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Olga Štěpánková, Igor Vajda, Pavel Źıtek,
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— Address of the Editor: P.O. Box 18, 182 08 Prague 8, e-mail: kybernetika@utia.cas.cz.
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ON UNEQUALLY SPACED AR(1) PROCESS

Jan Šindelář and Jiř́ı Kńıžek

Discrete autoregressive process of the first order is considered. The process is observed
at unequally spaced time instants. Both least squares estimate and maximum likelihood
estimate of the autocorrelation coefficient are analyzed. We show some dangers related with
the estimates when the true value of the autocorrelation coefficient is small. Monte-Carlo
method is used to illustrate the problems.

Keywords: AR(1) process, unequally spaced, autocorrelation coefficient, least squares es-
timate, maximum likelihood estimate

AMS Subject Classification: 60G10, 62M10

INTRODUCTION

The presented paper has been motivated by analysis of time series applied in bio-
logical research. Namely, densities of spots on two-dimensional gel electrophoresis
maps were considered. Their time series were approximated via general linear re-
gression model with disturbances forming an autoregressive process of the first order
(AR(1) process). Observations were performed in fixed time instants according to
some protocol. As a rule, the instants were unequally spaced.

Different estimation methods are discussed, for example, in [9, 10, 13]. Many
aspects of parametric modelling approach may be found in [3, 14]. The article [15]
provides an interesting overview of parametric modelling for growth curve data for
both equally and unequally spaced cases. A wide range of bibliography can be found
there as well. Various types of models dealing with unequally spaced case can be
found in [4, 5, 6, 8], papers [2, 7, 12] are related to the AR(1) case.

The paper is devoted to estimation of parameters of discrete and unequally spaced
AR(1) process. Both least squares and maximum likelihood estimates of the auto-
correlation coefficient are considered. The estimates are obtained via optimization
of the corresponding statistics denoted SLS and SML. Analytical properties of the
statistics rather than the statistical ones are stated. We analyze the dependence of
the statistics on values of the autocorrelation coefficient in a neighbourhood of zero.
We show that the statistics SLS may reach minimum (resp. maximum) at zero and
derive necessary and sufficient conditions characterizing both these situations. We
show that the statistics SML may have minimum (maximum, inflex point respec-
tively) at zero and derive necessary and sufficient conditions characterizing all three
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possibilities. Consequently, neither the least squares, nor the maximum likelihood
estimator of the autocorrelation coefficient is the right one in the unequally spaced
case. The stated properties of the estimates are illustrated by means of the Monte
Carlo method.

The paper is self contained. We state and briefly prove the known results further
applied in the paper. New results deal with the behaviour of the statistics SLS and
SML near zero.

The paper is organized as follows. Unequally spaced autoregressive process of
the first order is outlined in Section 1. Least squares estimate of the autocorrelation
coefficient is discussed in Section 2. Auxiliary results related to maximum likelihood
estimation of the parameters of the process are stated in Section 3. Maximum
likelihood estimates of the parameters are discussed in Section 4. Section 5 is devoted
to Monte Carlo simulations.

1. THE AR(1) PROCESS

We consider a discrete AR(1) process

Xt = ρXt−1 + vt t = . . .− 2,−1, 0, 1, 2, . . . . (1)

Hence the random variables vt are independent and identically distributed, they
have zero mean and a positive variance σ2. The autocorrelation coefficient satisfies
|ρ| < 1. We assume that the process is observed at time instants t0 < t1 < . . . < tn,
1 ≤ n. Thus the random vector

Y := ( Y0, . . . , Yn )

is obtained, where each Yi denotes the member Xti of the process. Time increments

ki := ti − ti−1

play an important role rather than the individual times due to stationarity of the
process.

Majority of the results stated below holds almost surely (a. s.). This is not ex-
plicitly stated, except in cases where misunderstanding may occur.

2. LEAST SQUARES ESTIMATE OF AUTOCORRELATION COEFFICIENT

Least squares estimate of the autocorrelation coefficient is considered. The case in
which all time increments are greater than one is the main theme of the section.
It is shown that the estimate behaves badly if the true value of the autocorrelation
coefficient is small. Necessary and sufficient conditions characterizing such situations
are derived.

The following lemma leads to least squares estimate of the autocorrelation coef-
ficient.
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Lemma 2.1. The random variables

Ai :=

(
Yi − ρkiYi−1

) ·
√

1− ρ2

√
1− ρ2ki

are independent and identically distributed. They have zero mean and variance σ2.

P r o o f . Consider the differences Yi − ρkiYi−1 = Xti − ρkiXti−1 . They equal
ρki−1vti−1+1 + . . . + ρvti−1 + vti

according to (1). Hence the differences have zero

mean. Their variance equals σ2 · (ρ2(ki−1) + . . . + ρ2 + 1
)

= σ2 · 1−ρ2ki

1−ρ2 . Thus the
random variables Ai have zero mean and variance σ2. Moreover, each Ai depends
only on vti−1+1, . . . , vti

, hence A1, . . . , An are mutually independent. 2

An estimate of the autocorrelation coefficient may be found by means of (non-
linear) least squares method. It minimizes the sum

∑n
i=1 A2

i , i. e. it minimizes the
statistics

SLS :=
n∑

i=1

(
Yi − ρkiYi−1

)2 · (1− ρ2)
1− ρ2ki

. (2)

The same estimate is obtained by means of maximum likelihood method assuming
that the random variables vt are normally distributed and the value of the random
variable Y0 is known.

We introduce the following notation. We write f ∼x g if f = gθ holds in some
neighbourhood of x, where θ is a continuous function with θ(x) = 1. Hence if f ∼x g,
then the functions f and g are of the same sign and of the same magnitude in a
neighbourhood of x. Clearly, the relation ∼x is an equivalence. For instance, we
have 1− x2k ∼1 k(1− x2).

The statistics SLS is a convex function of ρ when all time increments equal one.
Its behaviour may be more complicated in unequally spaced case. To illustrate this
fact we investigate behaviour of the statistics in a neighbourhood of zero.

Lemma 2.2. a) If ki > 1, then we have ∂A2
i

∂ρ (0) = 0.

b) We have 1 ∂SLS

∂ρ (0) = −2
∑

ki=1 YiYi−1.

c) If ki > 1 for all i, then in some neighbourhood of zero we have

∂SLS

∂ρ
∼0 − 2ρ

[
2

∑

ki=2

YiYi−1 +
n∑

i=1

Y 2
i

]
.

P r o o f . a) Let us rewrite A2
i in the form

A2
i =

(
Yi − ρkiYi−1

)2

1 + ρ2 + . . . ρ2(ki−1)
.

1 The operator
Pn

i=1
ki=k

is abbreviated by
P

ki=k for any k ∈ {1, . . . , n}.
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Assume that ki > 1. Then we have

−∂A2
i

∂ρ
= ρ ·

{
2ki

[
ρki−2YiYi−1 − ρ2ki−2Y 2

i−1

]

1 + ρ2 + . . . + ρ2(ki−1)

+

[
Y 2

i − 2ρkiYiYi−1 + ρ2kiY 2
i−1

] · 2 · [1 + 2ρ2 + . . . + (ki − 1)ρ2(ki−1)−2
]

[
1 + ρ2 + . . . + ρ2(ki−1)

]2
}

.

(3)
This derivative evaluates to zero for ρ = 0. Lemma 2.2 a) is proved.

b) We have ∂SLS

∂ρ (0) =
∑

ki=1
∂A2

i

∂ρ (0) by part a) of the lemma. If ki = 1, then

we have −∂A2
i

∂ρ = 2(Yi − ρYi−1)Yi−1, thus −∂A2
i

∂ρ (0) = 2YiYi−1. Summarizing these
results we obtain ∂SLS

∂ρ (0) = −∑
ki=1 2YiYi−1.

c) The expression in braces of (3) is denoted by fi(ρ). Assume that ki > 1 for all
i. If ki = 2, then fi(0) = 4YiYi−1 + 2Y 2

i is valid, as follows from definition of the
function fi. If ki > 2, then fi(0) = 2Y 2

i . Hence in some neighbourhood of zero we
have −∂SLS

∂ρ ∼0 ρ
[
(
∑

ki=2 4YiYi−1 + 2Y 2
i ) + (

∑
ki>2 2Y 2

i )
]
, therefore part c. of the

lemma is valid. 2

The statistics SLS reaches a local extreme at zero when all time increments are
greater than one, as shown in

Theorem 2.1. Let k = mini=1,...,n ki. We denote B := 2
∑

ki=2 YiYi−1+
∑n

i=1 Y 2
i .

a) Suppose that all vt are normally distributed. If k = 1, then SLS is strictly
monotone at zero a. s.

b) Assume that k > 1. Properties of SLS at zero are summarized in the following
table:

k = 2, B < 0 k = 2, B > 0 k > 2

SLS reaches a local SLS reaches a local SLS reaches a local
minimum at zero maximum at zero maximum at zero.

P r o o f . a) Let us apply Lemma 2.2 b). If k = 1, then the sum
∑

ki=1 YiYi−1 =
− 1

2
∂SLS

∂ρ (0) contains at least one summand. Suppose that all vt are normally dis-
tributed. Then the sum differs from zero a. s. Thus the partial derivative ∂SLS

∂ρ (0)
differs from zero a. s. Hence the statistics SLS is strictly monotone at zero a. s.

b) Firstly, let k equal two and B be negative. Then the sign of the derivative ∂SLS

∂ρ

equals the sign of ρ in some neighbourhood of zero, as follows from Lemma 2.2 c).
Hence SLS(ρ) reaches a local minimum at zero. The sign of the derivative ∂SLS

∂ρ

equals the sign of −ρ in the remaining two cases, hence SLS(ρ) reaches a local
maximum at zero in both cases. 2
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Least squares estimate of the autocorrelation coefficient minimizes the statistics
SLS . But Theorem 2.1 shows that the statistics usually reaches a local maximum
at zero when all time increments are greater than one. Consequently, the estimate
behaves badly for small values of the autocorrelation coefficient. This statement is
demonstrated by means of simulations in Section 5. The behaviour of the statistics
SLS is illustrated in Figure 1.
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Fig. 1. Graphs of SLS(ρ) obtained from simulations with k > 1. Typical behaviour

(local maximum at zero) is illustrated on the first three pictures.

3. ON COVARIANCE MATRIX OF AR(1) PROCESS

Auxiliary results related to maximum likelihood estimation of parameters of AR(1)
process are stated in this section.

Let us state a form of the covariance matrix of the random vector Y. Covariances
of AR(1) process satisfy cov (Xt, Xt+k) = σ2

1−ρ2 · ρ|k|. It means that for j > i we

have cov (Yi, Yj) = σ2

1−ρ2 · ρki+...+kj−1 . Hence the covariance matrix of the random
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vector Y has the form

Σ =
σ2

1− ρ2
·




1 ρk1 ρk1+k2 . . . ρk1+...+kn

1 ρk2 ρk2+...+kn

1 ρk3+...+kn

symm.
. . .

1 ρkn

1




. (4)

Hereafter “symm.” indicates that the matrix is symmetrical. Assumptions stated
above guarantee that the matrix Σ is positive definite.

Let us evaluate the determinant of the covariance matrix and find its inverse.

Lemma 3.1. a) The determinant of the covariance matrix Σ is given by

|Σ| = σ2(n+1)

(1− ρ2)n+1
·

n∏

i=1

(
1− ρ2ki

)
. (5)

b) The inverse of the covariance matrix Σ equals

Σ−1 =
1− ρ2

σ2
·




a1 b1 0 . . . 0
c1 b2 0

c2

symm.
. . .

cn−1 bn

an




(6)

with the elements ai, bi and ci given by

ai =
1

1− ρ2ki
bi =

−ρki

1− ρ2ki
ci = −1 + ai + ai+1 . (7)

P r o o f . a) The matrix expanded on the right hand side of (4) is denoted Q. Let
us take

[ ith row ] := [ ith row ] − ρki · [ (i + 1)th row ]

in the matrix. We obtain a lower triangular matrix with diagonal elements 1 −
ρ2k1 , 1− ρ2k2 , . . . , 1− ρ2kn and 1. Hence the determinant of the matrix Q equals∏n

i=1

(
1− ρ2ki

)
. Thus the determinant of Σ evaluates according to (5).

b) It can be confirmed directly that the inverse of the matrix Σ equals (6). 2

Let us evaluate the quadratic form y
′
Σ−1y and find some of its properties.
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Lemma 3.2. Consider a vector y := ( y0, y1, . . . , yn )
′
of reals. Let us denote

D(y) :=
σ2

1− ρ2
· y′Σ−1y . (8)

a) We have

D(y) = y2
0 +

n∑

i=1

(
yi − ρkiyi−1

)2

1− ρ2ki
. (9)

b) We have D(y) > 0 if and only if y differs from zero vector.

P r o o f . a) The form (6) of the inverse of Σ stated in Lemma 3.1 gives us

D(y) = a1y
2
0 + any2

n +
n−1∑

i=1

ciy
2
i + 2

n∑

i=1

biyiyi−1 . (10)

We have ci = −1 + ai + ai+1 for all i, thus

D(y) = −
n−1∑

i=1

y2
i +

n∑

i=1

ai

(
y2

i + y2
i−1

)
+ 2

n∑

i=1

biyiyi−1 (11)

= −
n−1∑

i=1

y2
i +

n∑

i=1

(
y2

i + y2
i−1

1− ρ2ki
− 2yiyi−1ρ

ki

1− ρ2ki

)
, (12)

where the coefficients ai and bi are given by (7). Finally, the right hand side of (9)
equals (12).

b) The matrix Σ−1 is positive definite. Hence D(y) = σ2

1−ρ2 · y′Σ−1y is positive if
and only if y is different from zero vector. 2

The statistics SLS leads to least squares estimate of the autocorrelation coeffi-
cient. Let us express the statistics by means of the statistics D(Y).

Lemma 3.3. We have

SLS =
[
D(Y)− Y 2

0

] · (1− ρ2) . (13)

P r o o f . We have
∑n

i=1
(Yi−ρkiYi−1)2

1−ρ2ki
= D(Y) − Y 2

0 by Lemma 3.2 a). Let us
multiply both sides of the equation by (1 − ρ2). The left hand side of the new
equation equals the statistics SLS , as follows from definition (2) of the statistics. 2
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4. MAXIMUM LIKELIHOOD ESTIMATION AND AR(1) PROCESS

Maximum likelihood estimates of parameters of AR(1) process are considered. The
case in which all time increments are greater than one is the main theme of this
section. We show that the maximum likelihood estimate of the autocorrelation
coefficient may not be the appropriate one when the true value of the coefficient is
small.

Let us start with likelihood function of the random vector Y. We assume that
the random variables vt have normal distribution. Hence the random vector Y has
normal distribution N(0,Σ). It means that the likelihood function L = L(Y|ρ, σ)
satisfies

L2 = C1 · |Σ|−1 · exp
(
−Y

′
Σ−1Y

)

= C1 · |Σ|−1 · exp
(
−1− ρ2

σ2
·D(Y)

)
, (14)

where C1 > 0 does not depend on parameters of the process.

Maximum likelihood estimates of the variance σ2 and of the autocorrelation co-
efficient ρ may be obtained by means of the following proposition.

Proposition 4.1. a) The maximum likelihood estimate σ̂2 of variance is given by

σ̂2(ρ) =
D(Y) · (1− ρ2)

n + 1
. (15)

b) Assume that σ = σ̂. Then we have

L− 2
n+1 (Y|ρ, σ̂) = C2 ·D(Y) ·

[
n∏

i=1

(
1− ρ2ki

)
] 1

n+1

, (16)

where C2 > 0 does not depend on ρ.

P r o o f . a) The likelihood function satisfies

2
∂

∂σ2
lnL = − ∂

∂σ2
[ln |Σ|]− (1− ρ2) ·D(Y) · ∂

∂σ2

1
σ2

,

as follows from (14) and the fact that D(Y) does not depend on σ by (9). Determi-
nant of the covariance matrix Σ has been found in Lemma 3.1 a). We have ln |Σ| =
(n+1) ln(σ2)+C3, where C3 does not depend on σ2. Hence ∂

∂σ2 ln |Σ| = (n+1)σ−2.
Summarizing these results we obtain

2
∂

∂σ2
lnL = σ−4 · [ −(n + 1) · σ2 + D(Y) · (1− ρ2)

]
.

Thus, for D(Y) > 0 the likelihood function reaches its unique maximum at D(Y)·(1−ρ2)
n+1 .

Moreover, the random vector Y differs from zero vector a. s. Hence D(Y) is positive
a. s. by Lemma 3.2 b), which leads us to (15).
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b) Let us take σ = σ̂. The determinant |Σ| has been evaluated in (5). Substituting
σ2 = σ̂2 we obtain

|Σ| = (n + 1)−(n+1) ·
[

Dn+1(Y) ·
n∏

i=1

(
1− ρ2ki

)
]

.

Moreover, part a) of the proposition gives us

1− ρ2

σ̂2
·D(Y) = n + 1 .

Without loss of generality we can assume that D(Y) is different from zero, since
it is positive a. s. It results that the likelihood function satisfies L2(Y|ρ, σ̂) =
C4

[
Dn+1(Y) ·∏n

i=1

(
1− ρ2ki

) ]−1, where C4 > 0 does not depend on ρ. We take
− 1

n+1 th power of both sides of the equation and obtain the desired result. 2

Proposition 4.1 shows that the maximum likelihood estimate of the autocorrela-
tion coefficient minimizes the statistics

SML := D(Y) ·
[

n∏

i=1

(
1− ρ2ki

)
] 1

n+1

. (17)

Maximum likelihood estimate of the autocorrelation coefficient is a solution of
the likelihood equation ∂

∂ρ lnL(Y|ρ, σ̂) = 0. Moreover, the left hand side of the
equation satisfies − 2

n+1 · ∂
∂ρ lnL(Y|ρ, σ̂) = ∂

∂ρ ln SML(ρ). Let us evaluate the last
stated derivative. It enables us to state some properties of the statistics SML.

Lemma 4.1. a) We have

∂

∂ρ
ln SML(ρ) =

1
D(Y)

· ∂

∂ρ
D(Y) +

1
n + 1

·
n∑

i=1

−2kiρ
2ki−1

1− ρ2ki
.

b) Moreover, it holds

∂

∂ρ
D(Y) =

n∑

i=1

2kiρ
ki−1

(1− ρ2ki)2
· [(Y 2

i + Y 2
i−1

) · ρki − YiYi−1

(
1 + ρ2ki

)]
. (18)

P r o o f . Validity of the first equation of the lemma follows from definition (17)
of the statistics SML. The second equation follows from Lemma 3.2 a). 2

Assume for a moment that all time increments equal one. Then the maximum
likelihood estimate of the autocorrelation coefficient is a root of a cubic equation
(see [1]). The root lies in the interval (−1, 1). Let us turn to case of arbitrary
time increments. Now we show that the statistics SML reaches its minimum in the
interval (−1, 1).
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Proposition 4.2. We have SML ∼0

∑n
i=0 Y 2

i . Moreover, SML converges to infin-
ity if ρ tends to any of the values 1− and −1+.

P r o o f . Recall that we have

SML = D(Y) ·
[

n∏

i=1

(
1− ρ2ki

)
] 1

n+1

. (19)

Assume that ρ equals zero. Then SML equals D(Y). Moreover, D(Y) equals∑n
i=0 Y 2

i by Lemma 3.2 a). Thus SML ∼0

∑n
i=0 Y 2

i .

Suppose that ρ is close to one of the values ±1. Then we have

D(Y) ∼±1 Y 2
0 +

(
1− ρ2

)−1 ·
n∑

i=1

(
Yi − ρkiYi−1

)2

ki
,

as follows from Lemma 3.2 a) and the fact that 1 − ρ2ki ∼±1 ki · (1 − ρ2) holds.

Moreover, we have
[ ∏n

i=1

(
1− ρ2ki

) ] 1
n+1 ∼±1 (

∏n
i=1 ki)

1
n+1 · (1− ρ2

)1− 1
n+1 . Let

us use these results and the form (19) of the statistics SML. We obtain

SML ∼±1

(
Y 2

0 (1− ρ2) +
n∑

i=1

(
Yi − ρkiYi−1

)2

ki

)
·
(

n∏

i−1

ki

) 1
n+1

· (1− ρ2
)− 1

n+1 .

The last multiplier
(
1− ρ2

)− 1
n+1 converges to infinity if ρ tends to any of the values

1− and −1+. As a result, SML converges to infinity as well. 2

We investigate behaviour of the statistics SML near zero.

Theorem 4.1. Let k = mini=1,...,n ki be minimum of all time increments.

a) If k = 1, then SML is strictly monotone at zero a. s.

b) Assume that k > 1. Properties of the statistics SML at zero are summarized in
the following table:

k is odd k is even k is even
∑

ki=k YiYi−1 < 0
∑

ki=k YiYi−1 > 0

SML has an inflex point SML reaches a local SML reaches a local
at zero minimum at zero maximum at zero.

P r o o f . Let us approximate the derivative ∂
∂ρ ln SML(ρ) in a small neighbour-

hood of zero. We have D(Y) ∼0

∑n
i=0 Y 2

i , as follows from Lemma 3.2 a). More-
over, Lemma 4.1 b) gives ∂

∂ρD(Y) ∼0

∑n
i=1 2kiρ

ki−1 · [−YiYi−1]. It results that
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∂
∂ρD(Y) ∼0

∑
ki=k 2kiρ

ki−1 · [−YiYi−1], because
∑

ki=k YiYi−1 6= 0 holds a. s. Fi-

nally, we have
∑n

i=1
−2kiρ

2ki−1

1−ρ2ki
∼0

∑
ki=k −2kiρ

2ki−1.
Using these approximations and Lemma 4.1 a) we obtain

∂

∂ρ
ln SML(ρ)∼0

(
n∑

i=0

Y 2
i

)−1

·
(
−2kρk−1

∑

ki=k

YiYi−1

)
+

1
n + 1

(
−2kρ2k−1

∑

ki=k

1

)
.

The second summand can be disregarded, as ρ2k−1 is substantially smaller than
ρk−1. Thus

∂

∂ρ
ln SML(ρ) ∼0 − ρk−1 ·



 2k ·

(
n∑

i=0

Y 2
i

)−1


 ·

∑

ki=k

YiYi−1 . (20)

Assume that k = 1. Then ρk−1 equals one. Hence the derivative ∂
∂ρ ln SML(ρ) is

positive (resp. negative) in some neighbourhood of zero a. s. Thus SML is strictly
monotone in the neighbourhood.

Suppose that k > 1. Then the derivative ∂
∂ρ ln SML(ρ) evaluates to zero for ρ = 0.

Moreover, its sign equals the sign of −ρk−1 ·∑ki=k YiYi−1 in a neighbourhood of zero,
as follows from (20). Parsing the possibilities “k is odd/even” and “

∑
ki=k YiYi−1 is

positive/negative” stated in Theorem 4.1 b) we find that the theorem is valid. 2

Maximum likelihood estimate of the autocorrelation coefficient minimizes the
statistics SML. Theorem 4.1 b) shows that the statistics may have an inflex point
or it may reach a local maximum at zero when all time increments are greater than
one. Consequently, the maximum likelihood estimate may not be the appropriate
one when the true value of the autocorrelation coefficient is small. It should be noted
that maximum likelihood estimators are not always efficient, or the best possible,
as pointed out in [11]. Behaviour of the statistics SML and SLS is illustrated in
Figure 2.

Estimates of the autocorrelation coefficient stated in the paper minimize the
following statistics:

maximum likelihood estimate minimizes D(Y) · [ ∏n
i=1

(
1− ρ2ki

) ] 1
n+1 ,

least squares estimate minimizes
(

D(Y)− Y 2
0

) · [1− ρ2
]

.

The statistics seem to be alike. But the behaviour of the estimates is different,
as suggested by Theorems 2.1 and 4.1. This claim is supported by simulations
performed in the next section.

5. MONTE CARLO SIMULATIONS

We deal with small sample properties of the estimators stated in previous sections.
The length of the series considered in simulations is 100, 10 000 repetitions are
performed. Sample means (SM) and sample standard deviations (SSD) of the
estimates are considered. Variance σ2 equals one in all the experiments.
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Fig. 1. Graphs of SML(ρ) and SLS(ρ) obtained from simulations with k > 1. The

statistics SML(ρ) may have an inflex point, local minimum or maximum at zero.

Two types of simulations are stated. Firstly, time increments equal either two or
three, about 50 % for each. The value of the autocorrelation coefficient varies from
−0.9 to 0.9. Secondly, fixed value −0.5 of the autocorrelation coefficient is taken. We
use the same type of time increments, but replace some of them by ones. From 10 %
to 90% of the increments are replaced. For instance, if 20% of them are replaced,
then about 40 % of the increments equal two and the remaining approximately 40 %
equal three.

Our experiments show that the absolute value of the autocorrelation coefficient
may be estimated correctly, but the sign of the estimate may be wrong. Because of
this, absolute values of the estimates are also stated. Subscript a is used to mark
the case of absolute values.

We start with the case where all time increments are greater than one and the
value of the autocorrelation coefficient varies.

Table 1 shows the properties of maximum likelihood estimator of the autocorre-
lation coefficient. The estimator does not behave well for small values of ρ, which
is in accordance with Theorem 4.1. Reasonable absolute values of the estimates are
obtained if the value of ρ equals −0.5, −0.3, 0.3 and 0.5.
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Table 1. Properties of maximum likelihood estimator

of the autocorrelation coefficient.

ρ −0.9 −0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7 0.9

SM −0.889 −0.680 −0.315 −0.052 −0.005 −0.003 0.048 0.312 0.681 0.889

SSD 0.033 0.132 0.390 0.351 0.284 0.284 0.352 0.394 0.124 0.033

SMa 0.889 0.689 0.483 0.296 0.204 0.203 0.297 0.484 0.689 0.889

SSDa 0.033 0.066 0.135 0.196 0.198 0.199 0.196 0.134 0.066 0.033

Table 2 shows the properties of maximum likelihood estimator of variance. It
suggests that, even in case where the sign of the autocorrelation coefficient has been
wrongly estimated, reasonable estimates of the variance can still be obtained.

Table 2. Properties of least squares estimator

of the autocorrelation coefficient.

ρ −0.9 −0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7 0.9

SM 0.998 0.998 0.992 0.960 0.930 0.929 0.959 0.990 0.998 0.999

SSD 0.149 0.163 0.177 0.173 0.159 0.161 0.171 0.176 0.164 0.148

Table 3 shows the properties of least squares estimator of the autocorrelation coef-
ficient. A brief look at the last two rows dealing with absolute values of the estimates
shows that the estimator is a bad one. This is also suggested by Theorem 2.1.

Table 3. Properties of least squares estimator

of the autocorrelation coefficient.

ρ −0.9 −0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7 0.9

SM −0.958 −0.870 −0.516 −0.124 −0.009 −0.004 0.121 0.508 0.872 0.959

SSD 0.013 0.157 0.644 0.783 0.779 0.779 0.784 0.651 0.146 0.013

SMa 0.958 0.884 0.825 0.792 0.778 0.778 0.792 0.825 0.884 0.959

SSDa 0.013 0.023 0.027 0.030 0.032 0.033 0.030 0.027 0.022 0.013

Let us turn over to fixed value −0.5 of the autocorrelation coefficient. The number
of time increments equal to one varies from 10 % to 90%.

Table 4 shows the properties of maximum likelihood estimator of the autocorre-
lation coefficient. It indicates that the behaviour of the estimator is improved, even
in cases when only a small number of time increments is equal to one.
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Table 4. Properties of maximum likelihood estimator

of the autocorrelation coefficient

(the first row – percentage of time increments equal one).

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %

SM −0.428 −0.472 −0.486 −0.488 −0.487 −0.489 −0.490 −0.490 −0.489

SSD 0.283 0.161 0.112 0.099 0.095 0.091 0.090 0.090 0.087

SMa 0.481 0.480 0.487 0.488 0.487 0.489 0.490 0.490 0.489

SSDa 0.178 0.137 0.110 0.099 0.095 0.091 0.090 0.090 0.087

We have found in our simulations that there is an improvement in the behaviour
of least squares estimator of the autocorrelation coefficient in cases where more than
60% of time increments equal one.

ACKNOWLEDGEMENT

This research has been partially supported by the Ministry of Health of the Czech Republic
through the project 6458–3 of and by the grant project K1019101 of the Grant Agency of
the Academy of Sciences of the Czech Republic.

(Received November 1, 2002.)

REFE REN CES

[1] T.W. Anderson: The Statistical Analysis of Time Series. Wiley, New York 1971.
[2] B.H. Baltagi and P.X. Wu: Unequally spaced panel data regressions with AR(1)

disturbances. Econometric Theory 15 (1999), 814–823.
[3] P. J. Diggle, K.Y. Liang, and S. L. Zeger: Analysis of Longitudinal Data. Oxford

University Press, New York 1994.
[4] M.A. Hauser: Maximum likelihood estimators for ARMA and ARFIMA models: a

Monte Carlo study. J. Statist. Plann. Inference 80 (1999), 229–255.
[5] R.H. Jones: Longitudinal Data with Serial Correlation: A State-space Approach.

Chapman & Hall, New York 1993.
[6] R.H. Jones and L.M. Ackerson: Serial correlation in unequally spaced longitudinal

data. Biometrika 77 (1990), 721–731. 1
[7] R.H. Jones and F. Boadi-Boateng: Unequally spaced longitudinal data with AR(1)

serial correlation. Biometrics 47 (1991), 161–175.
[8] R.H. Jones and A.V. Vecchia: Fitting continuous ARMA models to unequally spaced

spatial data. J. Amer. Statist. Assoc. 88 (1993), 947–954.
[9] S.M. Kay: Fundamendals of Statistical Signal Prosessing: Estimation Theory. Pren-

tice Hall, Englewood Cliffs, NJ 1993.
[10] D. Kazakos and P. Papantoni-Kazakos: Detection and Estimation. Computer Science

Press, New York 1990.
[11] L. Le Cam: Maximum likelihood: An introduction. Internat. Statist. Rev. 58 (1990),

2, 153–171.



On Unequally Spaced AR(1) Process 27

[12] D. J. Mckenzie: Estimation of AR(1) models with unequally spaced pseudo-panels.
Econometrics J. 4 (2001), 1, 89–108.

[13] H.W. Sorenson: Parameter Estimation: Principles and Problems. Marcel Dekker, New
York 1980.

[14] G. Verbeke and G. Molenberghs: Linear Mixed Models for Longitudinal Data. Springer
Verlag, New York 2000.
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