
KY BERNET I K A — V OL UME 3 0 (1 9 9 4) , N UM B ER 2 , PAGE S 1 7 7 – 1 8 6

SYNTACTIC COMPLEXITY OF
REGULATED REWRITING

Alexander Meduna, Cynthia J. Crooks and Milan Šárek

The syntactic complexity of regulated grammars with respect to the number of non-
terminals is investigated. Several characterizations of the family of recursively enumerable
languages are established; most importantly, it is proved that this family is defined by
programmed grammars with only seven nonterminals.

1. OVERVIEW

Recently, the language theory has systematically investigated the syntactic com-
plexity of various grammars with respect to the number of nonterminals (see Chapter
4 in [3] and references therein). In particular, several characterizations of the family
of recursive enumerable languages by regulated grammars with a reduced number
of nonterminals have been established.

For context free grammars, the parameter of the number of nonterminals leads to
an infinite hierarchy of languages (see [5]). On the other hand, two (three) nonter-
minals are sufficient for the generation of all linear (metalinear) languages by matrix
grammars; moreover, there are non-context-free languages that can be generated by
matrix grammars with only one nonterminal (see [2] and [4]). Furthermore, any
recursively enumerable language can be generated by matrix grammars with six
nonterminals and by programmed grammars with eight nonterminals (see [6]). For
further results, the reader is referred to [2–6].

In this paper, we contribute to this vivid area of the language theory by pre-
senting several characterizations of the family of recursively enumerable languages
based upon regulated grammars, including matrix and programmed grammars, with
a reduced number of nonterminals. In particular, we characterize the family of re-
cursively enumerable languages by seven-nonterminal programmed grammars.

2. PRELIMINARIES

We assume that the reader is familiar with the basic concepts and notation used
in formal languages (Chapter 1 in [3]). Next, we give informal descriptions of the
grammars discussed in this paper.

For a grammar, G, the following notation is used:

178 A. MEDUNA, C. J. CROOKS AND M. ŠÁREK

(1) N and T are the alphabets of nonterminals and terminals, respectively;
V = N ∪ T ;

(2) S ∈ N denotes the axiom of G;
(3) P denotes the set of productions of G;
(4) FG (or simply F if G is understood) denotes the set of labels assigned to the

productions in P .
Unless stated otherwise, the language generated by G, L(G), is defined as L(G) =

{w : w ∈ T ∗, S ⇒∗ w} where ⇒∗ denotes the reflexive and transitive closure of the
direct derivation ⇒. The notation x ⇒ y [p] is used to express x ⇒ y according to
production p; x ⇒∗ y [p] indicates that p was the last production applied in x ⇒∗ y.

The productions of a programmed grammar, G = (N,T, P, S), are of the form

(` : A → α, ΓS ,ΓF)

where ` ∈ F,A ∈ N,α ∈ V ∗, ΓS ⊆ F , and ΓF ⊆ F . A production of this form is used
so A is replaced with α, and, in the next direct derivation, a rule with a label in ΓS

is used. If A does not occur in the current sentential form, this production allows
us to use a production with a label from ΓF in the next step. An unconditional
transfer programmed grammar is a programmed grammar in which each production
of the above form has ΓS = ΓF .

A matrix grammar has the form G = (N,T,M, S, R) where M , called the set of
matrices, is a finite set of sequences of productions, and R is a subset of FG. All of
the productions of a matrix must be used sequentially; if a label, `, appears in R
and the production labeled with ` is not applicable to the current sentential form,
then this production is skipped.

A regularly controlled grammar has the form G = (N,T, P, S, C,K), where pro-
ductions in P are of the form ` : A → w with A ∈ N,w ∈ V ∗, ` ∈ F ; C is a
regular language over F , and K ⊆ F . If i0 i1 · · · in ∈ C(n > 0), t0, . . . , tn ∈ V ∗ so
t0 = S, tn ∈ T ∗, and for every j, 0 ≤ j ≤ n− 1, either tj = ujAjvj , tj+1 = ujwjvj ,
ij : Aj → wj ∈ P (for some uj , vj ∈ V ∗) or tj = tj+1, ij : Aj → wj ∈ P , Aj does
not occur in tj and ij ∈ K, then tn is a word in the language generated by G. The
generated language consists of all words obtained in this way.

The classes of matrix, programmed, unconditional transfer programmed, regu-
larly controlled, and type-0 grammars are denoted by M , PR, UTPR, RC, and RE,
respectively. Let X be a class of grammars, X ∈ {M,PR, UTPR, RC,RE}; then,
L(X) denotes the class of languages defined by X, that is, L(X) = {L(G) : G ∈ X}.
Let G ∈ X, N is the set of nonterminals in G, and L ∈ L(X). NONT ER(G)
denotes the cardinality of N . We set

N (X,L) = min{NONT ER(G) : G ∈ X, L(G) = L}.

3. NONTERMINAL COMPLEXITY OF REGULATED REWRITING

This section establishes several results concerning the nonterminal complexity of
grammars defined the previous section.

Syntactic Complexity of Regulated Rewriting 179

Theorem 1. For every L ∈ L(RE) : N (RC, L) ≤ N (M, L).
P r o o f. Let G = (N, T, M, S, R), G ∈ M, L(G) = L, and NONT ER(G) =

N (M, L). Then, this theorem follows immediately from the first part of the proof of
Theorem V.6.1 in [7] because this construction introduces no new nonterminal. 2

Theorem 2. For every L ∈ L(RE) : N (PR, L) ≤ N (RC, L) + 1.
P r o o f. Intuitively, we define a controlled language of a regularly controlled

grammar, G, by a finite automaton, A. Then, we construct a programmed grammar
G that synchronously simulates both the derivations in G and the computations in
A.

Formally, let G ∈ RC, L = L(G), and NONT ER(G) = N (RC, L). Assume
that G is of the form G = (N, T, P, S, L(A),K) where A = (Q, Σ, δ, q0, Qf) is the
completely specified finite automaton – see [1] (in this paper, the set of final states
is denoted by Qf).

The new set of labels, FG′ , is defined as:

FG′ = {〈γ, `〉 : γ ∈ Q, ` ∈ FG} ∪ {〈FIRST 〉, 〈LAST 〉}.
Let δ(γ, `) = q, q ∈ QF , and ` : A → α ∈ P . Then, we define a new programmed

production, p, as follows:

(1) if ` 6∈ K, then p = (〈γ, `〉 : A → α, {〈q, k〉 : k ∈ FG} ∪ {〈LAST 〉}, 0);

(2) if ` ∈ K, then p = (〈γ, `〉 : A → α, {〈q, k〉 : k ∈ FG} ∪ {〈LAST 〉},
{〈q, k〉 : k ∈ FG} ∪ {〈LAST 〉}).

Let P ′ be the set of all productions obtained in this way.
Now, let δ(γ, `) = q, q 6∈ QF , ` : A → α ∈ P . Then, we add to P ′ a new

programmed production according to the following two conditions:

(1) if ` 6∈ K, then p = (〈γ, `〉 : A → α, {〈q, k〉 : k ∈ FG}, 0);

(2) if ` ∈ K, then p = (〈γ, `〉 : A → α, {〈q, k〉 : k ∈ FG},{〈q, k〉 : k ∈ FG}).
Let X 6∈ N∪T . Consider the programmed grammar G′ = (N∪{X}, T, {(〈FIRST 〉 :
X → SX, {〈q0, `〉 : ` ∈ FG}, 0), (〈LAST 〉 : X → λ, 0, 0} ∪ P ′, X) — observe that X
is the only new nonterminal.

Next, we prove that L(G) = L(G′).
Claim 1. S ⇒n w [p] in G iff X ⇒m wX [〈γ, p〉] in G′ for some n ≥ 1, m ≥ 2,
w ∈ (N∪T)∗, p ∈ FG, 〈γ, p〉 ∈ FG′ (p and 〈γ, p〉 are the labels of the last productions
applied in these derivation).
Only if: If S ⇒n w [p] in G, then X ⇒∗ wX [〈γ, p〉] in G′ for some n ≥ 1.
Base Case: Let n = 1. If S in G is to derive any w, then there surely exists
a production, p, such that p : S → α for some α ∈ (N ∪ T)∗. From the above
construction, we see that the following two productions are in G′:

〈FIRST 〉 : S → SX

180 A. MEDUNA, C. J. CROOKS AND M. ŠÁREK

and
〈q0, p〉 : S → α.

Therefore, S ⇒1 α[p] in G and S ⇒ SX [〈FIRST 〉] ⇒ α X [〈q0, p〉] in G′.

Induction Hypothesis: Assume that if S ⇒n w [p] in G, then X ⇒∗ wX[〈γ, p〉] in G′

for all n ≥ 1.

If S ⇒n w[p] ⇒ y is a valid derivation in G, then the following two conditions
hold:

a. A production, p1 : A → α ∈ P , was applied to w to derive y in G: S ⇒n

w[p] ⇒ y[p1].

b. The state of A is some γ′ ∈ Q and δ(γ′, p1) = q for some q ∈ Q.

Case 1: w = y.

a. Production p1 is not applicable to w, that is, A 6∈ alph(w).

b. p1 ∈ K; therefore, it can be ignored in G.

c. At least one of the following productions is in P ′:
1. (〈γ′, p1〉 : A → α, {〈q, k〉 : k ∈ FG} ∪ {〈LAST 〉},{〈q, k〉 : k ∈ FG}∪
{〈LAST 〉}) if q ∈ QF .

2. (〈γ′, p1〉 : A → α, {〈q, k〉 : k ∈ FG}, {〈q, k〉 : k ∈ FG}) if q 6∈ QF .

d. By the induction assumption, X ⇒∗ wX[〈γ, p〉] ⇒ yX[〈γ′, p1〉].
e. Processing can continue in G′ because ΓF of 〈γ′, p1〉 is nonempty.

Case 2: w 6= y.
a. Production p1 is applicable to w in G, that is, A ∈ alph(w).

b. At least one of the productions presented in Case 1.c or of the following pro-
ductions appear in P ′:

1. (〈γ′, p1〉 : A → α, {〈q, k〉 : k ∈ FG} ∪ {〈LAST 〉}, 0), if q ∈ QF .
2. (〈γ′, p1〉 : A → α, {〈q, k〉 : k ∈ FG}, 0), if q 6∈ QF .

c. By the induction assumption, X ⇒∗ wX[〈γ, p〉] ⇒ yX[〈γ′, p1〉] in G′.

Hence, if S ⇒n+1 y [p1] in G, then X ⇒∗ yX[〈γ′, p1〉] in G′.

Therefore if S ⇒n w [p] in G, then X ⇒∗ wX[γ, p] in G′ for all n ≥ 1 and
w ∈ (N ∪ T)∗.

If: If X ⇒m wX [〈γ, pα〉] in G′, then S ⇒∗ w [pα] in G for some m ≥ 2.

Base Case: m = 2. For any production 〈q0, p〉 : S → α ∈ P ′ in G′, there exists a
production p : S → α ∈ P in G. Therefore, S ⇒ SX [〈FIRST 〉] ⇒ αX [〈q0, p〉] in
G′ and S ⇒ α [p] in G.

Induction Hypothesis: Assume that for some m ≥ 2, we have if X ⇒n wX [〈γ, pα〉]
in G′, then S ⇒∗ w [pα] in G for all n = 2, . . . , m.

Induction Step: If X ⇒m wX[〈γ, pα〉] ⇒ yX is a valid derivation in G′, the following
conditions (a) through (d) hold:

Syntactic Complexity of Regulated Rewriting 181

a. A production of the form 〈γ′, pα+1〉 : A → α ∈ P ′ was applied to w to derive
y in G′:

X ⇒m wX[〈γ, pα〉] ⇒ yX[〈γ′, pα+1〉].

b. pα+1 : A → α ∈ P in G.
c. δ(γ′, pα+1) = q, q ∈ Q.
d. p1 p2 · · · pα pα+1 is a prefix of a string s ∈ L(A).

Case 1: w = y.

a. Production 〈γ′, pα+1〉 is not applicable to w in G′, that is, A 6∈ alph(w).
b. ΓF of production 〈γ′, pα+1〉 is nonempty if processing is to continue.
c. pα+1 ∈ K.
d. By the induction assumption, S ⇒∗ w[pα] ⇒ y[pα+1] in G.

Case 2: w 6= y.

a. Production 〈γ′, pα+1〉 is applicable to w in G, that is, A ∈ alph(w).
b. By the induction assumption, S ⇒∗ w[pα] ⇒ y[pα+1] in G.

Hence, if X ⇒m+1 yX [〈γ′, pα+1〉] in G′, then S ⇒∗ y [pα+1] in G.
Therefore, if X ⇒m wX [〈γ, pα〉] in G′, then, by induction, S ⇒∗ w [p] in G for

all m ≥ 2 and w ∈ (N ∪ T)∗.
Claim 2: S ⇒n w[p] in G if and only if X ⇒m wX[〈γ, p〉] ⇒ w[〈LAST 〉] in G′ for
some n ≥ 1, m ≥ 2, w ∈ T ∗, p ∈ FG, 〈γ, p〉 ∈ FG′ , γ ∈ QF (p and 〈γ, p〉 are the
labels of the last productions applied in these derivation).

Since γ ∈ QF , if 〈γ, p〉 was applicable, 〈LAST 〉 ∈ ΓSγ ; otherwise, 〈LAST 〉 ∈ ΓFγ .
That is, the production 〈LAST 〉 may be applied to the word wX in G′. Observe that
this is the only way to continue the derivation, so, S ⇒n w[p] iff X ⇒m wX[〈γ, p〉] ⇒
w[〈LAST 〉].

Hence, L(G) = L(G′). 2

The construction of the proof of Theorem 2 implies the following two corollaries.

Corollary 1 (Normal Form of Programmed Grammars). For every
L ∈ L(RE), there exists G∈PR, G = (N, T, P, S), such that

(i) L = L(G);
(ii) if (` : A → α, ΓS , ΓF) ∈ P , then either ΓS = ΓF or ΓF = 0.

Corollary 2. Let G = (N, T, P, S, C,K), G∈RC and FG = K. Then L(G) ∈
L(UTPR).

By Lemma 5 in [4], N(PR,L) ≤ N(M, L) + 2 (for every L ∈ L(RE)). Next, we
improve this relation.

182 A. MEDUNA, C. J. CROOKS AND M. ŠÁREK

Theorem 3. For every L ∈ L(RE) : N(PR, L) ≤ N(M,L) + 1.
P r o o f. It follows from Theorems 1 and 2. 2

Theorems 1 and 3 together with Theorem 2 in [6] imply the following two results.

Corollary 3. For every L ∈ L(RE):
(i) N (RC, L) ≤ 6;
(ii) N (PR, L) ≤ 7.

Notice that (ii) improves the relation N (PR,L) ≤ 8 (for every L ∈ L(RE)) in
[2].

Theorem 4. For every L ∈ L(RE), N (RC, L) ≤ N (PR,L) + 1
P r o o f. Informally, given a programmed grammar, G, we construct a regularly

controlled grammar, G′, whose controlled language is defined by a finite automaton,
A. G and A synchronously simulate derivations of G.

Formally, consider G∈PR, L = L(G), G = (N, T, P, S), and NONT ER(G) =
N (PR, L).

Let G′ ∈ RG, G′ = (N ∪ {B}, T, P ′, S, C, K), be defined as follows:

Let B be a new symbol, B 6∈ N ∪ T . P ′ and FG′ are defined by:

if (` : A → α, ΓS , ΓF) ∈ P , then add {[`, 1], [`, 2]} into FG,
and {[`, 1]:A → α, [`, 2]:A → B} into P ′.

Now, a nondeterministic finite automaton (see [1]), A, is constructed as follows:

A = (Q,FG′ , δ, q0, Q− {q0})

where Q = {q0, qempty} ∪ FG (we assume that q0, qempty 6∈ FG), and δ is defined as
follows:

for each (` : A → α, ΓS ,ΓF) ∈ P , we define:

(1) δ(`, [`, 1]) = {k : k ∈ Γs} if ΓS 6= 0,

(2) δ(`, [`, 1]) = {qempty} if ΓS = 0,

(3) δ(`, [1, 2]) = {k : k ∈ ΓF } if ΓF 6= 0,

(4) δ(`, [`, 2]) = {qempty} if ΓF = 0,

(5) δ(q0, [`, 1]) = {k : k ∈ ΓS} if A = S and ΓS 6= 0,

(6) δ(q0, [`, 1]) = {qempty} if Γ = 0.

Let C = L(A) and K = {[`, 2] : 1 ∈ F
}
G.

The proof of the equivalence of G and G′ follows next:
Claim 1: S ⇒n w[p1] in G where w ⇒∗ t1 in G with t1 ∈ T ∗ iff S ⇒m w[p1, `1] in
G′ where w ⇒∗ t2 in G′ with t2 ∈ T ∗, `1 ∈ {1, 2}, for some n,m ≥ 1, w ∈ (N ∪ T)∗

(p1 ∈ P , [p1, `1] ∈ P ′ are the last productions applied in these derivations).

Syntactic Complexity of Regulated Rewriting 183

Only if: If S ⇒n w[p1] in G where w ⇒∗ t1 in G with t1 ∈ T ∗, then S ⇒∗ w[p1, `1]
in G′, n ≥ 1, w ∈ (N ∪ T)∗, w ⇒∗ t2 in G′ with t2 ∈ T ∗, and `1 ∈ {1, 2}.
Base Case: Let n = 1. There must exist at least one production in G of the form
p : S → α where α ∈ (N ∪ T)∗, which implies that productions [p, 1] : S → α and
[p, 2] : S → B are in G′. As production [p, 2] would block a complete derivation in
G′, [p, 1] is surely used. Therefore, S ⇒ α [p] in G and S ⇒ α[p, 1] in G′. The rest
of the base case is left to the reader.
Induction Hypothesis: Assume that if S ⇒n w [p1] in G where w ⇒∗ t1 ∈ T ∗, then
S ⇒∗ w[p1, `1] in G′ where w ⇒∗ t2 in G′ with t2 ∈ T ∗,`1 ∈ {1, 2}, for all n ≥ 1.

If S ⇒n w [p1] ⇒ y is a valid derivation in G, then the following conditions hold:

a. A production p2 ∈ P was applied to w to derive y in G, that is S ⇒n w [p1] ⇒
y [p2].

b. p1 and p2 are labels of productions of the form:
(p1 : A → α, ΓS1, ΓF1),
(p2 : B → β, ΓS2,ΓF2),

α, β ∈ (N ∪ T)∗, A,B ∈ N .

c. By the definition of a programmed grammar, ΓS1 ∪ ΓF1 6= 0.
d. p2 ∈ ΓS1 ∪ ΓF1.
If S ⇒∗ w[p1, `1] is a valid derivation in G′, then the following conditions hold:

a. The sequence of labels [p0, `0] . . . [p1, `1] is a valid prefix of a word s ∈ L(A),
and [p1, `1] is the label of the last production applied in the derivation in G′.

b. If p2 ∈ ΓS1 in G, then p2 ∈ δ(p1, [p1, 1]) in G′. If p2 ∈ ΓF1 in G, the p2 ∈
δ(p1, [p1, 2]) in G′.

Case 1: w = y.

a. B is not a substring of w, that is, B 6∈ alph(w).
b. Production p2 is not applicable to w in G.
c. If the derivation is to continue, then ΓF2 of p2 in G is nonempty,
d. If ΓF2 of p2 in G is nonempty, then δ(p2, [p2, 2]) in G′ is nonempty and qempty 6∈

δ(p2, [p2, 2]).
e. Since δ(p2, [p2, 2]) is defined, [p0, l0] . . . [p1, l1][p2, 2] is a valid prefix of s ∈ L(A)

in G′.
f. Because [p2, 2] ∈ K, processing can continue in G′.
g. By the induction assumption, S ⇒∗ w[p1, `1] ⇒ y[p2, 2] in G′.

Case 2: w 6= y.

a. B is a substring of w, that is, B ∈ alph(w).
b. Production p2 is applicable to w in G.
c. If the derivation is to continue, then ΓS2 of p2 is nonempty.

184 A. MEDUNA, C. J. CROOKS AND M. ŠÁREK

d. If ΓS2 of p2 in G is nonempty, then δ(p2, [p2, 1]) is nonempty and does not
contain qempty.

e. As δ(p2, [p2, 1]) is defined, [p0, `0] . . . [p1, `1][p2, 1] is a valid prefix of s ∈ L(A)
in G′.

f. By the induction assumption, S ⇒∗ w[p1, l1] ⇒ y[p2, 1] in G′.

Hence, if S ⇒n+1 y[p] in G, where y ⇒∗ t1 in G with t1 ∈ T ∗, then S ⇒∗ y[p, `]
in G′, where y ⇒∗ t2 in G with t2 ∈ T ∗, ` ∈ {1, 2}. Therefore, we have completed
the only if part of the induction.

If: If S ⇒m w [p1, `1] in G′ where w ⇒∗ t2 in G′ with t2 ∈ T ∗, then S ⇒∗ w [p1]
where w ⇒∗ t1 in G with t1 ∈ T ∗ in G, m ≥ 1, w ∈ (N ∪ T)∗, `1 ∈ {1, 2}
(p1 ∈ P, [p1, l1] ∈ P ′ are the last productions applied in the derivations).
Base Case: Let m = 1. For any derivation to yield a word t2 ∈ T ∗ in G′, there
surely exists a production, [p, 1] : S → α, where α ∈ (N ∪ T)∗ in G′. Then, by the
construction, there exists a production p : S → α in G. Hence S ⇒ α[p, 1] in G′,
and S ⇒ α[p] in G. The rest of the base case is left to the reader.
Induction Hypothesis: Assume that if S ⇒i w [p1, `1] in G′, where w ⇒∗ t2 ∈ T ∗,
l1 ∈ {1, 2}, then S ⇒∗ w [p1] in G where w ⇒∗ t1 ∈ T ∗ for any i satisfying i ≤ m
for some m ≥ 1.

If S ⇒m w [p1, `1] ⇒ y is a valid derivation in G′, then the following holds:

a. a production [p2, `2] was applied to w to derive y in G′, that is, S ⇒m

w[p1, `1] ⇒ y[p2, `2].

b. productions [p1, `1] and [p2, `2] are of the form:
[p1, 1] : A → α,
[p1, 2] : A → B,
[p2, 1] : B → β,
[p2, 2] : B → B.

A,B ∈ N , α, β ∈ (N ∪ T)∗.

c. The production sequence [p0, `0] . . . [p1, `1][p2, `2] is a valid prefix of a control
word s ∈ L(A) in G′.

d. By the construction, the following productions belong to P in G:
(p1 : A → α, ΓS1 , ΓF1),
(p2 : B → β, ΓS2 , ΓF2).

e. ΓS1 ∪ ΓF1 6= 0.

Case 1: w = y.

a. B is not a substring of w, that is, B 6∈ alph(w).
b. Production [p2, `2] is not applicable to w.
c. If the derivation is to continue in G′, then:

1. [p2, `2] ∈ K and `2 = 2.

2. The current state of A in G′ is not qempty.

Syntactic Complexity of Regulated Rewriting 185

d. p2 ∈ ΓS1 and/or p2 ∈ ΓF1 in G; therefore, p2 can be applied at this point in
the derivation.

e. ΓF2 in G is nonempty and processing can continue.
f. By the induction assumption, S ⇒∗ w[p1] ⇒ y[p2] in G.

Case 2: w 6= y.

a. B is a substring of w, that is, B ∈ alph(w).
b. Production [p2, `2] is applicable to w in G′.
c. If `2 = 2, then B would be replaced by B and y does not derive t2 ∈ T ∗ in G′;

therefore, `2 = 1 for processing to continue.
d. If the derivation is to continue in G′, then the current state of A in G′ cannot

be qempty.
e. p2 ∈ ΓS1 and/or p2 ∈ ΓF1 in G and p2 can be used at this point in the

derivation.
f. ΓS2 6= 0 in G, so y can continue to be processed in G.
g. By the induction assumption, S ⇒∗ w[p1] ⇒ y[p2] in G.

Hence, if S ⇒m+1 y[p2, `2] in G′, S ⇒∗ y[p2] in G. Therefore, the if part of the
induction holds.

Claim 2: S ⇒∗ t, t ∈ T ∗ in G if and only if S ⇒ t, t ∈ T ∗ in G′.
Claim 2 follows from Claim 1. Consider the case when S ⇒∗ w[p] in G where

w ∈ T ∗ (p is the label of the last production applied in the derivation). From
Claim 1, we know that S ⇒∗ w[p, `] in G′, w ∈ T ∗ and [p, `] is the label of the last
production applied. Thus, w ∈ L(G). Since all states, excluding q0, of A are final
states the control word [p0, `0] . . . [p, `] ∈ L(A) and w ∈ L(G′).

Hence, L(G) = L(G′). 2

Corollary 4 (Normal Form of Regularly Controlled Grammars). For each
L ∈ L(RE), there exists G ∈ RC, G = (N, T, P, S, C, K), such that:

(i) L = L(G);
(ii) if x ∈ C, then every (nonempty) prefix of x is also from C.

Corollary 5. L = L(G) for some G ∈ UTPR if and only if L = L(G′) for some
G′ ∈ RC, and K = FG′ .

P r o o f. If: See Corollary 2.

Only if: This can be established by analogy with the method of the proof of Theorem
4 (we only take [`, 1]–[`, 2] for all ` ∈ FG and omit from P ′ every production for which
the right side is equal to B). 2

The following corollary follows from Theorems 3 and 4.

186 A. MEDUNA, C. J. CROOKS AND M. ŠÁREK

Corollary 6. For every L ∈ L(RE) : N(RC, L) ≤ N(M, L) + 2.

(Received October 17, 1989.)

REFE REN CES

[1] A.V. Aho and J.D. Ullman: The Theory of Parsing, Translation, and Computing, Vol.
1: Parsing. Prentice-Hall, N.J. 1972.

[2] J. Dassow and G. Pǎun: Further remarks on the complexity of regulated rewriting.
Kybernetika 21 (1985), 213–227.

[3] J. Dassow and G. Pǎun: Regulated Rewriting in Formal Language Theory. Akademie-
Verlag, Berlin, 1989.

[4] J. Dassow: Remarks on the Complexity of Regulated Rewriting. Fund. Inform. 7 (1984),
83–103.

[5] J. Gruska: Descriptional Complexity of Context-Free Languages. Proc. 2nd MFCS,
71–83, 1973.

[6] G. Pǎun: Six nonterminals are enough for generating a recursively enumerable language
by matrix grammar. Internat. J. Comp. Math. 15 (1984).

[7] A. Salomaa: Formal Languages. Academic Press, New York 1973.

Alexander Meduna, Department of Computer Science, University of Missouri –

Columbia, Columbia, MO65211, USA and Computing Center, Technical University of

Brno, Údolńı 19, 60 200 Brno. Czech Republic.

Cynthia J. Crooks, Department of Computer Science, University of Missouri – Columbia,

Columbia, MO 65211. USA.

Milan Šárek, Institute of Computer Science, Masaryk University, Burešova 20, 60 200

Brno. Czech Republic.

	OVERVIEW
	PRELIMINARIES
	NONTERMINAL COMPLEXITY OF REGULATED REWRITING

