KYBERNETIKA — VOLUME 30 (1994), NUMBER 2, PAGES 177-186

SYNTACTIC COMPLEXITY OF
REGULATED REWRITING

ALEXANDER MEDUNA, CYNTHIA J. CROOKS AND MILAN SAREK

The syntactic complexity of regulated grammars with respect to the number of non-
terminals is investigated. Several characterizations of the family of recursively enumerable
languages are established; most importantly, it is proved that this family is defined by
programmed grammars with only seven nonterminals.

1. OVERVIEW

Recently, the language theory has systematically investigated the syntactic com-
plexity of various grammars with respect to the number of nonterminals (see Chapter
4 in [3] and references therein). In particular, several characterizations of the family
of recursive enumerable languages by regulated grammars with a reduced number
of nonterminals have been established.

For context free grammars, the parameter of the number of nonterminals leads to
an infinite hierarchy of languages (see [5]). On the other hand, two (three) nonter-
minals are sufficient for the generation of all linear (metalinear) languages by matrix
grammars; moreover, there are non-context-free languages that can be generated by
matrix grammars with only one nonterminal (see [2] and [4]). Furthermore, any
recursively enumerable language can be generated by matrix grammars with six
nonterminals and by programmed grammars with eight nonterminals (see [6]). For
further results, the reader is referred to [2-6].

In this paper, we contribute to this vivid area of the language theory by pre-
senting several characterizations of the family of recursively enumerable languages
based upon regulated grammars, including matrix and programmed grammars, with
a reduced number of nonterminals. In particular, we characterize the family of re-
cursively enumerable languages by seven-nonterminal programmed grammars.

2. PRELIMINARIES

We assume that the reader is familiar with the basic concepts and notation used
in formal languages (Chapter 1 in [3]). Next, we give informal descriptions of the
grammars discussed in this paper.

For a grammar, G, the following notation is used:

178 A. MEDUNA, C.J. CROOKS AND M. SAREK

(1) N and T are the alphabets of nonterminals and terminals, respectively;
V=NUT;

(2) S € N denotes the axiom of G;
(3) P denotes the set of productions of G;

(4) Fg (or simply F' if G is understood) denotes the set of labels assigned to the
productions in P.

Unless stated otherwise, the language generated by G, L(G), is defined as L(G) =
{w:weT* S =*w} where =* denotes the reflexive and transitive closure of the
direct derivation =. The notation x = y [p] is used to express x = y according to
production p; =* y [p] indicates that p was the last production applied in x =* y.

The productions of a programmed grammar, G = (N, T, P, S), are of the form
(l:A—aTgTr)

wherel € FFA€ N,a e V*T's C F,and'r C F. A production of this form is used
so A is replaced with «, and, in the next direct derivation, a rule with a label in I'g
is used. If A does not occur in the current sentential form, this production allows
us to use a production with a label from I'r in the next step. An unconditional
transfer programmed grammar is a programmed grammar in which each production
of the above form has I's = I'p.

A matrix grammar has the form G = (N, T, M, S, R) where M, called the set of
matrices, is a finite set of sequences of productions, and R is a subset of Fg. All of
the productions of a matrix must be used sequentially; if a label, ¢, appears in R
and the production labeled with £ is not applicable to the current sentential form,
then this production is skipped.

A regularly controlled grammar has the form G = (N, T, P, S, C, K), where pro-
ductions in P are of the form £ : A — w with A € Nyw € V*£{ € F; C is a
regular language over F, and K C F. Ifigiy---i, € C(n > 0), to,...,t, € V* s0
to = S, t, € T, and for every],0 <j<n-— 1, either tj = UjAjUj, tj+1 = U;W;Vj,
ij : Aj — w; € P (for some uj, v; € V*) or t; =tj 41,4 : Aj — w; € P, Aj does
not occur in ¢; and i; € K, then ¢, is a word in the language generated by G. The
generated language consists of all words obtained in this way.

The classes of matrix, programmed, unconditional transfer programmed, regu-
larly controlled, and type-0 grammars are denoted by M, PR, UT PR, RC, and RE,
respectively. Let X be a class of grammars, X € {M, PR,UTPR, RC, RE}; then,
L(X) denotes the class of languages defined by X, that is, £(X) = {L(G) : G € X}.
Let G € X, N is the set of nonterminals in G, and L € L(X). NONTER(G)
denotes the cardinality of N. We set

N(X,L) =min{fNONTER(G) : G € X,L(G) = L}.
3. NONTERMINAL COMPLEXITY OF REGULATED REWRITING

This section establishes several results concerning the nonterminal complexity of
grammars defined the previous section.

Syntactic Complexity of Regulated Rewriting 179

Theorem 1. For every L € L(RE) : N(RC,L) < N(M,L).

Proof. Let G = (N,T,M,S,R), G € M, L(G) = L, and NONTER(G) =
N (M, L). Then, this theorem follows immediately from the first part of the proof of
Theorem V.6.1 in [7] because this construction introduces no new nonterminal. O

Theorem 2. For every L € L(RE) : N(PR,L) < N(RC,L) + 1.

Proof. Intuitively, we define a controlled language of a regularly controlled
grammar, G, by a finite automaton, A. Then, we construct a programmed grammar
G that synchronously simulates both the derivations in G and the computations in
A.

Formally, let G € RC, L = L(G), and NONTER(G) = N(RC,L). Assume
that G is of the form G = (N, T, P, S, L(A), K) where A = (Q, X, 9, go, Q) is the
completely specified finite automaton — see [1] (in this paper, the set of final states
is denoted by Q).

The new set of labels, F¢, is defined as:

For ={{v,0) :v€Q,£ € Fg} U{(FIRST),(LAST)}.

Let §(v,£) =q,q € QF, and £ : A — o € P. Then, we define a new programmed
production, p, as follows:

(1) if £ ¢ K, then p = ({7,0) : A = a,{{q, k) : k € Fa} U{(LAST)},0);

(2) if € € K, then p = ((v,£) : A — o, {{g. k) : k € Fo} U{(LAST)},
{{g, k) : k € Fo} U{(LAST)}).

Let P’ be the set of all productions obtained in this way.

Now, let §(v,¢) = q, ¢ € Qr, £ : A — a € P. Then, we add to P’ a new
programmed production according to the following two conditions:

(1) if £ € K, then p= ((7,£) : A — «a, {{(¢, k) : k € Fg},0);
(2) if e K, then p= ({(7,£) : A — «, {{¢,k) : k € Fg},{{q,k) : k € Fg}).

Let X ¢ NUT. Consider the programmed grammar G’ = (NU{X}, T, {((FIRST) :
X — SX,{{qo,¢) : £ € F},0), ((LAST) : X — A,0,0} U P’, X) — observe that X
is the only new nonterminal.

Next, we prove that L(G) = L(G’).
Claim 1. S =" w [p|in G iff X =™ wX [(v,p)] in G’ for some n > 1, m > 2,
w e (NUT)*, p € Fg, (7,p) € For (p and (7, p) are the labels of the last productions
applied in these derivation).

Only if: If S =™ w [p] in G, then X =* wX [{v,p)] in G’ for some n > 1.

Base Case: Let n = 1. If S in G is to derive any w, then there surely exists
a production, p, such that p : S — « for some « € (N UT)*. From the above
construction, we see that the following two productions are in G’:

(FIRST) : S — SX

180 A. MEDUNA, C.J. CROOKS AND M. SAREK

and
(90,p) : § = e
Therefore, S =! afp] in G and S = SX [(FIRST)] = a X [{qo,p)] in G’.

Induction Hypothesis: Assume that if S =" w [p] in G, then X =* wX[(y,p)] in G’
for all n > 1.

If S =" wlp] = y is a valid derivation in G, then the following two conditions
hold:

a. A production, p; : A — «a € P, was applied to w to derive y in G: S ="

wlp] = ylp1].

b. The state of A is some v, € Q and (~,,p1) = ¢ for some ¢ € Q.
Case 1: w =y.

a. Production p; is not applicable to w, that is, A & alph(w).

b. p1 € K; therefore, it can be ignored in G.

c. At least one of the following productions is in P’
1. ((y,p1) + A = a,{(¢,k) : k € Fo} U{{LAST)}{{(q,k) : k € Fg}U
[(LAST)}) if ¢ € Q. |
2. ((vyp1) : A= o, {{q,k) : k € Fe},{{q,k) : k€ Fg})if ¢ € QF.

d. By the induction assumption, X =* wX[{v,p)] = yX[{(7,p1)]-
e. Processing can continue in G’ because I'p of (v,,p1) is nonempty.

Case 2: w # y.
a. Production p; is applicable to w in G, that is, A € alph(w).

b. At least one of the productions presented in Case 1.c or of the following pro-
ductions appear in P’

1. ((v,p1): A— o, {{g,k) : k € Fg} U{(LAST)},0),if g € Qp.
2. ((yom) A= {{q, k) 1 k € Fc},0),if ¢ & QF.

c. By the induction assumption, X =* wX[{y,p)] = yX[{(,p1)] in G".

Hence, if S ="*!y [p;] in G, then X =* yX|[(v,p1)] in G'.

Therefore if S =" w [p] in G, then X =* wX[y,p] in G’ for all n > 1 and
we (NUT)*.
If: f X =™ wX [(7,pa)] in G’, then S =* w [p,] in G for some m > 2.

Base Case: m = 2. For any production {(gg,p) : S — « € P’ in G’, there exists a
production p : S — « € P in G. Therefore, S = SX [(FIRST)] = aX [{qo,p)] in
G'and S = a[p] in G.

Induction Hypothesis: Assume that for some m > 2, we have if X =" wX [(v, pa)]
in G', then S =* w [p,] in G for alln =2,...,m.

Induction Step: If X =™ wX|[(7y,pa)] = yX is avalid derivation in G’, the following
conditions (a) through (d) hold:

Syntactic Complexity of Regulated Rewriting 181

a. A production of the form (v, ps11) : A — a € P’ was applied to w to derive
yin G’
X =" wX[(y, pa)] = yX[(v, Pas1)]-

b. pay1:A—a€ PinG.
C. 6(7/7pa+1) =4q,q9¢€ Q
d. p1 P2 Pa Pat1 is a prefix of a string s € L(A).
Case 1: w =y.
a. Production (7, pa+1) is not applicable to w in G’, that is, A & alph(w).
b. T'r of production (v,, pa+1) is nonempty if processing is to continue.
c. pat1 € K.
d. By the induction assumption, S =* w[p,] = y[pa+t1] in G.

Case 2: w # y.

a. Production (7, pa+1) is applicable to w in G, that is, A € alph(w).
b. By the induction assumption, S =* w[ps] = Y[pa+1] in G.

Hence, if X =™ yX [(7/,pas1)] in G’, then S =* y [pa11] in G.
Therefore, if X =™ wX [(v,ps)] in G', then, by induction, S =* w [p] in G for
allm >2and we (NUT)*™.

Claim 2: S =" wlp] in G if and only if X =" wX|[(v,p)] = w[{LAST)] in G’ for
somen >1,m>2 weT* pe Fg, (v,p) € For, v € Qr (p and (v,p) are the
labels of the last productions applied in these derivation).

Since v € Qp, if (v, p) was applicable, (LAST) € I's,; otherwise, (LAST) € I'p.,.
That is, the production (LAST) may be applied to the word wX in G’. Observe that
this is the only way to continue the derivation, so, S =" wp] iff X =™ wX|[{vy,p)] =
w[{LAST)].

Hence, L(G) = L(G"). O
The construction of the proof of Theorem 2 implies the following two corollaries.

Corollary 1 (Normal Form of Programmed Grammars). For every
L € L(RE), there exists GSPR, G = (N, T, P, S), such that

(i) L =L(G);
(ii) if (¢: A— o,Tg,T'F) € P, then either 's =T'p or I'r = 0.

Corollary 2. Let G = (N,T,P,S,C,K), GSRC and Fg = K. Then L(G) €
L(UTPR).

By Lemma 5 in [4], N(PR,L) < N(M, L)+ 2 (for every L € L(RE)). Next, we
improve this relation.

182 A. MEDUNA, C.J. CROOKS AND M. SAREK

Theorem 3. For every L € L(RE): N(PR,L) < N(M,L)+1
Proof. It follows from Theorems 1 and 2. O

Theorems 1 and 3 together with Theorem 2 in [6] imply the following two results.

Corollary 3. For every L € L(RE):
(i) M(RC,L) <6
(ii) N(PR,L) < 1.

Notice that (ii) improves the relation N(PR, L) < 8 (for every L € L(RE)) in
[2].

Theorem 4. For every L € L(RE), N(RC,L) < N(PR,L)+1

Proof. Informally, given a programmed grammar, G, we construct a regularly
controlled grammar, G’, whose controlled language is defined by a finite automaton,
A. G and A synchronously simulate derivations of G.

Formally, consider GSPR, L = L(G), G = (N,T,P,S), and NONTER(G) =
N (PR, L).

Let G' € RG, G' = (NU{B},T,P',S,C, K), be defined as follows:

Let B be a new symbol, B¢ NUT. P’ and Fg are defined by:

if(¢:A— a,T's,I'r) € P, then add {[¢, 1], [¢,2]} into Fg,
and {[(,1]:A — «, [¢,2]:A — B} into P'.

Now, a nondeterministic finite automaton (see [1]), A, is constructed as follows:

= (Q7FG'a 67 q0, Q - {qO})

where @ = {qo, ¢empty } U Fo (we assume that o, gempty & F¢), and ¢ is defined as
follows:
for each ({: A — a,I'g,T'p) € P, we define:

(1) 6(6,[6,1]) ={k: ke T} if I's #0,

(2) 6(€,16,1]) = {gempty } if I's =0,

(3) 6(6,[1,2]) = {k - k € T} if T £0,

(4) 0(¢,[6,2]) = {gempty } if I'r =0,

(5) 0(qo,[6,1)) ={k:keTg}if A=SandT's #0,
(6) 9(qo, [6,1]) = {gempty } if T' = 0.

Let C = L(A) and K = {[¢,2] : 1 € F},.

The proof of the equivalence of G and G’ follows next:
Claim 1: S =" w[p1] in G where w =* t; in G with t; € T* iff S =™ w[py, ¢1] in
G’ where w =* t5 in G’ with t5 € T, ¢1 € {1,2}, for some n,m > 1, w e (NUT)*
(p1 € P, [p1,£1] € P’ are the last productions applied in these derivations).

Syntactic Complexity of Regulated Rewriting 183

Only if: If S =™ w[p1] in G where w =* t; in G with ¢t; € T*, then S =* w[py, ¢1]
inG,n>1,we(NUT)* w="tyin G’ with ty € T*, and ¢; € {1,2}.

Base Case: Let n = 1. There must exist at least one production in G of the form
p: S — a where a € (N UT)*, which implies that productions [p,1] : S — « and
[p,2] : S — B are in G’. As production [p, 2] would block a complete derivation in
G’, [p,1] is surely used. Therefore, S = a [p] in G and S = «[p,1] in G’. The rest
of the base case is left to the reader.

Induction Hypothesis: Assume that if S =" w [p1] in G where w =* t; € T*, then
S =* w[p1,¢1] in G’ where w =* t5 in G’ with to € T*¢; € {1,2}, for all n > 1.
If S =" w [p1] = y is a valid derivation in G, then the following conditions hold:

a. A production py € P was applied to w to derive y in G, that is S =" w [p1] =
Y [p2].
b. p; and py are labels of productions of the form:
(p1:A— a,Ts1,T'r1),
(p2: B — B3,I's2,T'p2),
a,f€(NUT)*, A,B€ N.
c. By the definition of a programmed grammar, I'g; UT'py # 0.

d. po el'gy UT'py.
If S =* w[p1, £1] is a valid derivation in G’, then the following conditions hold:

a. The sequence of labels [po, £o] . .. [p1, ¢1] is a valid prefix of a word s € L(A),
and [p1,¢1] is the label of the last production applied in the derivation in G’.

b. If py € 'y in G, then py € §(p1, [p1,1]) in G'. If po € T'py in G, the py €
5(p1, [p1,2]) in G'.
Case 1: w =y.

B is not a substring of w, that is, B & alph(w).
Production p, is not applicable to w in G.

If the derivation is to continue, then I'po of ps in G is nonempty,

o T

If 'y of pg in G is nonempty, then 6(p2, [p2,2]) in G’ is nonempty and gempty &

5(p2a [p27 2])

e. Since §(pa2, [p2,2]) is defined, [po, lo] - - - [p1,l1][p2, 2] is a valid prefix of s € L(A)
in G'.

f. Because [p2,2] € K, processing can continue in G'.

g. By the induction assumption, S =* w(p1, 1] = y[p2,2] in G’
Case 2: w # y.

a. B is a substring of w, that is, B € alph(w).

b. Production py is applicable to w in G.

c. If the derivation is to continue, then I'go of ps is nonempty.

184 A. MEDUNA, C.J. CROOKS AND M. SAREK

d. If T'go of py in G is nonempty, then &(pa, [p2,1]) is nonempty and does not

contain gempty -

e. As §(pa, [p2,1]) is defined, [po, o] ... [p1,¢1][p2, 1] is a valid prefix of s € L(A)

in G'.

f. By the induction assumption, S =* wp1,l1] = y[pe, 1] in G'.

Hence, if S =" y[p] in G, where y =* t; in G with t; € T*, then S =* y[p, /]
in G', where y =* t5 in G with ty € T*, ¢ € {1,2}. Therefore, we have completed
the only if part of the induction.

If: It S =™ w [p1,41] in G’ where w =* to in G’ with ty € T*, then S =* w [p1]
where w =* ¢; in G with t; € T*in G, m > 1, w € (NUT)*, ¢, € {1,2}
(p1 € P, [p1,11] € P’ are the last productions applied in the derivations).

Base Case: Let m = 1. For any derivation to yield a word to € T* in G’, there
surely exists a production, [p,1] : S — «, where a € (N UT)* in G’. Then, by the
construction, there exists a production p : S — « in G. Hence S = «a[p,1] in G,
and S = afp] in G. The rest of the base case is left to the reader.

Induction Hypothesis: Assume that if S =% w [p1, 1] in G’, where w =* t5 € T*,
Iy € {1,2}, then S =* w [p1] in G where w =* t; € T* for any ¢ satisfying i < m
for some m > 1.

If S =" w[p1,¥£1] = y is a valid derivation in G’, then the following holds:

a. a production [pg,fs] was applied to w to derive y in G’, that is, S =™
w(p1, b1] = y[p2, La].
b. productions [p1,¢1] and [pa, £2] are of the form:

[p1,1] : A — «,
[p1,2]: A — B,
[p271]:B_>ﬁ7
[p2,2]: B — B.

A, BeN,a,fe (NUT)*.

c. The production sequence [pg, &o]. .. [p1,¢1][p2, ¢2] is a valid prefix of a control
word s € L(A) in G'.
d. By the construction, the following productions belong to P in G:

pl:A*)OQFSl’FFl)ﬂ
pQ:BHﬁ7FSQ7rF2)'
e. Fsl UFFl #0.

Case 1: w =y.
a. B is not a substring of w, that is, B & alph(w).
b. Production [pa,¢5] is not applicable to w.
c. If the derivation is to continue in G’, then:
1. [p27€2} € K and 0, = 2.

2. The current state of A in G’ is N0t gempty-

Syntactic Complexity of Regulated Rewriting 185

d. p2 € T's1 and/or py € I'p; in G; therefore, po can be applied at this point in
the derivation.

e. I'pg in G is nonempty and processing can continue.

f. By the induction assumption, S =* w[p;1] = y[p2] in G.
Case 2: w # y.

a. B is a substring of w, that is, B € alph(w).
b. Production [ps,¢s] is applicable to w in G”.

c. If £ = 2, then B would be replaced by B and y does not derive to € T* in G’;
therefore, /5 = 1 for processing to continue.

d. If the derivation is to continue in G’, then the current state of A in G’ cannot
be Gempty -

e. po € T'gy and/or py € T'py in G and ps can be used at this point in the
derivation.

f. T'sa # 0 in G, so y can continue to be processed in G.

g. By the induction assumption, S =* w[p;] = y[p2] in G.

Hence, if S =M% y[pa, o] in G', S =* y[p2] in G. Therefore, the if part of the
induction holds.
Claim 2: S=*t,t€T* in Gifand only if S = t,t € T* in G'.

Claim 2 follows from Claim 1. Consider the case when S =* wp| in G where
w € T* (p is the label of the last production applied in the derivation). From
Claim 1, we know that S =* w(p,] in G', w € T* and [p, {] is the label of the last

production applied. Thus, w € L(G). Since all states, excluding gg, of A are final
states the control word [pg, {o] ... [p,¢] € L(A) and w € L(G’).

Hence, L(G) = L(G). 0

Corollary 4 (Normal Form of Regularly Controlled Grammars). For each
L € L(RE), there exists G € RC, G = (N, T, P, S,C, K), such that:

(i) L =L(G);

(ii) if z € C, then every (nonempty) prefix of x is also from C.

Corollary 5. L = L(G) for some G € UTPR if and only if L = L(G") for some
G’ € RC, and K = Fg.

Proof. If: See Corollary 2.

Only if: This can be established by analogy with the method of the proof of Theorem
4 (we only take [¢,1]-[¢, 2] for all £ € Fg and omit from P’ every production for which
the right side is equal to B). O

The following corollary follows from Theorems 3 and 4.

186 A. MEDUNA, C.J. CROOKS AND M. SAREK

Corollary 6. For every L € L(RE): N(RC,L) < N(M, L) + 2.

(Received October 17, 1989.)

REFERENCES

[1] A.V. Aho and J.D. Ullman: The Theory of Parsing, Translation, and Computing, Vol.
1: Parsing. Prentice-Hall, N.J. 1972.

[2] J. Dassow and G. Paun: Further remarks on the complexity of regulated rewriting.
Kybernetika 21 (1985), 213-227.

[3] J. Dassow and G. Piaun: Regulated Rewriting in Formal Language Theory. Akademie-
Verlag, Berlin, 1989.

[4] J. Dassow: Remarks on the Complexity of Regulated Rewriting. Fund. Inform. 7 (1984),
83-103.

[5] J. Gruska: Descriptional Complexity of Context-Free Languages. Proc. 2*¢ MFCS,
71-83, 1973.

[6] G.Paun: Six nonterminals are enough for generating a recursively enumerable language
by matrix grammar. Internat. J. Comp. Math. 15 (1984).

[7] A. Salomaa: Formal Languages. Academic Press, New York 1973.

Alexander Meduna, Department of Computer Science, University of Missouri —
Columbia, Columbia, MO65211, USA and Computing Center, Technical University of
Brno, Udolni 19, 60200 Brno. Czech Republic.

Cynthia J. Crooks, Department of Computer Science, University of Missouri — Columbia,
Columbia, MO 65211. USA.

Milan Sdrek, Institute of Computer Science, Masaryk University, Buresova 20, 60200
Brno. Czech Republic.

	OVERVIEW
	PRELIMINARIES
	NONTERMINAL COMPLEXITY OF REGULATED REWRITING

