.12)

Put

v2
N =





N(N2−4)
48(N−1) N even,

(N+1)(N2+3)
48N N odd,

(2.13)

µ̃N =





(N+2)
4 N even,

(N+1)2

4N N odd.
(2.14)

The multisample version of the Ansari–Bradley statistic is defined by the formula

TB =
1
v2
N

k∑

j=1

nj

(
S

(b)
j

nj
− µ̃N

)2

=
1
v2
N

k∑

j=1

(
S

(b)
j − nj µ̃N

)2

nj
, (2.15)

which is equivalent to the expression for the multisample Ansari–Bradley statistic,
given on p. 792 of [23].

Let

w2
N =

N(N + 1)
12

(2.16)

and the partial sum

Sj =
nj∑

i=1

Rji . (2.17)

Then

TK =
1
w2
N

k∑

j=1

nj

(Sj
nj
− N + 1

2

)2

=
1
w2
N

k∑

j=1

(
Sj − nj

N+1
2

)2

nj
(2.18)

is the well-known Kruskal–Wallis test statistic.

Theorem 2.1. Put
T = TK + TB . (2.19)

(I) Suppose that for the continuous distribution functions mentioned at the be-
ginning of the section the hypothesis (2.1) holds. If also (2.5) is fulfilled, then the
statistic (2.19) is asymptotically χ2-distributed with 2(k − 1) degrees of freedom.

(II) Suppose that (A1) holds. Then the test of (2.8) based on (2.19) is consistent,
i. e., if (2.8) is not fulfilled, then for the statistic (2.19)

limP (T > t) = 1 (2.20)
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for every positive real number t.

(III) Let us assume that for j = 1, . . . , k the sample Xj1, . . . , Xjnj is a random
sample from the distribution of the random variable (2.2) where µj , σj depend on
the index u of the experiment in such a way that

σj = σ
(u)
j = σ+

σ∗j√
N
, µj = µ

(u)
j = µ+

µ∗j√
N
, σ > 0, µ , σ∗j , µ

∗
j are real numbers.

(2.21)
Suppose that both (2.5) and (2.7) hold. If the distribution function (2.3) possesses
with respect to the Lebesgue measure a bounded density f , which is continuous at
every x (with the possible exception of the finite number of real numbers) and

∫ +∞

−∞
|x|f(x) dx < +∞ , (2.22)

then the statistic (2.19) has asymptotically the chi-square distribution with 2(k−1)
degrees of freedom and the noncentrality parameter

δT = δK + δB , δK = 12
k∑

j=1

pj(ν
(ϕ)
j )2 , δB = 48

k∑

j=1

pj(ν
(ψ)
j )2 , (2.23)

where

ν
(ϕ)
j =

∫ +∞

−∞

(
σ∗j − σ

σ
x+

µ∗j − µ

σ

)
f2(x) dx , (2.24)

ν
(ψ)
j =

∫ +∞

−∞

(
σ∗j − σ

σ
x+

µ∗j − µ

σ

)
sign(0.5− F (x))f2(x) dx , (2.25)

σ =
k∑

j=1

pjσ
∗
j , µ =

k∑

j=1

pjµ
∗
j . (2.26)

The statistic (2.19) is designed for the situation, when Fj(x) = F ((x − µj)/σj)
and F is a continuous distribution function. If the observed value of T is greater than
the 1 − α quantile of the chi-square distribution with 2(k − 1) degrees of freedom,
then the null hypothesis (2.1), corresponding in this case to (2.8), is rejected.

According to (II) of the previous theorem the test based on (2.19) is consistent at
any fixed alternative µ1, σ1 > 0, . . . , µk, σk > 0 not fulfilling (2.8). For the Pitman
alternatives (2.21) the noncentrality parameter (2.23) of T is the sum of components
δK and δB , corresponding to the Kruskal–Wallis test and the Ansari–Bradley test,
respectively. If in addition to the assumptions of Theorem 2.1 (III) for the density
f the equality f(x) = f(−x) holds for all x, then from the asymptotic local point of
view according to (2.23) – (2.26) the Kruskal–Wallis statistic contributes to the over-
all power only through a response to the location and the Ansari–Bradley statistic
only through a response to the scale parameter.
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If the assumptions of the assertion (III) of the previous theorem hold in the
normality setting, i. e., if the random variables ε1, . . . , εk are N(0, 1) distributed,
then an application of (2.23) yields that in this case the noncentrality parameter

δT =
3
π

k∑

j=1

pj
(µ∗j − µ)2

σ2
+

12
π2

k∑

j=1

pj
(σ∗j − σ)2

σ2
. (2.27)

The asymptotically optimal statistic for testing (2.8) based on the normality as-
sumption is the likelihood ratio test statistic (its optimality in the sense of exact
slopes follows from Theorem 3.1 of [21]). After some computation one obtains from
the Corollary 1.2 and the formulas (1.21), (1.28) of [22] that in the normality setting
under the local alternatives (2.21) the likelihood ratio statistic has asymptically chi-
square distribution with 2(k−1) degrees of freedom and the non-centrality parameter

λ =
k∑

j=1

pj
(µ∗j − µ)2

σ2
+ 2

k∑

j=1

pj
(σ∗j − σ)2

σ2
. (2.28)

Thus
0.6079 =

6
π2

≤ δT
λ
≤ 3
π

= 0.9549 , (2.29)

where the lower bound is attained if there is no change in the location and the upper
bound is attained when there is no change in the scale parameter.

The following tables contain simulation results on the fit of the size of the test
based on (2.19) with a chosen significance level or results concerning the comparison

Table 1. Simulation estimates of the tail probabilities
under validity of (2.1) for k=3.

n1 n2 n3 6, 6, 6 10, 10, 10 10, 10, 15
α 0.05 0.1 0.05 0.1 0.05 0.1

P
“
TB > χ2

α(k − 1)
”

0.038 0.090 0.044 0.096 0.047 0.102

P
“
TK > χ2

α(k − 1)
”

0.041 0.098 0.050 0.103 0.046 0.093

P
“

T > χ2
α(2(k − 1))

”
0.031 0.075 0.040 0.091 0.042 0.091

n1 n2 n3 10, 15, 15 15, 15, 15 20, 20, 20
α 0.05 0.1 0.05 0.1 0.05 0.1

P
“
TB > χ2

α(k − 1)
”

0.046 0.102 0.046 0.102 0.050 0.099

P
“
TK > χ2

α(k − 1)
”

0.048 0.101 0.046 0.097 0.052 0.104

P
“

T > χ2
α(2(k − 1))

”
0.041 0.100 0.042 0.094 0.048 0.099

of this test with the Kruskal–Wallis and the Ansari–Bradley test. The simulation
estimates in all tables are based on N = 10000 trials for each particular case. In
Table 1 (as well as in the whole text) χ2

α(m) denotes the 1 − α quantile of the
chi-square distribution with m degrees of freedom.
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The simulation results from Table 1 suggest that for k = 3 the approximation
of the exact critical constant of the statistic (2.19) with its asymptotic counterpart
χ2
α(2(k − 1)) yields size of the test close to the nominal significance level when all

sample sizes are at least 10, for smaller sample sizes the size of the test usually
remains below the nominal value.

The Ansari–Bradley test, designed for testing the equality of the scale parameters,
rejects the null hypothesis (2.1) if TB > χ2

α(k − 1), and the Kruskal–Wallis test
designed for testing the equality of the location parameters rejects (2.1) if TK >
χ2
α(k − 1). The behaviour of these tests in situations when the null hypothesis is

violated only in one type of the parameter, is illustrated by simulation estimates of
their power, when for j = 1, 2, 3 the jth random sample of size nj is taken from the
normal distribution with the mean µj and the variance σ2

j .

Table 2. Simulation estimates of the power when the change occurs
in the location parameter.

µ1 = 0, µ2 = 0, µ3 = 0.5, σ1 = σ2 = σ3 = 1

n1 n2 n3 10, 10, 10 10, 15, 15 15, 15, 15 15, 25, 35

α 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

P
“
TB > χ2

α(k − 1)
”

0.042 0.091 0.042 0.091 0.046 0.096 0.045 0.092

P
“
TK > χ2

α(k − 1)
”

0.159 0.266 0.217 0.335 0.241 0.365 0.438 0.569

P
“
T > χ2

α(2(k − 1))
”

0.105 0.198 0.147 0.257 0.166 0.280 0.325 0.464

Table 3. Simulation estimates of the power when the change occurs
in the scale parameter.

µ1 = µ2 = µ3 = 0, σ1 = 1, σ2 = 1, σ3 = 1.5

n1 n2 n3 10, 10, 10 10, 15, 15 15, 15, 15 15, 25, 35

α 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

P
“
TB > χ2

α(k − 1)
”

0.131 0.225 0.177 0.281 0.199 0.309 0.345 0.468

P
“
TK > χ2

α(k − 1)
”

0.049 0.103 0.046 0.096 0.049 0.104 0.042 0.089

P
“
T > χ2

α(2(k − 1))
”

0.093 0.183 0.125 0.219 0.143 0.246 0.245 0.367

The results in the Tables 2 and 3 show that while T may react to the parameter
change weaker than the statistic designed especially for the underlying type of al-
ternative, T reacts more strongly when compared with the statistic not designed for
the given alternative (as the mentioned results show the latter may not at all react,
because in Table 2 the power of the Ansari–Bradley test coincides with the nominal
level of significance and the same situation is in Table 3 with the Kruskal–Wallis
test). Therefore if one is not sure what type of the alternative (either location or
scale change) will occur in practice, the test of (2.1) based on T is preferable to the
Ansari–Bradley and to the Kruskal–Wallis test.
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The alternative that the change will occur merely in the location or merely in
the scale parameter can sometimes be perceived as not to be of the proper nature,
because in some situations the increase of the response level (i. e., the increase of the
location parameter) is accompanied with an increase of its variability. Behaviour
of the previously mentioned tests in such a situation is illustrated by the power
estimates given in the following table, where as in the previous cases nj denotes
size of the sample from the normal distribution with mean µj and the standard
deviation σj .

Table 4. Simulation estimates of the power when the change occurs
both in the location and in the scale parameter.

µ1 = 0, σ1 = 1, µ2 = 0.3, σ2 = 1.5, µ3 = 0.8, σ3 = 2

n1 n2 n3 10, 10, 10 10, 15, 15 15, 15, 15 15, 25, 35

α 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

P
“
TB > χ2

α(k − 1)
”

0.213 0.330 0.241 0.370 0.334 0.470 0.430 0.573

P
“
TK > χ2

α(k − 1)
”

0.137 0.232 0.151 0.253 0.199 0.307 0.263 0.392

P
“
T > χ2

α(2(k − 1))
”

0.221 0.363 0.260 0.412 0.390 0.540 0.539 0.691

The simulation results presented in Table 4 suggest that when the change in the
location parameter is comparable with the change in the scale, then it may happen
that the test based on (2.19) will be more powerful than the Ansari–Bradley or the
Kruskal–Wallis test.

Before proceeding with a multiple comparison procedure based on (2.19) we pay
attention to procedures based on the components of this statistic.

It is observed on p. 131 of [4] that an analogue of the pairwise multiple comparison
procedure using the Wilcoxon scores and constructed ibidem, can also be constructed
in the joint ranking case. The following theorem is an extension of this assertion
into a general framework. In this theorem the quantity Q(α)

k fulfills the equality

P

(
max

1≤i,j≤k
|yi − yj | > Q

(α)
k

∣∣∣L(y) = Nk(0, Ik)
)

= α , (2.30)

where yi denotes the ith coordinate of y and Ik is the k×k identity matrix, i. e., Q(α)
k

denotes the 1− α quantile of the maximum modulus of the Nk(0, Ik) distribution.

Theorem 2.2. Let (2.1), (2.5) and (2.7) hold. Suppose that ϕ : (0, 1) −→ E1 is
a function expressible as a finite sum of monotone square integrable functions such
that for ϕ =

∫ 1

0
ϕ(u) du

Vϕ =
∫ 1

0

(ϕ(u)− ϕ)2 du

is a positive real number. Let the scores

aN (j) = dN ϕ

(
j

(N + 1)

)
, j = 1, . . . , N , (2.31)
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where the real number dN 6= 0. Put

σ2
N =

1
N − 1

N∑

j=1

(aN (j)− aN )2 , (2.32)

where aN stands for the arithmetic mean of aN (1), . . . , aN (N). For j = 1, . . . , k let
(cf. (2.10))

S
(ϕ)
j =

nj∑

i=1

aN (Rji) (2.33)

and for j1 < j2

D
(ϕ)
j1j2

=

S
(ϕ)
j1
nj1

− S
(ϕ)
j2
nj2√

1
nj1

+ 1
nj2

√
2
σ2
N

. (2.34)

For the statistic M (ϕ)
n1,...,nk = max

{∣∣D(ϕ)
j1j2

∣∣; 1 ≤ j1 < j2 ≤ k
}

the convergence (cf.
(2.30))

P
(
M (ϕ)
n1,...,nk

> Q
(α)
k

)
−→ γ ≤ α (2.35)

holds, and if p1 = . . . pk = 1
k , then γ = α.

An application of the previous assertion yields the following theorem.

Theorem 2.3. Let (2.1), (2.5) and (2.7) hold.
(I) Suppose that

M (ϕ)
n1,...,nk

= max
{∣∣D(ϕ)

j1j2

∣∣; 1 ≤ j1 < j2 ≤ k
}
, (2.36)

D
(ϕ)
j1j2

=

√
24

N(N + 1)

Sj1
nj1

− Sj2
nj2√

1
nj1

+ 1
nj2

, (2.37)

where Sj is the partial sum (2.17). Then the convergence (2.35) holds and γ = α if
p1 = . . . pk = 1

k .
(II) Suppose that

M (ψ)
n1,...,nk

= max
{∣∣D(ψ)

j1j2

∣∣; 1 ≤ j1 < j2 ≤ k
}
, (2.38)

D
(ψ)
j1j2

=

√
2
v2
N

S
(b)
j1
nj1

− S
(b)
j2
nj2√

1
nj1

+ 1
nj2

, (2.39)

where v2
N is defined in (2.13) and S(b)

j is the partial sum (2.12). Then the convergence

P
(
M (ψ)
n1,...,nk

> Q
(α)
k

)
−→ γ ≤ α (2.40)
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holds and γ = α if p1 = . . . pk = 1
k .

By means of the previous theorem we construct multiple comparisons procedures,
used in conjunction with the concerned test rejecting the null hypothesis (2.1) if the
test statistic exceeds the quantile of the chi-square distribution.

The Kruskal–Wallis statistic (2.18) is designed for the situation, when Fj(x) =
F (x−µj). If for the observed value of TK the inequality TK > χ2

α(k−1) holds, then
the null hypothesis (2.1) is rejected. Declare the j1th and the j2th populations to
be different (i. e., the location parameters µj1 6= µj2), if for (2.37) the inequality

|D(ϕ)
j1j2

| > Q
(α)
k (2.41)

holds. If n1 = . . . = nk = n, then the rule (2.41) becomes

1
n

√
12

k(kn+ 1)
|Sj1 − Sj2 | > Q

(α)
k ,

which is the Nemenyi method for equal sample sizes, derived in [17]. It should be
noted here that the rule (2.41) is an improvement of the rule (110) from p. 166 of
[17] because of the reduction of the size of its critical constant.

The multisample version (2.15) of the Ansari–Bradley statistic is designed for the
situation, when Fj(x) = F (x/σj). If for the observed value of TB the inequality
TB > χ2

α(k − 1) holds, then the null hypothesis (2.1) is rejected. Declare the j1th
and the j2th populations to be different (i. e., the scale parameters σj1 6= σj2), if for
(2.39) the inequality

|D(ψ)
j1j2

| > Q
(α)
k (2.42)

holds. If n1 = . . . = nk = n, then the rule (2.42) becomes

|S(b)
j1
− S

(b)
j2
|√

nv2
N

> Q
(α)
k . (2.43)

Theorem 2.4. Let (2.1), (2.5) and (2.7) hold. Suppose that (cf. (2.36) – (2.39))

Mn1,...,nk = max {M (ϕ)
n1,...,nk

, M (ψ)
n1,...,nk

} . (2.44)

If α ∈ (0, 1) and β = 1−√1− α, then the convergence (cf. (2.30))

P
(
Mn1,...,nk > Q

(β)
k

)
−→ γ ≤ α (2.45)

holds and γ = α if p1 = . . . pk = 1
k .

As has already been mentioned, the statistic (2.19) is designed for the situation,
when Fj(x) = F ((x − µj)/σj). If for the observed value of T the inequality T >
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χ2
α(2(k − 1)) holds, then the null hypothesis (2.8) is rejected. Declare the j1th and

the j2th populations to be different if for (2.37), (2.39) at least one of the inequalities

|D(ϕ)
j1j2

| > Q
(β)
k , (2.46)

|D(ψ)
j1j2

| > Q
(β)
k , (2.47)

holds; here
β = 1−√1− α (2.48)

and as in the previous cases, the constant Q(β)
k is defined by means of (2.30). The

validity of (2.46) is interpreted as the difference µj1 6= µj2 of the location parameters
and the validity of (2.47) as the difference σj1 6= σj2 of the scale parameters. The
tables of the constants fulfilling (2.30) are published in [8], but since for the usual
significance levels α the quantity (2.48) has values not included in these tables, the
use of the approximation

β =
α

2
can be recommended, because the use of the rule (2.46) – (2.47) with a chosen β
corresponds to the significance level α = 2β − β2 of the test and the critical con-
stants Q used in the multiple comparisons rules of this paper are of approximative
asymptotic nature.

3. PROOFS

The assertion of Theorem 2.1 (I) on the limiting null distribution will be carried out
by means of the following theorem.

Theorem 3.1. Let us assume that ϕ : (0, 1) → E1, ψ : (0, 1) → E1 and each of
these functions is expressible as a finite sum of monotone square integrable functions.
Put

ϕ =
∫ 1

0

ϕ(u) du , ψ =
∫ 1

0

ψ(u) du

Vϕ =
∫ 1

0

(ϕ(u)− ϕ)2 du , Vψ =
∫ 1

0

(ψ(u)− ψ)2 du ,

Vϕ,ψ =
∫ 1

0

(ϕ(u)− ϕ)(ψ(u)− ψ) du ,

(3.1)

and suppose that the matrix

V =
(

Vϕ Vϕ,ψ
Vϕ,ψ Vψ

)
(3.2)

is regular. For j = 1, . . . , k let (cf. (2.10), (2.4))

S
(ϕ)
j =

nj∑

i=1

ϕ

(
Rji
N + 1

)
, σ2 ,ϕ

N =
1

N − 1

N∑

i=1

(
ϕ
( i

N + 1

)
− ϕ̃

)2

,

ϕ̃ =
1
N

N∑

i=1

ϕ

(
i

N + 1

)
,

(3.3)
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and the quantities S(ψ)
j , σ2 ,ψ

N , ψ̃ are defined similarly. Let both (2.1) and (2.5) hold.
(I) Suppose that the relative sample sizes (2.6) are such that p̂j → pj . Put

Z = (ξ1, . . . , ξk, η1, . . . , ηk)′ , ξj =
S

(ϕ)
j − njϕ̃√
njσ

2 ,ϕ
N

, ηj =
S

(ψ)
j − njψ̃√
njσ

2 ,ψ
N

. (3.4)

Then
Z −→ N2k(0,KV ⊗A(p)) (3.5)

in distribution. Here

KV =




1 Vϕ,ψ√
VϕVψ

Vϕ,ψ√
VϕVψ

1


 , A(p) = Ik −√p(

√
p)′ ,

√
p =




√
p1

...√
pk


 (3.6)

and ⊗ denotes the Kronecker product of matrices.
(II) The statistic

S2 =
VϕVψ

VϕVψ − (Vϕ,ψ)2
(Qϕ +Qψ −Qϕ,ψ) , (3.7)

where

Qϕ =
1

σ2 ,ϕ
N

k∑

j=1

nj

(S(ϕ)
j

nj
− ϕ̃

)2

, Qψ =
1

σ2 ,ψ
N

k∑

j=1

nj

(S(ψ)
j

nj
− ψ̃

)2

, (3.8)

Qϕ,ψ =
2Vϕ,ψ√

VϕVψσ
2 ,ϕ
N σ2 ,ψ

N

k∑

j=1

nj

(S(ϕ)
j

nj
− ϕ̃

)(S(ψ)
j

nj
− ψ̃

)
, (3.9)

converges in distribution to the chi-square distribution with 2(k − 1) degrees of
freedom.

Since the previous theorem can be proved similarly as the Theorem on p. 170 of
[7] by means of Lemma a on p. 164 ibidem, the proof is omitted.

P r o o f o f T h e o r e m 2.1. (I) Suppose that the functions of the argument
x ∈ (0, 1)

ϕ(x) = x , ψ(x) = min {x, 1− x} . (3.10)

Then the quantities (3.1) are

Vϕ =
1
12
, Vψ =

1
48
, Vϕ,ψ = 0 , (3.11)

and ϕ, ψ fulfill the assumptions of the previous theorem. Since j = (N+1)ϕ(j/(N+
1)) and the coordinates of the vector (2.11) fulfill the equality

bN (j) = (N + 1)ψ(
j

N + 1
) , j = 1, . . . , N , (3.12)
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the validity of the assertion (I) of Theorem 2.1 can be verified by means of Theo-
rem 3.1. ¤

The assertions (II) and (III) of Theorem 2.1 deal with the behaviour of the statis-
tic under the alternative. Their proof will be carried out by means of the version of
the Chernoff–Savage theorem stated in the next text. Since this version uses the fol-
lowing assumptions (A2) on existence of the derivatives of the score function which
are slightly different from usually used conditions, we prefer to include it into the
paper in order to make clear what a precise kind of assertion forms the base for the
concerned proof.

(A2) ψ : (0, 1) → E1 and there exist bounded functions g
(i)
ψ : (0, 1) → E1,

i = 1, 2 and finitely many real numbers a0 = 0 < . . . < as = 1 such that for
all u ∈ (0, 1)− {a0, . . . , as} the first two derivatives of ψ exist and

ψ′(u) = g
(1)
ψ (u) , ψ′′(u) = g

(2)
ψ (u) ,

g
(1)
ψ is right-continuous and

ψ(t2)− ψ(t1) =
∫ t2

t1

g
(1)
ψ (t) dt , g

(1)
ψ (u2)− g

(1)
ψ (u1) =

∫ u2

u1

g
(2)
ψ (t) dt

for all 0 < t1 < t2 < 1, the second equality holds whenever u1 < u2 belong to
(ai, ai+1) and i = 0, . . . , s− 1.

Theorem 3.2. Suppose that (2.10) denotes the ranks of the pooled random sample
(2.9), the relations (2.5), (2.7) hold and put

Ĥ(x) =
k∑

j=1

p̂jFj(x) , H(x) =
k∑

j=1

pjFj(x) . (3.13)

(I) Assume that the function ψ : (0, 1) → E1 fulfils (A2). Let (cf. (3.3))

T
(ψ)
j =

S
(ψ)
j

nj
, µ

(ψ)
j =

∫ +∞

−∞
ψ(Ĥ(x)) dFj(x) , (3.14)

T (ψ) = (T (ψ)
1 , . . . , T

(ψ)
k )′ , µ(ψ) = (µ(ψ)

1 , . . . , µ
(ψ)
k )′ . (3.15)

Then the convergence in distribution
√
N(T (ψ) − µ(ψ)) −→ Nk(0, Σ) (3.16)

holds. Here the diagonal elements of the asymptotic covariance matrix

Σii = 2
k∑
j=1
j 6=i

k∑
t=1
t 6=i

pjpt
pi

Ii,j,t + 2
k∑
j=1
j 6=i

pjIj,i,i ,
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and the off-diagonal elements

Σir =
k∑

j=1

pj(Ij,i,r + Ij,r,i − Ii,j,r − Ii,r,j − Ir,i,j − Ir,j,i) ,

where

Ii,j,t =

∫ ∫
Fi(x)(1− Fi(y))g

(1)
ψ (H(x))g(1)

ψ (H(y)) dFj(x)dFt(y) .

x<y

(II) Suppose that for j = 1, . . . , k the distribution function Fj depends on the
index u of the experiment in such way that

Fj(x) = F

(
x− µ

(u)
j

σ
(u)
j

)
, (3.17)

where F is the continuous distribution function (2.3),

lim
u→∞

σ
(u)
j = σ , lim

u→∞
µ

(u)
j = µ (3.18)

and σ > 0, µ are real numbers. Let the score functions ϕ, ψ fulfill (A2) and, similarly
as in (3.14), (3.15),

T (ϕ) = (T (ϕ)
1 , . . . , T

(ϕ)
k )′ , µ(ϕ) = (µ(ϕ)

1 , . . . , µ
(ϕ)
k )′ . (3.19)

Then for

T =
(

T (ϕ)

T (ψ)

)
, µ =

(
µ(ϕ)

µ(ψ)

)
, (3.20)

the weak convergence of distributions

L
(√

N(T − µ)
)
−→ N2k(0,Ξ) (3.21)

holds. Here (cf. (3.1) )

Ξ =
(
VϕΓ Vϕ,ψΓ
Vϕ,ψΓ VψΓ

)
, Γ = diag

( 1
p1
, . . . ,

1
pk

)
−11′ , 1 = (1, . . . , 1)′ ∈ Ek .

(3.22)

We remark that the previous theorem can be proved in the same way as Theo-
rem 1 and its Corollary 2 in [2], Theorem 3.6.5 on p. 104 of [19] (the formulas for
the asymptotic covariance matrix can be found also in [6]), the second part of the
previous theorem can be proved similarly as Theorem 5.6.1 on p. 204 of [19].

P r o o f o f T h e o r e m 2.1. (II). Suppose that (2.8) does not hold and put (cf.
(2.2))

qi,j =

{
P (ζi > ζj) i 6= j ,

1
2 i = j .

(3.23)
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If there exists i such that for the limits (2.7) the inequality
∑
j pjqi,j 6= 1

2 holds,
then according to Lemma 5.3 of [12] the test based on TK is consistent and since
T ≥ TK , the relation (2.20) holds. Assume therefore that

k∑

j=1

pjqi,j =
1
2
, i = 1, . . . , k . (3.24)

Since T ≥ TB , it is sufficient to prove that the test based on TB is consistent.
However,

TB = (v2
N/N

2)−1
k∑

j=1

t̃ 2j , t̃j =
1√
njN2

(
S

(b)
j − nj µ̃N

)
,

which means that it is enough to show that for some j the test based on |t̃j | is
consistent. But

Var(t̃j |H0) −→ 1− pj
48

and therefore it is sufficient to prove that for some j and

tj = t
(u)
j =

1
njN

S
(b)
j (3.25)

the equality

lim
u→∞

P

(
|tj − E(tj |H0)|√

Var(tj |H0)
> γ

)
= 1 (3.26)

holds for each positive real number γ. Assume for a while that j is fixed and put
(cf. (3.13))

µN =
1
2
−

∫ +∞

−∞

∣∣∣∣Ĥ(x)− 1
2

∣∣∣∣ dFj(x) , µ0 = E(tj |H0) .

The limit Dj = limu→∞(µN − µ0) exists and

Dj =
1
4
−

∫ +∞

−∞

∣∣∣∣H(x)− 1
2

∣∣∣∣ dFj(x) . (3.27)

It follows from the formula (3.16) of the Chernoff–Savage theorem that (3.26) will
hold if Dj 6= 0. We shall find an index j with this property.

Choose a number x0 such that

H(x0) =
1
2
. (3.28)

Since the random variables (2.2) are independent, for j 6= i

Fi(x) = P (ζi < x) = P (ζi < ζj |ζj = x)
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and therefore ∫ x0

−∞
Fi(x) dFj(x) = P (ζi < ζj , ζj < x0) .

Making use of these properties of the conditional distribution, (3.24) and the fact
that Fj(x) is uniformly distributed, after some computation one obtains that

Dj =
1
4

+ pjFj(x0)2 − Fj(x0) + 2
∫ x0

−∞


∑

i6=j
piFi(x)


 dFj(x) .

Hence

Dj =
1
4
− Fj(x0) + 2

∫ x0

−∞
H(x) dFj(x) . (3.29)

Apply to the integral in this equality the integration by parts. Then (3.29) and
(3.28) yield

Dj =
1
4
− 2

∫ x0

−∞
Fj(x) dH(x) . (3.30)

According to the assumptions

Fi(x) = F (aix+ bi) , i = 1, . . . , k . (3.31)

Suppose that the equality
a1 = . . . = ak (3.32)

would hold and for the sake of simplicity of notation assume that b1 ≤ b2 ≤ . . . ≤ bk.
Since (2.8) does not hold, obviously bi0 < bi0+1 for some i0. But by means of (3.32)

qk,i = P (εi − εk ≤ bi − bk)

and since εi, εk are i.i.d. with a continuous distribution function, qk,i ≤ 1
2 and for

i0 this inequality is strict, which yields a contradiction with (3.24). Hence (3.32)
does not hold and as the multiplication of the random variables Xij ’s by the same
positive constant does not change the values of ranks, one may assume that

1 = a1 ≥ . . . ≥ ak > 0

and ai > ai+1 for some i. Put i0 = max{t; at = a1} and

x∗ = min
{
bt − b1
a1 − at

; t = i0 + 1, . . . , k
}
.

Since the ranks of X11 − µ, . . . ,Xknk − µ do not depend on the constant µ and
this transformation leaves the values of a′is unchanged, assume without the loss of
generality that x∗ = 0. Hence there exists j > 1 such that

a1 = 1 > aj > 0 , b1 = bj . (3.33)
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(α) Let there exists x0 satisfying (3.28) such that

x0 ≤ 0 . (3.34)

Put G(x) = F1(x). Then (3.33) implies that Fj(x) = G(ajx) and by (3.34) for all
x < x0

Fj(x) = G(ajx) ≥ G(x) = F1(x) . (3.35)

If (3.35) holds with the equality sign for each x < x0, then for x < x0

G(x) = G

(
x

aj

)
= . . . = G

(
x

amj

)
.

Thus G(x) = 0, which together with (3.30) means that D1 6= 0. It is therefore
sufficient to assume that for some z

G(ajz) > G(z) , x0 > ajz > z .

For this z put

xL = inf {x; G(x) > G(z)} , xU = sup {x; G(x) < G(ajz)} .
Then z ≤ xL < xU ≤ ajz, for all numbers x ∈ (xL, xU ) the inequality in (3.35) is
strict and this interval has positive measure (with respect to the Lebesgue–Stieltjes
measure induced by G), which together with (3.35) and (3.30) means that D1 6= Dj ,
and therefore at least one of these numbers is different from zero.

(β) Suppose that the number inf{x; H(x) ≥ 1
2} is positive. Since the transfor-

mation X̃ij = −Xij preserves the value of the statistic (2.12), considering instead of
(2.9) the random variables X̃ij one obtains the situation from (α), and the proof is
completed. ¤

We remark that the following assertion is similar to Theorem 5.6.4 on p. 205 of
[19].

Lemma 3.1. Suppose that (A1) is fulfilled with (2.21) and the distribution func-
tion (2.3) possesses a density which has the properties, postulated in the assumptions
of the assertion (III) of Theorem 2.1. Assume further that the score functions ϕ, ψ
fulfill (A2), the matrix (3.2) is regular and define by means of (3.14)

T̂
(ϕ)

=
(√

p̂1(T
(ϕ)
1 − E(T (ϕ)

1 |H0) ), . . . ,
√
p̂k(T

(ϕ)
k − E(T (ϕ)

k |H0) )
)′
,

T̂
(ψ)

=
(√

p̂1(T
(ψ)
1 − E(T (ψ)

1 |H0) ), . . . ,
√
p̂k(T

(ψ)
k − E(T (ψ)

k |H0) )
)′
,

T̂ =
(
T̂

(ϕ) ′ , T̂
(ψ) ′

)′
,

Then (cf. (2.4), (3.2), (3.6))

N T̂ ′
(
V −1 ⊗A(p̂)

)
T̂ −→ χ2

2(k−1)(δ) (3.36)
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in distribution, and the noncentrality parameter of this chi-square distribution with
2(k − 1) degrees of freedom is

δ = ν ′(V −1 ⊗ κ)ν . (3.37)

Here

κ = diag(p1, . . . , pk)− p(p)′ , ν = (ν(ϕ)
1 , . . . , ν

(ϕ)
k , ν

(ψ)
1 , . . . , ν

(ψ)
k )′ ,

ν
(ϕ)
j =

∫ +∞

−∞

(
σ∗j − σ

σ
x+

µ∗j − µ

σ

)
gϕ(F (x))f2(x) dx ,

ν
(ψ)
j =

∫ +∞

−∞

(
σ∗j − σ

σ
x+

µ∗j − µ

σ

)
gψ(F (x))f2(x) dx ,

µ, σ are defined in (2.26) and gϕ(z) = ϕ′(z), gψ(z) = ψ′(z) at the points where these
derivatives exist.

P r o o f . Let Fj(x) = F (ajx+ bj) be the distribution function of (2.2). Since
∫

h(x) dF (ajx+ bj) =
∫

h
(x− bj

aj

)
dF (x)

after some computation one obtains from (3.14) that

µ
(ϕ)
j =

∫ +∞

−∞
ϕ(yN (x)) dF (x) , yN (x) =

k∑

i=1

p̂iF (xi,N ) ,

xi,N =

√
Nσ + σ∗j√
Nσ + σ∗i

x+
µ∗j − µ∗i√
Nσ + σ∗i

.

(3.38)

Put y(x) = F (x). Then

√
N

(
ϕ(yN (x))−ϕ(y(x))

)
=
ϕ(yN )− ϕ(y)

yN − y

k∑

i=1

p̂i

(
F (xi,N )− F (x)

xi,N − x

)√
N(xi,N − x)

and applying to this function the Lebesgue theorem one obtains from (3.38) that
(cf. (3.1)) √

N(µ(ϕ)
j − ϕ) = ν

(ϕ)
j + o(1) . (3.39)

It is easy to see from (A2) that ϕ satisfies the Lipschitz condition and (cf. (3.3))
√
N |ϕ̃− ϕ| = o(1) . (3.40)

Taking into account (3.39), (3.40) and (3.21) one easily obtains obtains that
√
N T̂ −→ N2k(Dν,W ) ,

where D = diag(
√
p1, . . . ,

√
pk,

√
p1, . . . ,

√
pk), W = V ⊗A(p). Since V −1 ⊗A(p)

is the Moore–Penrose inverse of W , the rest of the proof follows from Theorem 9.2.3
on p. 173 of [20]. ¤
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P r o o f o f T h e o r e m 2.1. (III) The functions (3.10) fulfill the assumptions
of the previous Lemma with (3.11) and since with the notation from (2.19) and the
previous lemma

T = N T̂ ′
(
V −1 ⊗A(p̂)

)
T̂ + oP (1) ,

the rest of the proof can be carried out by means of (3.36). ¤

The proof of Theorem 2.2 is an extension of the proof on pp. 130–131 of [4] into a
setting based on the joint ranking and requiring the score function to be a function
fulfilling imposed regularity conditions.

P r o o f o f T h e o r em 2.2. Taking into account (2.34) it is evident that one
may assume that for the scores in (2.33) the equality aN (j) = ϕ(j/(N + 1)) holds.
Then making use of Lemma a on p. 164 of [7] and Theorem 2.1 of [11] it is easy to
see that the random vectors

S(ϕ) =
(
D

(ϕ)
12 , D

(ϕ)
13 , . . . , D

(ϕ)
1k , D

(ϕ)
23 , . . . , D

(ϕ)
2k , . . . , D

(ϕ)
k−1k

)′

are asymptotically normal with mean 0 and asymptotic covariances cov(D(ϕ)
j1j2

, D
(ϕ)
j3j4

)
given by the formula (here j1 < j2, j3 < j4)

2 j1 = j3 , j2 = j4 ,

2
pj

s„
1
pj

+ 1
pj2

«„
1
pj

+ 1
pj4

« j1 = j3 = j , j2 6= j4 ,

2
pi

s„
1
pj1

+ 1
pi

«„
1
pj3

+ 1
pi

« j1 6= j3 , j2 = j4 = i ,

−2
pj

s„
1
pj1

+ 1
pj

«„
1
pj

+ 1
pj4

« j2 = j3 = j ,

0 j1, j2, j3, j4 mutually different.

(3.41)

However, if Y = (Y1, . . . , Yk)′ is a random vector which is normally distributed with
mean 0 and the covariance matrix diag( 1

p1
, . . . , 1

pk
), then putting

Uij =
√

2 Yi−Yjq
1
pi

+ 1
pj

,

U = (U12, U13, . . . , U1k, U23, . . . , U2k, . . . , Uk−1k)

one finds out that the normally distributed random vector U has the covariance
structure (3.41). Hence

P
(
M (ϕ)
n1,...,nk

> Q
(α)
k

)
→ γ = P

(
max
i<j

|Uij | > Q
(α)
k

)
≤ α ,
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where the last inequality follows from the Hayter theorem in [9], and the inequality
holds with the equality sign if p1 = . . . = pk = 1/k. ¤

P r o o f o f T h e o r e m 2.3 a n d 2.4. Suppose that ϕ, ψ are the functions (3.10).
Then bN (j) = (N + 1)ψ(j/(N + 1)) and (cf. (2.14), (2.13))

bN = µ̃N ,
1

N − 1

N∑

j=1

(bN (j)− bN )2 = v2
N .

Hence one may assume that for the partial sums S(ϕ)
j , S(ψ)

j appearing in the formulas

(2.33), (2.34) for M (ϕ)
n1,...,nk and M (ψ)

n1,...,nk the validity of the equalities

Sj = S
(ϕ)
j , S

(b)
j = S

(ψ)
j

holds. Thus the assumptions of Theorem 2.2 are obviously fulfilled which implies
that the Theorem 2.3 is true.

Making use of Theorem 3.1 (I), (3.11) and Theorem 2.3 one obtains that

limP
(
Mn1,...,nk ≤ Q

(β)
k

)
= limP

(
M (ϕ)
n1,...,nk

≤ Q
(β)
k

)
limP

(
M (ψ)
n1,...,nk

≤ Q
(β)
k

)

≥ (1− β)2

and this relation holds with the equality sign, if p1 = . . . = pk = 1/k. ¤
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