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EXACT MODELLING OF SCALAR 2D ARRAYS1

Sandro Zampieri

In this paper we analyse the problem of modelling a noise free finite 2D scalar array.
We introduce the concept of unfalsified model and of undominated unfalsified model. We
give some methods for verifying if a model is unfalsified and we study the properties of
undominated unfalsified models. We define moreover a special class of models that are
called coroborated and we give a condition ensuring the uniqueness of the corroborated
undominated unfalsified model. Finally we show how to obtain such model, when it exists.

1. INTRODUCTION

The problem of modelling finite time series by linear dynamical systems is very
important from the application point of view. In general, in the process of modelling
one starts from a set of data and tries to find the dynamical relations among them.
This relations must be represented by a mathematical description, that is called
model. Consequently the first step in modelling is to fix the model set, namely what
are the relations on the data we want to find. The second step consists in finding a
subset of models that can be considered d compatible with the data which are called
unfalsified models. Finally we have to choose one of the unfalsified models.

Many different modelling procedures have been developed. One first distinction
can be done between the ideal case when data are supposed to be exact and noisy
free and the more realistic case when we have to cope with noisy data. Though the
first case does not provide algorithms which can be directly used in the applications,
it is mathematically and historically important, since it gives some light also to the
solution of the noisy case. In the classical paper [1] by Kalman many connections
are shown between this topic and many other famous mathematical problems.

The problem of modelling can be formalized as follows: given a finite array of
data, find a linear system with minimum McMillan degree whose Markov coefficients
match the given array where the array is defined. This is equivalent to another well-
known problem which is the Padé approximation. Another formulation of modelling
has been proposed by J. C. Willems in [2]. In his approach the model has no apriori
input/output structure and so in the linear discrete case its description is given by a
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set of difference equations rather than by a transfer function. A more detailed analy-
sis of the exact modelling of finite time series is given in [3], where another question
is investigated: when do the data present evidence of obeying a law? For instance
consider the finite array (1, 1, 1, 1, 1, 1, 1). It is clear that in this case there is a clear
evidence that this array obeys some law, while if we have the array (0, 0, 0, 0, 0, 0, 1),
then such evidence does not exist. This question is solved introducing the concept of
corroboration which is based on the idea of considering only the generic behaviour of
the models. By this new idea it is possible to construct an algorithm with many good
properties. It can be seen that the concept of corroboration can be interpreted as
the data compression of the model. More precisely a model is considered acceptable
if it provides an efficient description of the data.

In this paper we will deal with the problem of modelling finite 2D arrays. This
case is remarkably more complicate as we will show in the sequel. This is the reason
why we will consider only the scalar case. There exist few paper on 2D modelling in
literature even in the classical input/ output framework. All the algorithms proposed
present disadvantages and the problem can be considered open. An interesting
algorithm has been proposed by Sakata in [4, 5]. Even if this algorithm presents
some limitations, it is very efficient and so very suitable for the real applications.
This algorithm is the direct extension of the Berlekamp Massey algorithm to the 2D
case. In this paper we will formulate the 2D modelling problem and analyze it from
various points of view. We will try to extend the concept of corroborated model to
the 2D case and we will give a condition which guarantees the uniqueness of the this
model. Finally we will propose a procedure providing the corroborated model of a
2D array, when it exists. This algorithm is an extension of the Sakata algorithm.

2. BEHAVIOURAL THEORY OF DYNAMICS

In this paper we will follow the behavioural approach to dynamical systems for
describing models. According to this approach, introduced by Willems in [2], there
is no a priori distinction between inputs and outputs and the external data are
characterized only by a family of laws describing what signals are allowed.

A dynamical system is described by a triple Σ = (T,W,B), where T is the time set,
W is the signal set and B is a subset of WT , called behaviour, which describes what
trajectories of WT can occur. In this paper we will be concerned with dynamical
systems with T = N2, W = Rq and B = ker R(σ1, σ2), where

R(σ1, σ2) =
∑

ij

Rijσ
i
1σ

j
2, (1)

Rij ∈ Rn×q, is a polynomial operator that acts on a signal w ∈ (Rq)N
2

as follows

R(σ1, σ2)w =
∑

ij

Rijσ
i
1σ

j
2w (2)

and σ1, σ2 are the usual shift operators acting on the two directions of N2, i. e.
acting on w as follows σ1w(t1, t2) = w(t1 + 1, t2) and σ2w(t1, t2) = w(t1, t2 + 1)



Exact Modelling of Scalar 2D Arrays 131

for all (t1, t2) ∈ N2. A detailed description of the properties of these systems can
be found in [6, 7]. It can be shown that the set of all behaviours that admit the
previous representation, coincides with the set of all the linear, shift invariant and
closed (w. r. to the pointwise convergence) subspaces of (Rq)N

2
, the space of all the

signals. One important property of the previous representation is the following: if
we have two behaviours B1 = kerR1 and B2 = ker R2, then we have that B1 = B2 if
and only if the polynomial row module generated by the rows of R1 coincides with
the polynomial row module generated by the rows of R2.

We shall recall now some properties of systems in the scalar case q = 1. For the
representation of this systems we need column matrices only. In the sequel we will
use the notation ker(p1, . . . , pn), where p1, . . . , pn are polynomials in z1, z2, to mean

ker




p1(σ1, σ2)
...

pn(σ1, σ2)


 .

We need to introduce now some concepts of Gröbner basis theory [8]. Let <T be an
admissible total ordering in N2, i. e. a total ordering compatible with the monoid
structure in N2 and such that (0, 0) is the smallest element in N2. Given a polynomial
p in R[z1, z2] we define its degree deg p as the maximum of the support of p w. r.
to the total admissible ordering <T . If I is an ideal in R[z1, z2], we define deg I
as the set of the degrees of all the polynomials in I and M(I) as the set of all the
minimal elements of deg I w. r. to the usual partial ordering in N2. We say that a
set G = {g1, . . . , gm} of generators of I is a Gröbner basis of I, if

M(I) ⊆ deg G, (3)

where deg G = {deg g1, . . . , deg gm}. Consequently we have that

deg I = deg G + N2 := {deg g + t : g ∈ G, t ∈ N2}.

If in a Gröbner basis G each polynomial is in a reduced normal form w. r. to the
ideal I or, equivalently, if the support of each polynomial g in G is included in
∆(I) ∪ {deg g}, where we define

∆(I) := N2 \ deg I,

then G is said reduced Gröbner basis of I [8]. Note that, if G is a reduced Grobner
basis, then we have that

M(I) = deg G.

It can be shown that Gröbner bases and reduced Gröbner bases always exist and
that the reduced Gröbner basis of an ideal is also unique. Moreover there exist
algorithms providing Gröbner bases or the reduced Gröbner basis of an ideal I from
any set of of generators of I.

The behaviour B = ker(p1, . . . , pn) is fixed by the ideal I generated by p1, . . . , pn.
Consequently if g1, . . . , gm is a Gröbner basis of I, then ker(g1, . . . , gm) is an equivalent
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representation of B. This representation has also the following operative advantage.
In fact, it can be seen that B and R∆(I) are isomorphic vector spaces in the sense that
for every w∆ ∈ R∆(I), there always exists a unique w ∈ B such that w|∆(I) = w∆.
This means that ∆(I) is a good subset of N2 where the initial conditions can be
fixed. Consequently B is finite dimensional if and only if ∆(I) is a finite subset of
N2 and its dimension coincides with the number of points in ∆(I). It can be shown
that, starting from a Gröbner basis, it is possible to find ∆(I) and whole trajectory
w ∈ B starting from the initial conditions w|∆(I). If B has finite dimension d, then
it admits the following state representation





σ1x = M1x
σ2x = M2x

w = Cx
, (4)

where M1,M2 are commutative matrices in Rd×d and C is a row matrix in R1×d.
The state x is a signal in (Rd)N

2
that is completely fixed by its value in the time

instant (0, 0). Moreover x(0, 0) is directly computable from w|∆(I). Consequently
for all w ∈ B here exists a unique x(0, 0) ∈ Rd such that

w(i, j) = C M i
1 M j

2 x(0, 0).

Viceversa, if M1,M2 ∈ Rd×d are two commuting matrices and C ∈ R1×d and if we
define the subspace B of RN2

as follows

B := {w ∈ RN2
: ∃x ∈ Rd, w(i, j) = C M i

1 M j
2 x, ∀ (i, j) ∈ N2},

then it is easy to see that B = ker(p1, . . . , pn) for some suitable polynomials p1, . . . , pn.
In this case we can say only that B is a finite dimensional vector space of dimension
less than or equal to d.

3. UNFALSIFIED AND UNDOMINATED UNFALSIFIED MODELS

In this section we will present a method for modelling a scalar finite 2D array by a
system of multidimensional difference equations. Given a set I ⊆ N2 and a 2D scalar
array wI ∈ RI , we say that B is an unfalsified model of wI if there exists w ∈ B such
that w|I = wI . By this definition we say what 2D systems can be accepted as models
of wI . Between two unfalsified models B1 and B2 such that B1 ⊆ B2 we consider
a better model B1, since it is more falsifiable and so more powerful in describing
the system generating wI . In some sense it has more predictive power. According
this idea we say that B is an undominated unfalsified model of wI if it is one of the
minimal elements in the set of all the unfalsified models w. r. to the partial ordering
⊆ or, in other words, if for every unfalsified model B′ such that B′ ⊆ B, we have
that B′ = B. Finally we will say that B is the most powerful unfalsified model if
it is the smallest unfalsified model, i. e. if for every unfalsified model B′ we have
that B ⊆ B′. In general a modelling procedure must choose an unfalsified model
starting from the data wI . If there exists the most powerful unfalsified model, then
this can be considered the best candidate to be the model of the data. It is easy to
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see that when I 6= N2, then the most powerful unfalsified model does not exist ( this
is true also in the 1D case ). An important issue is how to choose a model in the set
of all the undominated unfalsified models. Therefore we will analyze in detail the
properties of these models in order to characterize their properties.

We need to introduce some notation. Let I be a subset of N2 and RI be the
set of all the scalar arrays with support in I. Moreover let R[z1, z2] be the ring of
polynomials in z1 and z2. Consider the following form

〈·, ·〉I : R[z1, z2]× RI −→ R

such that for any wI ∈ RI we have that

〈p, wI〉I :=
∑

(i,j)∈I

p(i, j)w(i, j),

if
p =

∑

(i,j)∈I

p(i, j)zi
1z

j
2

is any polynomial with support included in I, while

〈p, wI〉I := 0

otherwise. It is easy to see that this form is linear in RI but not necesserily in the
other argument. In fact we have that if p, q are polynomials with support included
in I, then 〈p+q, wI〉I = 〈p, wI〉I +〈q, wI〉I , but in the other cases it is not necessarily
true. If I = N2, then we will write the bilinear form 〈·, ·〉 instead of 〈·, ·〉N2 . Given
wI ∈ RI , we define the set of polynomials

A(wI) := {p ∈ R[z1, z2] : 〈zi1
1 zi2

2 p, wI〉I = 0, ∀ (i1, i2) ∈ N2} (5)

and we call its elements annihilators of wI . Note that if J ⊆ I and wJ is the
restriction of wI to the set J , then we have that 〈p, wI〉I = 0 implies 〈p, wJ〉J = 0
and consequently

A(wI) ⊆ A(wJ).

If p is an annihilator of wI and h is any polynomial, then the polynomial hp is an
annihilator for wI . On the other side if p and q are annihilators of wI , then it is
not necessarily true that p + q is an annihilator. This is true if I = N2 and so in
this case A(wI) is an ideal for all wI ∈ RI . It is easy to see that w ∈ ker(p1, . . . , pn)
if and only if the ideal generated by p1, . . . , pn is included in A(w). The following
proposition generalizes this useful dual characterization of the unfalsified models.

Proposition 1. Let p1, . . . , pn be polynomials and wI be an array in RI . Then
ker(p1, ..., pn) is an unfalsified model of wI if and only if for all the polynomials in
the ideal (p1, . . . , pn) generated by p1, . . . , pn we have that 〈p, wI〉I = 0

P r o o f . (⇒) Trivial.
(⇐) We want to construct a w ∈ ker(p1, . . . , pn) such that w|I = wI . For this pour-
pose let {si}∞i=1 be a sequence of points in N2 covering all N2 and Ik := {s1, . . . , sk}.
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For all k we construct recursively wk ∈ RIk such that 〈p, wk〉Ik
= 0 for all

p ∈ (p1, . . . , pn) as follows. Suppose that we have already found wk−1. Let wk|Ik−1 =
wk−1. We have to fix the value of wk(sk). If sk ∈ I, then let wk(sk) = wI(sk). If
sk 6∈ I and if there exists a p ∈ I such that {sk} ⊆ supp p ⊆ Ik, then let wk(sk)
be the only value such that 〈p, wk〉Ik

= 0. In all the other cases let wk(sk) be an
arbitrary value. We show now that if p ∈ I, then 〈p, wk〉Ik

= 0. If supp p 6⊆ Ik, then
〈p, wk〉Ik

= 0 by definition. If supp p ⊆ Ik−1, then 〈p, wk〉Ik
= 〈p, wk−1〉Ik−1 = 0 by

induction. If supp p 6⊆ Ik−1 and supp p ⊆ Ik, then sk ∈ supp p and so there exists
a ∈ R such that q := p + ap ∈ I is such that supp q ⊆ Ik−1. This implies that

〈p, wk〉Ik
= 〈q, wk〉Ik

− a〈p, wk〉Ik
= 0.

Let w be the unique element in RN2
such that w|Ik

=wk for all k. Then by construc-
tion we have that w|I =wI . Moreover if q∈I, then 〈zi1

1 zi2
2 q, w〉=0 for all (i1, i2)∈N2.

In fact supp zi2
1 zi2

2 q ⊆ Ik, for some k and so 〈zi2
1 zi2

2 q, w〉 = 〈zi1
1 zi2

2 q, wk〉Ik
= 0.

Therefore we have that I ⊆ A(w) and by the previous observation this implies that
w ∈ ker(p1, . . . , pn). 2

An immediate consequence of the previous proposition is the following corollary.

Corollary 1. Given wI ∈ RI , we have that ker(p1, . . . , pn) is an unfalsified model
of wI if and only if (p1, . . . , pn) ⊆ A(wI), where (p1, . . . , pn) is the ideal generated
by p1, . . . , pn.

The previous results do not allow to verify operatively if a model is unfalsified.
This is possible if the set I is finite and admits the following representation

I = {x ∈ N2 : x <T k} =: Λ(k), (6)

for some k ∈ N2, where <T can be any admissible total ordering.

Proposition 2. Let {g1, . . . , gm} be a Gröbner basis of the ideal I generated by
g1, . . . , gm w. r. to the total admissible ordering <T . Let moreover I = Λ(k) for some
k ∈ N2 and wI ∈ RI . Then ker(g1, . . . , gm) is unfalsified model of wI if and only if for
all s ∈ I ∩ deg I there exists i ∈ {1, . . . , m} such that s− deg gi = r = (r1, r2) ∈ N2

and 〈zr1
1 zr2

2 gi, wI〉I = 0.

P r o o f . ⇒) Trivial.
(⇐) Let p be any polynomial in the ideal I generated by g1, . . . , gn. If deg p 6∈ I,
then 〈p, wI〉I = 0. If deg p ∈ I, then we will show that 〈p, wI〉I = 0 by induction
on the deg p, using the fact that <T must be a well ordering. Since {g1, . . . , gn}
is Gröbner basis, then there exists i ∈ {1, . . . ,m} and r = (r1, r2) ∈ N2 such that
deg p = deg gi + r and 〈zr1

1 zr2
2 gi, wI〉I = 0. Since deg zr1

1 zr2
2 gi = deg p, then there

exists a ∈ R such that the degree of the polynomial q := p + azr1
1 zr2

2 gi is less then
deg p. By induction we have that 〈q, wI〉I = 0 and so

〈p, wI〉I = 〈q, wI〉I − a〈zr1
1 zr2

2 gi, wI〉I = 0.

It is immediate to prove the following corollary.

2
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Corollary 2. In the same hypothesis of Proposition 2 we have that n unfalsified
model of wI if and only if {g1, . . . , gm} ⊆ A(wI).

The previous corollary suggests an operative procedure verifying if a model
ker(p1, . . . , pn) is unfalsified by a sequence wI , if I admits a representation (6). Ac-
tually first we have to compute a Gröbner basis {g1, . . . , gm} of the ideal (p1, . . . , pn)
and then we have to verify the conditions 〈zi

1z
j
2gl, wI〉I = 0 for every (i, j) contained

in the finite sets Λ(k − deg gl). For the other values of (i, j) the conditions are
satisfied by definition of 〈·, ·〉I .

The condition imposing the set I to have the form (6) is rather restrictive and
can be aweakened in two different ways. First, it can be seen that the condition
I = Λ(k) in Proposition 2 and Corollary 2 can be substituted by the following two:

I ∩∆(I) ⊇ Λ(k) ∩∆(I)
I ∩ deg I ⊆ Λ(k) ∩ deg I,

(7)

where I is the ideal associated to the model B.
On the other side, if the model B is finite dimensional, then it can be represented

by a state model (4). Therefore B is an unfalsified model of wI if and only if there
exists x(0, 0) ∈ Rd such that

w(i, j) = CM i
1M

j
2x(0, 0)

for all (i, j) ∈ I. These conditions constitute a system of linear equations with x(0, 0)
as unknown. The model B is unfalsified if and only if this system has solution. In
this case the only condition imposed on the set I is just its finite cardinality.

Now we can see what is the reason why the problem we want to solve is much
more difficult in the 2D case than in the 1D case. In fact by the previous proposition
we have that the research of unfalsifed models of wI reduces to the research of ideals
in the set A(wI) of the annihilators of wI . Because of the structure of A(wI) we
see that if p ∈ A(wI), then the principal ideal (p) generated by p is included in
A(wI). Therefore the principal ideals can be trivially extracted from A(wI) and
consequently it is also trivial to find all the unfalsified models in the 1D case, since
the ring of the polynomials in one variable is a principal ideal domain. In the 2D
case the situation is different the polynomial ring in two variables is not a principal
ideal domain any more. Moreover we have that p1, . . . pn ∈ A(wI) does not imply
that the ideal (p1, . . . pn) generated by p1, . . . pn is included in A(wI). This is true if
{p1, . . . pn} is a Gröbner basis and this is a condition which is difficult to manipulate.

We will try now to give some characterizations of the undominated unfalsified
models of a 2D scalar array wI . We will find first that the undominated unfalsified
models of wI correspond to the maximal ideals in A(wI).

Proposition 3. Let p1, . . . , pn be polynomials and wI be an array in RI . Then
ker(p1, . . . , pn) is an undominated unfalsified model of wI if and only if the ideal
generated by p1, . . . , pn is a maximal ideal in A(wI)
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P r o o f . (⇒) Suppose that the polynomial p is such that the ideal (p, p1, . . . , pn)
generated by the polynomials p, p1, . . . , pn is included in A(wI). By Prop. 1 this
implies that ker(p, p1, . . . , pn) is an unfalsified model of wI and so ker(p, p1, . . . , pn) =
ker(p1, . . . , pn) since ker(p1, . . . , pn) is undominated. This implies that (p, p1, . . . , pn)
= (p1, . . . , pn) and that (p1, . . . , pn) is a maximal ideal in A(wI).
(⇐) Suppose that ker(p, p1, . . . , pn) is an unfalsified model of wI . By Prop. 1 this
implies that (p, p1, . . . , pn) ⊆ A(wI) and so (p, p1, . . . , pn) = (p1, . . . , pn), since
(p1, . . . , pn) is a maximal ideal in A(wI). Consequently we have that
ker(p, p1, . . . , pn) = ker(p1, . . . , pn) and that ker(p1, . . . , pn) is undominated. 2

As previously mentioned, there may exist infinitely many different unfalsified
undominated models of an array wI . We want now to study under what kind of
conditions the undominated unfalsified model is unique. For this pourpose it is
useful the following lemma.

Lemma. Suppose that ker(p1, . . . , pn) and ker(q1, . . . , qm) are two undominated
unfalsified models of wI . Then ker(p1, . . . , pn) = ker(q1, . . . , qm) if and only if there
exists w ∈ ker(p1, . . . , pn) ∩ ker(q1, . . . , qm) such that w|I = wI .

P r o o f . One way is trivial. Suppose that there exists w ∈ ker(p1, . . . , pn) ∩
ker(q1, . . . , qm) such that w|I = wI . Then ker(p1, . . . , pn) ∩ ker(q1, . . . , qm) is un-
falsified and so ker(p1, . . . , pn) = ker(p1, . . . , pn) ∩ ker(q1, . . . , qm) = ker(q1, . . . , qm)
since both the models are undominated. 2

4. ONE ALGORITHM FOR THE EXACT MODELLING OF FINITE 2D
SCALAR ARRAYS

If I is a finite subset of N2, then it is easy to see that there always exist finite
dimensional undominated unfalsified models. However in general also minimal di-
mension undominated unfalsified models may be infinitely many. Therefore one way
to proceed could be finding a procedure providing one of the minimal dimension un-
dominated unfalsified models from the 2D array. This is the method used for solving
the classical partial realization problem in the 1D case. In the behavioural context
this method is analyzed in [3], where it is shown that this procedure of modelization
lacks of m any desirable properties. The proposed solution is based on the concept
of corroboration. According to this idea, we have to reject an unfalsified model, if
the data doesn’t present an evidence of obejing the laws of that model. For instance
consider the finite array (1, 1, 1, 1, 1, 1, 1). It is clear that ker(z−1) can be considered
a good model, while if we have the array (0, 0, 0, 0, 0, 0, 1), then there is no evident
reason to consider ker(z7) a model of the array, even if it is a minimal dimension
undominated model. The reason why ker(z7) is a bad model is that the generic data
compatible with this model would admit unfalsified models of smaller dimensions.
Therefore if the data had been really generated by that model, we would have been
very lucky to have data for which this model is a minimal dimension unfalsified
model. It seems more realistic to say that there is no model that is evident from
the data. A more convicing interpretation of the concept of corroboration bases on
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the data compression that must be provided by a good model. More precisely, if we
consider an array and a model of it, then it is clear that in order to generate the
array we need the parameters of the model and the initial conditions. If the sum of
the number of parameters of the model and of the number of initial conditions we
need is less than the number of the elements of the array, the model with the initial
conditions provides a convenient description of the data and so a data compression.
It is easy to see that, if we are given an 1D array wI ∈ RI , where I = {0, 1, . . . , N},
then a model B = ker p, p ∈ R[z], provides a data compression if and only if

deg p + ∆(p) ⊆ I, (8)

where ∆(p) := N \ (deg p + N), or equivalently, if and only if 2 deg p− 1 ≤ N .
In the 2D case the problem of finding the minimal dimension undominated un-

falsified models of a finite array is still unsolved and seems a very hard problem.
In this section we will propose an algorithm providing the minimal dimension un-
dominated unfalsified model only under a condition that seems the 2D version of
the corroboration condition in the 1D case. This condition is expressed below.

Fix a total ordering <T in N2. Given an ideal I, consider the sets M(I) and
∆(I) defined above. Consider moreover the set

Σ(I) := M(I) + ∆(I) = {m + δ : m ∈ M(I), δ ∈ ∆(I)}. (9)

Note that, given a set of generators for I, the sets M(I), ∆(I) and Σ(I) are effec-
tively computable by Gröbner basis algorithms.

We say that the unfalsified model B = ker(p1, . . . , pn) of a 2D array wI ∈ RI is
corroborated, if

Σ(I) ⊆ I, (10)

where I is the ideal generated by p1, . . . , pn. We give now a result ensuring the
uniqueness of the corroborated undominated unfalsified model. Note that (10) seems
to be a good extension of the condition (8) to the 2D case.

Proposition 4. Fix a total admissible ordering <T and let I = {x ∈ N2 : x <T k}
for some k ∈ N2. If wI is any 2D array in RI , then there exists at most one
corroborated undominated unfalsified model of wI .

P r o o f . Suppose that ker(p1, . . . , pn) and ker(q1, . . . , qm) are two undominated
unfalsified models of wI and that Σ(I) and Σ(J ), where I and J are the ideals
I. We have to show that ker(p1, . . . , pn) = ker(q1, . . . , qm). It is not restrictive to
assume that {p1, . . . , pn} and {q1, . . . , qm} are Gröbner bases w. r. to <T and that
the leading power coefficients of all the polynomials are unitary. We will construct
w ∈ ker(p1, . . . , pn) ∩ ker(q1, . . . , qm) such that w|I = wI . Suppose that we have
assigned w in Λ(u) with uT ≥ k. We want to show that there exist v1 ∈ M(I) and
v2 ∈ M(J ) such that

u− v1 − v2 = t ∈ N2.

Suppose that it is not true. Then for all v1 ∈ M(I) and v2 ∈ M(J ) we have
that u − v1 6∈ deg J and u − v2 6∈ deg I. This implies that u − v1 ∈ ∆(J ) and



138 S. ZAMPIERI

u−v2 ∈ ∆(I) and so there exist δ1 ∈ ∆(I) and δ2 ∈ ∆(J ) such that u = v1 +δ2 and
u = v2 + δ1. Consequently we have that 2u = (v1 + δ1) + (v2 + δ2). This can not be
true since v1 +δ1 ∈ ∆(I) ⊆ I and v2 +δ2 ∈ ∆(J ) ⊆ I and so v1 +δ1 +v2 +δ2 <T 2u.
Since v1 ∈ M(I) and v2 ∈ M(J ), there exist positive integers i(u) and j(u) such
that deg pi(u) = v1 and deg qj(u) = v2. Construct the sequence w ∈ RN2

fixing

w(u) =
{

wI(u) if u ∈ I
−∑

`<T v1
pi(u)(`)w(u− v1 + `) otherwise, (11)

where pi(u)(`), ` = (`1, `2) ∈ N2 is the coefficient of the term z`1
1 z`2

2 in the polynomial
pi(u). We have to show now that w ∈ ker(p1, . . . , pn) ∩ ker(q1, . . . , qm). First we
prove that 〈p, w〉 = 0, for every p ∈ I by transfinite induction on u = deg p. It
is not restricive to suppose that the leading power coefficient of p is unitary. If
u <T k then 〈p, w〉 = 〈p, wI〉I = 0. Otherwise let q = p − zs1

1 zs2
2 pi(u), where

s = (s1, s2) = u − deg pi(u) ∈ N2. Note that 〈pi(u)z
s1
1 zs2

2 , w〉 = 0 by construction.
Since q ∈ I and since deg q <T u, then by induction 〈q, w〉 = 0 and so 〈p, w〉 = 0.

We prove now that 〈p, w〉 = 0, for every p ∈ J by transfinite induction on
u = deg p. It is not restricive to suppose that the leading power coefficient of p is
unitary. If u <T k then 〈p, w〉 = 〈p, wI〉I = 0. Otherwise let q = p − zr1

1 zr2
2 qj(u),

where r = (r1, r2) = u−deg qj(u) ∈ N2. First note that 〈zr1
1 zr2

2 qj(u), w〉 = 0. Actually
if s = (s1, s2) = u− deg qj(u), then s− deg pi(u) ∈ N2 and so for all ` ∈ N2 we have
that

w(` + s) = −
∑

d<T deg pi(u)

pi(u)(d)w(` + s− deg pi(u) + d).

Consequently we have that

〈zs2
1 zs2

2 qj(u), w〉 = w(k) +
∑

`<T deg qj(u)

qj(u)(`)w(` + s) =

= w(k)−
∑

`<T deg qj(u)

qj(u)(`)
∑

d<T deg pi(u)

pi(u)(d)w(` + s− deg pi(u) + d) =

= w(k)−
∑

d<T deg pi(u)

pi(u)(d)
∑

`<T deg qj(u)

qj(u)(`)w(` + s− deg pi(u) + d) =

= w(k) +
∑

d<T deg pi(u)

pi(u)(d)w(u− deg pi(u) + d) = 0,

where we have exploited the fact that if t = (t1, t2) <T u− deg qj(u), then
〈zt1

1 zt2
2 qj(u), w〉 = 0 by induction. Since q ∈ I and since deg q <T u, then by

induction 〈q, w〉 = 0 and so 〈p, w〉 = 0. 2

From the previous proposition we can argue that, since the corroborated un-
dominated unfalsified model of a 2D array is unique when it exists, then it can be
considered the most powerful unfalsified model in the class of all the the models
satisfying condition (10).

We give now a procedure providing the corroborated undominated unfalsified
model of a 2D array, when it exists. This algorithm is based on a procedure proposed
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by Sakata [4, 5] extending the classical Berlekanp Massey algorithm that solves
the partial realization problem in 1D case. This procedure is characterized by a
good efficiency and is recursive, namely if a new element of the array is provided
the computation of the new solution uses in some way the work we have done to
compute the old solutions. Its limitation consists on the fact that this algorithm
provides unfalsified models only under particular conditions.

Let <T be the total degree ordering in N2, i. e. the total admissible ordering such
that (s1, s2) <T (r1, r2) if and only if s1 + s2 < r1 + r2 or if s1 + s2 = r1 + r2 and
s1 < r1. Suppose moreover that I = {x ∈ N2 : x <T k} for some k ∈ N2. If M is
the set of all the minimal elements in the set degA(wI) w. r. to the usual partial
ordering in N2, then a minimal polynomial set F for wI is a subset of A(wI) such
that degF = M . It is easy to see that there always exists minimal polynomial sets
F such that each polynomial f ∈ F is monic and in a reduced normal form w. r.
to the ideal generated by F ( or equivalently that the support of f is included in
∆(F) ∪ {deg f}, where ∆(F) := N2 \ (degF + N2) ) and so we will consider only
minimal polynomial sets satisfying this requirement.

The condition ensuring the uniqueness of the minimal polynomial set is similar
to condition (10). More precisely define for every finite family of polynomials F the
subsets

∆(F) := N2 \ (degF + N2)

Σ(F) := degF + ∆(F)
. (12)

Note that if G is the reduced Gröbner basis of the ideal I w. r. to an admissible
ordering <T , then we have that ∆(G) = ∆(I) and Σ(G) = Σ(I).

Proposition 5. [4] Fix a total admissible ordering <T and let I = {x ∈ N2 :
x <T k} for some k ∈ N2. Let wI be any 2D array in RI . If there exists a minimal
polynomial set F of a 2D array wI , such that

Σ(F) ⊆ I, (13)

then it is unique.

Given wI , Sakata’s algorithm provides the family of all the minimal polynomial
sets for wI . However we have that a minimal polynomial set is not always a Gröbner
basis, which is a necessary and sufficient condition for a minimal polynomial set to
give an unfalsified model. In [5] there is an example in which we have that the mini-
mal polynomial set is unique, but it is not a Gröbner basis. The following proposition
shows that if there exists the corroborated undominated unfalsified model of a 2D
array wI , then it can be extracted from a minimal polynomial set.

Proposition 6. Fix a total admissible ordering <T and let I = {x ∈ N2 : x <T k}
for some k ∈ N2. Let wI be any 2D array in RI and F be any minimal polynomial
set of wI . If there exists the corroborated undominated unfalsified model of wI ,
then there exists a subset F ′ = {f1, . . . , fm} of F such that ker(f1, . . . , fm) is the
corroborated undominated unfalsified model of wI .
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P r o o f . Suppose that B = ker(g1, . . . , gm) is a corroborated undominated un-
falsified model of wI and that G = {g1, . . . , gm} is the reduced Gröbner basis w. r.
to the admissible ordering <T . Since B is corroborated, then Σ(G) ⊆ I. Moreover
there exists w ∈ ker(g1, . . . , gm) such that w|I = wI . Define the following subset of
the minimal polynomial set F

F ′ := {f ∈ F : deg g − deg f ∈ N2, ∃g ∈ G}. (14)

We will show now that F ′ is a Gröbner basis. If it is not the case, then there exists
s = (s1, s2) ∈ N2 and f̄ ∈ F ′ such that 〈zs1

1 zs2
2 f̄ , w〉 6= 0. By Lemma 4 in [4], for

all g ∈ G we have s − deg g 6∈ N2 and so s ∈ ∆(G). Finally, taking ḡ ∈ G such that
t = deg ḡ − deg f̄ ∈ N2, we can argue that deg ḡ + s = deg f̄ + s + t and so, since by
Corollary 2 deg f̄ + s 6∈ I, then Σ(G) 6⊆ I that is against the hypothesis. 2

By the previous proposition we can extract the corroborated undominated unfal-
sified model of a 2D array wI , when it exists, from a minimal polynomial set F in
the following way:

1. Let F1, . . . ,Fl be the subsets of F such that Σ(Fi) ⊆ I.
2. If there exists Fi = {g1, . . . , gm} that is a Gröbner basis, then ker(g1, . . . , gm)

is the corroborated undominated unfalsified model of wI . Otherwise by Propo-
sition 6 the corroborated undominated unfalsified model of wI does not exist.

In this paper we propose an extension of the concept of corroboration to the 2D
case. Its connections with the data compression is still not completely clear to us
and it will be the object of our future research.

Note moreover that if I is a finite subset of N2, then every corroborated undomi-
nated unfalsified model must be finite dimensional and this seems too restrictive.
Presently we are trying to extend the definition of corroborated models without
this restriction and to develop a modelling algorithm providing the corroborated
undominated unfalsified model of a 2D array wI in this case.

(Received March 18, 1993.)
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