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NEW TRENDS IN DESIGN OF OBSERVERS
FOR TIME–DELAY SYSTEMS

Olivier Sename

This paper presents some recent results about the design of observers for time-delay
systems. It is focused on methods that can lead to design some useful observers in prac-
tical situations. First the links between observability properties and observers design is
emphasized. Then some necessary and sufficient conditions and a method are provided to
obtain unknown input observers for time-delay systems. Furthermore some H∞ design us-
ing Lyapunov–Krasovskii and Lyapunov–Razumikhin theories are presented and compared.
Finally a polynomial approach based on the parametrization of all observers is proposed
that allows to design robust observers for systems including unstructured uncertainties.

1. INTRODUCTION

From the last ten years, control and analysis of systems with delays is subject to
lots of studies and contributions. The main approaches are the state space ap-
proach based on Hilbert space (Manitius and Triggiani [29]) which today seems to
be oldfashioned due to the difficulty of applying on potential industrial processes,
the Lyapunov–Krasovskii and Lyapunov–Razumikhin stability theories (Dugard and
Verriest [7], Niculescu [31]) which have proved their efficiency for stabilization pur-
pose, in particular in H∞ framework, and the ring theory (Conte and Perdon [4],
Picard et al [35], Sename [40]) which has contributed to solve many control problems
(decoupling, disturbance rejection. . . ) in structural and geometric frameworks and
which allows to use some polynomial approach in order to provide robust control
laws for point and distributed time-delays.

In the same time, industrial applications of these themes rise up. Let us cite for
instance the automotive industry where engine control is faced to delay in the control
input application or in the measurements (for instance of the air-to-fuel ratio) [21, 38]
or the electrical networks where transport delays may lead to unstability problems
[20].

On the other hand, if many contributions concern control problems, much less are
devoted to observer design which is of great importance in practice. Nevertheless
some interesting recent results have been provided for this observation problem and
it then seems interesting to take a photograph of these recent design methods.
This paper makes a survey of the observer design problem for time-delay systems.
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The aim is to give to the reader the ideas of the main methods one can use to design
some observers. If the new trends here presented do not include all contributions
concerning this subject, these are focused on methods that can lead to design some
useful observers in practical situations. Moreover, in order to be more synthetic, the
area is restricted to continuous-time processes with point-time delays.

The outline of the paper is the following. The considered models (mainly a ring
model) for time-delay systems are presented in Section 2. Section 3 is devoted to
observability properties of time-delay systems. Section 4 emphasizes the main ob-
server design families according to the observability properties. The case of unknown
input observer is tackled in Section 5. Section 6 deals with H∞ observers and Sec-
tion 7 presents two main approaches of robust observer design: H∞ one and the
factorization one. Some future work directions are given in conclusion.

Notations:

R is the field of real numbers and N is the set of positive integer numbers,
the exponent + is associated to positive numbers {0 < a < +∞}, for a ∈ R or C,
R[?] is the ring of polynomials in ? with coefficients in R,
R(?) is the fields of rational fractions in ? with coefficients in R,
s denotes the Laplace variable
R[z][s] = {∑m

k=0 ak(z)sk : ak(z) ∈ R[z],m ∈ N+},
R(s, z) is the field of rational functions in s and z with coefficients in R,
Θ = {p(s, z) = b(s,z)

a(s) ∈ R(s, z) : b(s, z) ∈ R[z][s] a(s) ∈ R[s], degs(a(s)) >

degs(b(s, z)) and p(s, z) is entire},
Θ[z] is the ring of polynomials in z with coefficients in Θ,
F = {p(s, z) = b(s,z)

a(s) ∈ Θ[z] : a(s) is monic and stable},
In denotes the (n× n) identity matrix,
0i×j denotes the (i× j) zero matrix,
“T ” denotes the transpose,
‖.‖∞ is the H∞-norm defined by: ‖X(s)‖∞ = σmax(X(jω)); σmax(X) denotes the
maximum singular value of X, j is the imaginary number, ω denotes the frequency.
C[a, b] is the set of continuous functions [a, b] → Rn.

2. MODELING OF TIME–DELAY SYSTEMS

In this paper, we are only interested in continuous-time processes with delays of
which models are continuous linear time-invariant given by:





ẋ(t) =
∑N

i=0Aix(t− ih) +
∑N

i=0Biu(t− ih)

y(t) =
∑N

i=0 Cix(t− ih)
(1)

where
– x(t) ∈ Rn is the state vector, u(t) ∈ Rm the known input vector, y(t) ∈ Rp

the output vector
– h ∈ R+ is the delay and N represents the maximal delay in state, input and

output variable
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– matrices Ai, Bi, Ci (i = 0, . . . , N) are real matrices of appropriate dimensions
– x(t) = ϕ(t), t ∈ [−Nh, 0] is the functional initial condition of the time-delay

system.

Moreover ring models of time-delay systems are also considered. Thus a linear, time-
invariant system with delays in state, inputs and outputs, is in this case represented
by [30, 43]:

Σ

{
ẋ(t) = A(∇)x(t) +B(∇)u(t)

y(t) = C(∇)x(t)
(2)

where
– ∇ is the delay operator defined for any continuous function f(t) by ∇f(t) =
f(t− h).

– matrices A, B, C are polynomial matrices in ∇ given by: A(∇) =
∑N

i=0∇iAi,
B(∇) =

∑N
i=0∇iBi and C(∇) =

∑N
i=0∇iCi.

3. OBSERVABILITY OF TIME–DELAY SYSTEMS OVER RINGS

In the case of linear non-retarded systems observability is defined as:

Definition 1. A linear system (ẋ = Ax + Bu; y = Cx) is completely observable
if, given the control and the output over the interval t0 ≤ t ≤ T , one can determine
any initial state x(t0).

Note that this is equivalent to the state reconstruction of x(T ) and observability
is characterized through its unobservable subspace i. e.

n⋂

i=1

KerCAi−1 = {0}.

In the case of time-delay systems lots of observability properties are defined, in par-
ticular depending on the model which is taken into account [25]. Of course each
definition leads to different characteristics of state observation.
The basic extension of observability to time-delay systems is the initial observability,
i. e.:

any initial state (x(0), ϕ(t), t ∈ [−Nh, 0[) is observable if the output of the au-
tonomous system is not identically zero on [0,∞).

Note that, when the initial function ϕ is assumed to be zero or a known function,
this definition reduces to the Rn-observability which is not useful in practice.

On the other hand, knowing the initial condition is not necessary for control
purpose, what is important is to be able to reconstruct x(t) at any time t. However,
by opposition to linear systems without delay, the notion of initial observability is
not equivalent to the reconstructibility of the state variables: indeed time-delay may
have finite duration transient behaviour.
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Therefore this paper does not consider these previous notions (initial and Rn-
observability). We are interested here in observability notions that are the most
useful ones in the design of observers.

In this way, we briefly present some usual definitions of observability for ring
models of time-delay systems.
The observability matrix of (2) is noted:

〈
C(∇)
A(∇)

〉
=




C(∇)
C(∇)A(∇)

...
C(∇)An−1(∇)


 .

The first presented notion is the dual one of the well-known strong controllability
defined by [30, 43].

Definition 2. [25] The system (2) is strongly observable (i. e., observable over the
ring R[∇]) if it satisfies the following equivalent characterizations:

– the Smith form of
〈

C(∇)
A(∇)

〉
is

(
In
0

)

–
〈

C(∇)
A(∇)

〉
has a left inverse over R[∇]

– rank
[
sIn −A(z)

C(z)

]
= n, ∀ s, z ∈ C.

We will see later that this notion guarantees the reconstructibility of x(t) at any
time t.

The next notion corresponds to the extension of the Hautus condition to time-
delay systems.

Definition 3. [25] The system (2) is spectrally observable if it satisfies the fol-

lowing characterization: rank
[
sIn −A(e−sh)

C(e−sh)

]
= n, ∀ s ∈ C.

When this condition is applied for s ∈ {s ∈ C : Re(s) ≥ ν0}, it is called ν0-
(spectral) detectability.

Finally, the last presented notion is the less restrictive characterization of observ-
ability and corresponds to the extension of the unobservable subspace definition to
time-delay systems, i. e. in this case the unobservable submodule.
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Definition 4. [25] The system (2) is weakly observable (i. e., observable over the
field R(∇)) if it satisfies the following equivalent characterizations:

– rank
〈

C(∇)
A(∇)

〉
= n

– the Smith form of
〈

C(∇)
A(∇)

〉
has non zero elements on its diagonal

– < C(∇)
A(∇) > has a left inverse over R(∇)

– there exists no x ∈ Rn(∇) such that:
C(∇)x = C(∇)A(∇)x = . . . = C(∇)An−1(∇)x = 0 and x 6= 0.

Remark 1. Note that Sontag [43] has claimed that controllability and observ-
ability looses duality for time-delay systems. In fact in his work, the considered
definition for controllability was the strong controllability one, while the considered
definition for observability was the extension of unobservable subspace definition,
i. e. the weak one.

As pointed out in [25] the relationship between these definitions is:
Strong observability ⇒ spectral observability ⇒ weak observability.

The following simple example illustrates this comparison.

Example 1. Let us consider the following time-delay system:
{

ẋ(t) = 0

y(t) = x(t)− x(t− h)

Therefore
A(∇) =

[
0

]
, C(∇) =

[
1−∇ ]

.

Let us apply the previous criteria of observability.
The observability matrix is given by:

〈
C(∇)
A(∇)

〉
= 1−∇

– Strong observability: it is straightforward that the observability matrix has no
left inverse over R[∇]. Thus the system is not strongly observable.

– Spectral observability:
[
sIn −A(z)

C(z)

]
=

[
s

1− e−sh

]

which is of rank 1 ∀ s ∈ C except for s = 0. Therefore the system is not
spectrally observable.

– Weak observability: it is straightforward that the observability matrix has a
left inverse over R(∇). Thus the system is weakly observable.

Note that taking C(∇) = 1 +∇ will give a spectrally observable system and then a
weakly observable one.
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4. OBSERVERS FOR TIME–DELAY SYSTEMS

In this part, a synthesis of the main contributions concerning the observer design is
presented according to the observability assumption given in the previous section.

The understanding of the main constraints that come from the observability prop-
erties is important to get used with the methods which are provided in each case.
The robustness issue will be considered in the further sections.

4.1. Strongly observable systems

This case does not present any specific difficulty. Indeed strong observability is
dual to strong controllability for which it is well-known that pole placement (with
polynomial poles) and coefficient assignment (with polynomial coefficients) can be
solved. The design of observers is then straightforward by solving a pole placement
problem for the dual system.

Let us recall that, for time-delay systems over a ring, coefficient assignment imply
pole placement but the converse is not true as a characteristic polynomial may have
non polynomial roots. This is because time-delay systems are systems over a ring.
For systems over a field (classical linear systems), these problems are equivalent.

Concerning pole placement the problem has been solved by Sontag [43], Morse
[30] and the reader is referred to the works of Lee and Zak [26], Eising [8] for some
calculation procedures.

Concerning coefficient assignment, Lee and Lu [24] have provided a method to
solve the problem by using some canonical form.

Therefore, the design of observers for strongly observable systems has been few
considered in the literature. In [25] the dualization of Morse’s result is presented
to ensure the existence of some asymptotic observer. Pourboghrat and Chyung [37]
have given a procedure to obtain a finite-time observer (exact) which is unusable
when some parameter changes are considered as well as some external disturbances.

Finally Emre and Khargonekar [9] have proposed a polynomial approach to design
observers by assigning the coefficient of the characteristic polynomial. The observer
is constructed by solving some Bezout equations.

4.2. Spectrally canonical realizations: the factorization approach

The factorization approach is a very efficient tool to design robust observer for linear
systems. This section is only devoted to the works of Yao et al [50, 51] where no
robustness issue is provided: this will be considered in Section 7.

In [50] this approach is used to parameterize the set of all observers for time-delay
systems, in a similar way to the results of Nobuyama and Kitamori [33] for controllers
design. The results concern spectrally canonical (i. e. spectrally controllable and
spectrally observable) systems. However, as, in general, a transfer function may not
have a realization that is spectrally canonical, Kamen et al [22] have proved that the
existence and construction of spectrally canonical realizations can be approached in
terms of co-canonical realizations (i. e. weakly controllable and strongly observable
systems). Indeed Kamen et al [22] have proved that assuming a spectrally canonical
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realization for a time-delay system is equivalent to requiring that the co-canonical
realization is spectrally controllable. The interest is that any transfer function has
a co-canonical realization which can be computed in a finite number of steps.

Proper stable double Bezout factorizations are then constructed in a state-space
framework as follows:

Lemma 1. [33] Consider the transfer function matrix:

G(s, z) = C(z) (sIn −A(z))−1B(z) (3)

associated with a co-canonical and spectrally controllable realization (2). The trans-
fer function (3) can be factorized as follows

G(s, z) = N(s, z)M−1(s, z) = M̄−1(s, z) N̄(s, z) (4)

where N, M, M̄, N̄ satisfy the following double Bezout equation
[

Y X
−N̄ M̄

] [
M −X̄
N Ȳ

]
=

[
Im 0m×p

0p×m Ip

]
. (5)

The eight matrices in (5) are matrices over F and can be obtained as follows:




M = Im + Fe(sIe −A0)−1Be

M̄ = Ip + Ce(sIe − Ā0)−1Ke

N = Ce(sIe −A0)−1Be

N̄ = Ce(sIe − Ā0)−1Be

Y = Im − Fe(sIe − Ā0)−1Be

Ȳ = Ip − Ce(sIe −A0)−1Ke

X = Fe(sIe − Ā0)−1Ke

X̄ = Fe(sIe −A0)−1Ke

(6)

where

A0(s, z) = Ae(z) +Be(z)Fe(z); Ā0(z) = Ae(z) +Ke(z)Ce(z)

Ae(z) =
[
A(z) B(z)
0m×n −Im

]
Be(z) =

[
0n×m

Im

]

Ce(z) =
[
C(z) 0p×m

]

Fe(s, z) =
[
F1(s, z) F2(s, z)

]

Ke(z) =
[
K(z)
0m×p

]
Ie =

[
In 0n×m

0m×n 0m×m

]
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F1(s, z), F2(s, z) are defined over the ring Θ[z] and K(z) over the ring R[z]. They
can be chosen such that

det
[
sIn −A(z) −B(z)
−F1(s, z) Im − F2(s, z)

]
= α(s)

det[sIn −A(z)−K(z)C(z)] = β(s)

α(s), β(s) ∈ R[s] are stable polynomials.
Using this lemma, all stable observers for a time-delay system can be parameter-

ized depending on the double Bezout factorization.

Let r(t) = E(∇)x(t) ∈ Rk×1, where E(∇) ∈ R[∇]k×n, be the variable to be
observed. An asymptotic observer of r(t), is a dynamic system

r̂(s) = U(s, z)u(s) + V (s, z) y(s) (7)

where the entries of U(s, z), V (s, z) belong to Θ[z], with the property that for all
u(t):

lim
t→∞

(r(t)− r̂(t)) = 0.

Remark 2. Note that by choosing E = In, r(t) is the whole state x(t) and (7) is
therefore a classical observer. On the other hand, E can be chosen as a designed
state feedback control F to be implemented trough an observer.

A parameterization of all stable observers of r(t) based on the factorization (4) –
(5) is given in the following Lemma.

Lemma 2. [50] Consider systems (2) and (7). The set of matrices U(s, z), V (s, z)
such that system (7) is an observer of r(s) = E(z)x(s) is given by

{
U(s, z) = P (s, z)Y (s, z)−Q(s, z) N̄(s, z)

V (s, z) = P (s, z)X(s, z) +Q(s, z) M̄(s, z)
(8)

where P (s, z) (whose entries belong to Θ[z]) is given by

P (s, z) = Ee(z) (sIe −A0(s, z))−1Be(z) (9)
Ee(z) = [E(z) 0k×r]

Y, N̄ , X, M̄ are given by the double Bezout factorization (5) – (6) and Q(s, z) is any
matrix over Θ[z].

Remark 3. In [51] the case of delayed-input system is tackled; the same method
as in [50] is used to obtain a functional observer and a state feedback as:

r̂(s) = U(s)u(s) + V (s) y(s) and u(s) = r̂(s) + v(s).
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A particular case of the previous parametrization (8) is obtained such that Loop
Transfer Recovery is achieved, i. e. such that the closed-loop transfer function is the
same as using u(s) without the observer.

The factorization method is interesting because it considers a general form of
observers with more freedom degrees to improve robustness of the designed observer.
The way to design Q(s) to ensure robustness is developed in Section 7.

4.3. Spectrally observable systems

4.3.1. A delay dependent method for spectrally observable systems
for any delay

The recent result of Tornambè [45] provides a delay dependent observer with point
time-delay. The aim is the following:

– assume the spectral observability for any value of time-delay, and thus for zero
delay.

– Decompose a delayed-state system as:
{

ẋ(t) = (A0 +A1)x(t) +A1(x(t− h)− x(t)) +Bu(t)

y(t) = Cx(t).

– Use the (C,A0 + A1) observability assumption (i. e. spectral observability
for zero delay value) to do linear state space transformation (ζ(t) = Mx(t)),
output space transformation (w(t) = Ny(t)) and an output injection (Hw(t)).
This leads to some block canonical observer form given by:

{
ζ̇(t) = A◦ζ(t) +A◦1(ζ(t− h)− ζ(t)) +Hw(t) +B0u(t)
w(t) = C◦ζ(t)

where (C◦, A◦) is observable.
– Design the following observer:





˙̂
ζ(t) = A◦ζ̂(t) +A◦1(ζ̂(t− h)− ζ̂(t)) +Hw(t) +B0u(t)

+K0(C◦ζ̂(t)− w(t)) +K1
0 (C◦ζ̂(t− h)− w(t− h))

i. e. the estimation error ζ̃ = ζ̂(t)− ζ(t):

˙̃
ζ(t) = (A◦ +K0C

◦)ζ̃(t) + (A◦1 +K1
0C

◦) (ζ̃(t− h)− ζ̃(t))

where K0 is chosen so that (A◦ +K0C
◦) is stable.

– Tornambè [45] then uses some delay-dependent stability criterion to state that
if (A◦ +K0C

◦) is stable then the estimated error equation remains stable for
some delay in [0, h?), where h? is some maximal delay.

This design method seems interesting but no procedure is actually given to compute
a solution and this requires the restrictive assumption of spectral observability for
any delay.
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4.3.2. Finite spectrum assignment method

Many studies have considered this case and the corresponding case of spectrally con-
trollable systems. Apart the historical work of Salamon [39] using spectral decom-
position, some procedure to design observers have been proposed by Fiagbedzi and
Pearson [17], Pearson and Fiadbedzi [34] under the spectral detectability assump-
tion. However their method needs to calculate the unstable poles of the system and
some matrix F solution to F = A0 + A1e

−sF using some extended Jordan’s form.
In fact this seems to be rather difficult to solve.

Some of the first key results have been obtained by Watanabe [47], Watanabe
and Ouchi [48]. Their results do not need the calculation of the open loop spectrum
of the system which was not the case in [39].

Thus Watanabe and Ouchi [48] have considered systems with a single non de-
layed output and with delays in state and inputs. Under the spectral observability
assumption, they have provided a schematic design procedure of observers. This
procedure is based on the canonical controllable form of the dual system (with a
single input) (AT (∇), cT ).

In [47] the more general case of systems with delays in state, inputs and outputs
is tackled (with m inputs, r outputs). It is proved that spectral controllability is
equivalent to finite spectrum assignment for multivariable systems with delays. The
proposed method is some extension of the famous Wonham [49]’s result: it has been
shown in [47] that, for a spectrally controllable system, there exists a state feedback
such that the closed-loop system is spectrally controllable through a single input.
Then the spectrum assignment is made on the single input system. This result has
then been used to design an observer that includes distributed time-delays as:

˙̂x(t) = A(∇)x̂(t) +B(∇)u(t) +K0(∇)[C(∇)x̂(t)− y(t)]

+Kx(∇)[Ci(∇)x̂(t)− yi(t)]

+
∫ 0

−N3h
φ(τ)[Ci(∇)x̂(t+ τ)− yi(t+ τ)] dτ +

∫ 0

−N4h
Ψ(τ)v0(t+ τ) dτ

where i is a preassigned integer, Ci is the ith row of C and yi the ith element
of y. Moreover K0(∇) ∈ Rn×r[∇], Kx(∇) ∈ Rn[∇], φ(.) ∈ L2([−N3h, 0], Rn),
Ψ(.) ∈ L2([−N4h, 0], Rn), N3 and N4 are appropriate positive integers.

In this case the characteristic equation is:

det
[
sIn −AT (z)− CT (z)KT

0 (z) −CT
i (z)

−KT
a (s, z) (1−Kb(s))

]
(10)

with Ka(s, e−sh) = Kx(e−sh) +
∫ 0

−N3h
φ(τ)esτ dτ and Kb(s) =

∫ 0

−N4h
Ψ(τ)esτ dτ .

Then the spectral observability assumption (i. e. spectral controllability of (AT (∇),
CT (∇)) allows to guarantee a finite spectrum for (10).

4.4. Weakly observable systems

Very few result concern this case. This is because this assumption cannot guaran-
tee to get a stable spectrum assignment in closed-loop. In the dual case of weakly
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controllable systems Lee and Lu [24], Sename et al [42] have shown that the coef-
ficients of the characteristic polynomial cannot be assigned arbitrarily. In fact the
coefficients must satisfy some constraints in terms of their polynomial form.

Concerning weak observable systems, Picard et al [36] have defined the con-
structible state submodule H(∇) from the Smith form of the observability matrix,
which is shown to correspond to some finite-time observer. Their result points out
that the best that can be done without anticipation (i. e. without using y(t+ε)) is to
constructH(∇)x(t). This state reconstruction is then interpreted using observability
indices relative to weak observability.

In conclusion it clearly appears today that the weak observability assumption is
too weak to insure the existence of an asymptotic observer.

Remark 4. Let us add here few comments about the so-called separation principle.
For systems over rings this still works as mentioned by Habets [18]. Let us also cite
the recent result of Fattouh et al [14] where this is proved for systems with point and
distributed time-delays using a memoryless state feedback implemented through an
observer including point and distributed time-delays.

5. UNKNOWN INPUT OBSERVERS (UIO) FOR TIME–DELAY SYSTEMS

The results of this section have been presented by the author in [10, 13, 41]. Let us
recall that, for linear systems, unknown input observers are designed such that the
state estimation is efficient in presence of some external input (disturbances). This
kind of observers is widely used for Fault Detection and Isolation purpose. Some of
the classical references on this subject are Darouach et al [5], Hou and Müller [19].

5.1. Problem statement

Let us consider the following ring model of time-delay systems.

Σ

{
ẋ(t) = A(∇)x(t) +B(∇)u(t) + E(∇)d(t)

y(t) = C(∇)x(t)
(11)

where d(t) ∈ Rq the unknown input (or disturbance) and E is a polynomial matrix
in ∇.

We assume that p ≥ q and, without loss of generality:

rankE(∇) = q and rankC(∇) = p.

In [41] the design of UIO has been generalized to time-delay systems through full-
order Luenberger state observers given as:

{
ż(t) = N(∇)z(t) +M(∇)u(t) + L(∇)y(t)

x̂(t) = z(t) +H(∇)y(t)
(12)
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where z(t) ∈ Rn is the state of the full-order observer, N(∇),M(∇), L(∇) are ma-
trices of appropriate dimensions which have to be designed for achieving unknown
input decoupling.
z(t) = ψ(t), t ∈ [−Nh, 0] is the initial condition of the observer.
Let us recall the following definition of an Unknown Input Observer [1].

Definition 5. System (12) over <[∇] is said to be an Unknown Input Observer for
system (2) over <[∇] if its state estimation vector e(t) (:= x(t) − x̂(t)) approaches
zero asymptotically, regardless of the presence of the unknown input in the system.

Using the estimation error e(t) = x(t)− x̂(t) it has been proved that, in a classical
way, the following equations are used for (12) to be an observer for system (2) and
for achieving disturbance (unknown input) decoupling:

a) N(∇) is stable

b) T (∇)E(∇) = 0

c) T (∇)A(∇)−N(∇)T (∇) = L(∇)C(∇)

d) T (∇)B(∇) = M(∇)

(13)

where T (∇) = In −H(∇)C(∇).
Defining K(∇) = L(∇)−N(∇)H(∇), the problem is then reduced to the choice

of matrix K(∇) such that N(∇) = T (∇)A(∇) −K(∇)C(∇) is stable, where T (∇)
satisfies (13b). Two statements have then to be solved.

1. Is there a polynomial matrix H(∇) such that:
[In −H(∇)C(∇)]E(∇) = 0?

2. Is there a polynomial matrix K(∇) such that:
(T (∇)A(∇)−K(∇)C(∇)) is stable?

5.2. A partial solution to the design of UIO for time-delay systems

Let us first recall that, in the case of systems without delay, the first statement is
solved as soon as rank(CE) = rankE.

In the case of systems with delays, this last condition is not sufficient for a poly-
nomial matrix H(∇) to be a solution. Indeed this may lead to a rational predictive
(i. e. unrealistic) solution.

The first step is to rewrite equation (13b) as:

[
H1(∇) H2(∇)

]
︸ ︷︷ ︸

H(∇)

[
M1(∇)
M2(∇)

]

︸ ︷︷ ︸
C(∇)E(∇)

= E(∇),

or as the linear diophantine equation

H1(∇)M1(∇) +H2(∇)M2(∇) = E(∇) (14)
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whereH1(∇), H2(∇), M1(∇) andM2(∇) are of respective dimension n×q, n×(p−q),
q × q and (p− q)× q.

The results of Kučera [23] concerning polynomial diophantine equations can then
be used.

Now, following Habets [18], the dual problem of detectability (i. e. the existence
of a stable observer) is here solved by (only) a necessary condition which leads to
the theorem:

Theorem 1. [41] System (12) is an unknown input observer (UIO) for system (2)
if the following conditions are satisfied:

(i) A necessary and sufficient condition to solve (14) ([In−H(∇)C(∇)]E(∇) = 0)
is that the greatest common right divisor of matrices M1(∇) and M2(∇) is a
right divisor of E(∇).

(ii) A necessary condition for finding a polynomial matrixK(∇) such that (T (∇)A(∇)−
K(∇)C(∇)) is stable is:
System (2) is detectable with respect to the stability domain D i. e.:(
sIn −A(∇)

C(∇)

)
is left invertible over RD(s)

where D is the stability domain:
D = {p(s,∇) ∈ R[s,∇]|p(s,∇) is monic in s and p(s, e−sh) = 0 ⇒ Re(s) < 0}
RD(s) = {p(s,∇)

q(s,∇) ∈ R[∇](s)|p ∈ R[∇][s], q(s,∇) ∈ D}.
Note that the detectability condition here used corresponds to spectral detectabil-

ity and is less restrictive than strong observability but more than the weak one [25].
Note that, at this time, we cannot ensure that condition (ii) is (or not) a sufficient

one. Moreover this theorem does not provide any method to obtain K(∇) such that
(T (∇)A(∇) −K(∇)C(∇)) is stable. Finally, in the case of systems with delays, it
has been proved in [18] that stabilization using pole placement by static state feed-
back is a too strong property to be obtained. Following Habets, dynamic feedback
compensators is a more adequate tool to solve stabilizability problems. In order to
solve the problem of UIO design though a necessary and sufficient condition, the
definition of Dynamic UIO has been provided as shown in the next section.

5.3. Dynamic UIO

The idea of the Dynamic UIO is quite similar to the well known integral control. The
aim is to consider a dynamic time-delay system whose input is the output estimation
error and to inject it in the dynamic equation of the UIO, as (see also Figure 1):

{
ż(t) = N(∇)z(t) +M(∇)u(t) + L(∇)y(t) + y0(t)

x̂(t) = z(t) +H(∇)y(t)
(15)

where z(t) ∈ Rn and x̂(t) ∈ Rn are the estimator state and the estimated state
vectors respectively, N , M , L and H are polynomials matrices in ∇ of appropriate



440 O. SENAME

dimensions and y0(t) ∈ Rn is the output of the dynamic gain given by the following
system:

{
ẋ0(t) = A0(∇)x0(t) +B0(∇)(y(t)− ŷ(t))

y0(t) = C0(∇)x0(t) +D0(∇)(y(t)− ŷ(t))
(16)

where x0(t) ∈ <v and ŷ(t) = C(∇)x̂(t) are the dynamic gain state and the estimated
output vectors respectively and A0, B0, C0 and D0 are polynomials matrices in ∇
of appropriate dimensions.

Fig. 1. Dynamic Unknown Input Observer Scheme.

In this framework, let us introduce the following definition.

Definition 6. System (15) – (16) over <[∇] is said to be a Dynamic Unknown Input
Observer for system (2) over <[∇] if its state estimation vector e(t) (:= x(t)− x̂(t))
approaches zero asymptotically, regardless of the presence of the unknown input in
the system.

Now the estimated error, e(t) := x(t)− x̂(t), satisfies:
[

ė(t)
ẋ0(t)

]
=

[
N −D0C −C0

B0C A0

]
(∇)

[
e(t)
x0(t)

]
+

[
TB −M

0v×r

]
(∇)u(t)

+
[
T (∇)E(∇)

0v×q

]
d(t) +

[
TA−NT − LC

0v×n

]
(∇)x(t)

where

T (∇) = In −H(∇)C(∇). (17)
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Proposition 1. Consider system (2) over R[∇]. If the following statements are
satisfied:

a)
[
N −D0C −C0

B0C A0

]
(∇) is asymptotically stable

b) M(∇) = T (∇)B(∇)

c) T (∇)E(∇) = 0

d) T (∇)A(∇)−N(∇)T (∇) = L(∇)C(∇)

(18)

then system (15) – (16) over R[∇] is a dynamic unknown input observer for (2).

Conditions (18, b – d) ensure the rejection of the effects of the control input, the
unknown input and the state respectively from the estimated error while (18, a)
ensures the asymptotic convergence of the estimated error to zero. These conditions
extend to the dynamic gain case the conditions given by Sename [41].

Unlike the static gain (part 5.1) and the non retarded cases, for which conditions
(18.a) and (18.d) are reduced to a pole placement problem, here condition (18.a)
merely allows to solve the pole placement problem.

Therefore, if T (∇) has been found such that (18.c) is satisfied, (18, b) and (18, d)
can be solved by taking:

M(∇) = T (∇)B(∇), N(∇) = T (∇)A(∇) and L(∇) = T (∇)A(∇)H(∇).

Thus the problem of designing a full order dynamic unknown input observer is
equivalent to:

(i) There exists a matrix T (∇) over R[∇] such that T (∇)E(∇) = 0.

(ii) There exists a dynamic gain time-delay systems (A0, B0, C0, D0) such that
[
T (∇)A(∇)−D0(∇)C(∇) −C0(∇)

B0(∇)C(∇) A0(∇)

]
(19)

is asymptotically stable.

Now, statement (i) is solved in Theorem 1. Moreover, by duality with dynamic
state feedback stabilization, statement (ii) is solved as soon as (T (∇)A(∇), C(∇))
is spectrally detectable (see [18]).

Nevertheless this means that one needs to calculate T (∇) before testing this
condition. Of course this is not satisfactory as it does depend on the observer
parameters and cannot be checked a priori. An improvement of these results has been
obtained by Fattouh [10] where new equivalent necessary and sufficient conditions
that can be checked a priori (and only depend on the system parameters) have been
proposed.

The necessary and sufficient conditions to the Dynamic UIO deisgn problem are:
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Theorem 2. [10] Consider system (2) over R[∇]. System (15) – (16) over R[∇] is
a Dynamic Unknown Input Observer for (2) (according to Definition 6) if and only
if

a) The greatest common right divisor of matrices M1(∇) and M2(∇) is a right
divisor of E(∇), where

[
M1(∇)
M2(∇)

]
:= C(∇)E(∇).

b) The matrix [
sIn −A(e−sh) E(e−sh)

C(e−sh) 0

]

is left-invertible over RD(s).

Notice that these conditions are the extension of the classical results for non-
delayed systems [5].

Design procedure: Given a system of the form (2), one can follow the following
steps in order to construct a dynamic unknown input observer of the form (15) –
(16):

Step 1: Check whether condition (a) and (b) of Theorem 2 are satisfied or not. If
yes, proceed to Step 2, if not stop and declare that there is no solution.

Step 2: Find H(∇) solution to (14) (see [23]) then deduce
T (∇) = In −H(∇)C(∇), M(∇) = T (∇)B(∇), N(∇) = T (∇)A(∇)
and L(∇) = T (∇)A(∇)H(∇).

Step 3: Find (A0(∇), B0(∇), C0(∇), D0(∇)) such that (19) is asymptotically stable.
This can be solved using the algorithm proposed by Habets [18] which can be

summarized in the following steps:

First a left inverse of
[
sIn − T (∇)A(∇)

C(∇)

]
allows to find a closed-loop character-

istic polynomial ϕ(∇, s) ∈ D. Next find Q(∇, s) ∈ RDn×n(s) and P (∇, s) ∈ Rp×n
D (s)

solution to the following diophantine equation:

(sIn −At(∇)T t(∇))Q(∇, s) + Ct(∇)P (∇, s) = ϕ(∇, s) In. (20)

Finally, find a realization (A0(∇), B0(∇), C0(∇), D0(∇)) of the transfer function
matrix (P (∇, s)Q−1(∇, s))t (it is always possible [18]).

6. H∞ OBSERVERS FOR TIME–DELAY SYSTEMS

In this section some methods to design H∞ observers for time-delay systems are
presented. The robustness issue (i. e. for systems including uncertainties) is analyzed
in the next section.
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We are interested here in the case of delayed-state systems, for which arise some
difficulties in using H∞ approach. For sake of simplicity, we only consider single
delayed-state systems, even if some results are directly extended to the case of mul-
tiple time-delay systems.

The system under consideration is then:
{

ẋ(t) = A0x(t) +A1x(t− h) + Ew(t) +Bu(t)

y(t) = Cx(t) + Fw(t)
(21)

where w(t) ∈ Rq is the square-integrable disturbance vector.
In this section, we consider Luenberger-type observer for system (21) given by

the following dynamical system:

˙̂x(t) = A0x̂(t) +A1x̂(t− h) +Bu(t)− L(Cx̂(t)− y(t)) (22)

where x̂(t) ∈ Rn is the estimated state of x(t) and L is the n× p constant observer
gain matrix to be designed.

The estimated error, defined as e(t) := x(t)− x̂(t), satisfies the following dynam-
ical system:

ė(t) = (A0 − LC) e(t) + (A1) e(t− h) + (E − LF )w(t). (23)

The transfer function Tew(s) between w(t) and e(t) is then given by:

Tew(s) = (sIn −A0 + LC −A1e
−sh)−1(E − LF ).

The problem of designing H∞ observers for time-delay systems is presented in the
following definition.

Definition 7. Let us consider a time-delay system (21). System (22) is said to
be an H∞ observer for the associated system (21) if the solution of the functional
differential equation (23) with w(t) ≡ 0 converges to zero asymptotically and, under
zero initial condition, the H∞ norm of the transfer function between the disturbance
and the estimated error is bounded, that is

lim
t→∞

e(t) → 0 for w(t) ≡ 0 and ‖Tew(s)‖∞ ≤ γ

where ‖.‖∞ is the H∞-norm and γ > 0 is a disturbance attenuation level.

The main contributions to this approach are based on stabilization method by
memoryless state feedback in an H∞ framework. The aim is to design the gain L
such that the estimated error equation is stable, which corresponds to the control
problem of finding L such that the closed-loop system (23) is stable.

Two approaches have then been provided in the literature for such control prob-
lem. The first one is based on the Krasovskii theorem and leads to delay-independent
result (see Lee et al [27]) as the second one uses the Razumikhin theorem and leads
to delay-dependent result (see Su [44]).
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6.1. Lyapunov–Krasovskii approach

The considered contributions are the results of Choi and Chung [2], Fattouh et al
[12].

In both papers, some slight modification of the results of Lee et al [27] has been
used. Now in [2] the problem is to design an observer-based controller and two cases
were considered:

– some delay is included in the observer and the control law is memoryless.
– the observer as well as the control law are memoryless.

In [12] only the design of observers is tackled.
In order to compare both results of [2, 12], only the first of the previous cases

is here analyzed. To avoid some long presentation these papers are here illustrated
trough an example and only the main result of each paper is given. Those readers
interesting by the complete designed methods to find the solution are referred to the
papers mentioned above.

6.1.1. Choi and Chung [2]’s method

In [2] the observer-based controller is of the form:
{ ˙̂x(t) = A0x̂(t) +A1x̂(t− h) +Bu(t)− L(Cx̂(t)− y(t)) + EGx̂(t)

u(t) = Kx̂(t).
(24)

This method aims to design an observer-based controller. Note that the observer
form is specific to their works and includes a specific term EGx̂(t) that represents
the coupling with the observer and the control.

The observer and the control are obtained through two coupled Riccati equations
including 7 parameters (2 matrices and 5 constants). Moreover the estimation error
stability is guaranteed for closed-loop systems only and no performance (in terms
of H∞ gain) is ensured. On the other hand, such a performance is obtained for the
closed-loop system.

The main result given below guarantees some H∞ disturbance attenuation level
for the closed-loop system( but not for the state estimation error):

Theorem 3. Consider the time-delay system (21) (with y as the controlled output
and F = Ip) and the observer-based controller (24). If both following algebraic
Riccati equations

AT
0 Pc + PcA0 − 1

εc
Pc

(
BBT − 1

δc
A1A

T
1 − 1

γ2EE
T
)
Pc

+εc(δcIn + CTC +Qc) = 0

(A0 + EG)P0 + P0(A0 + EG)T − 1
ε0
P0

(
CTC − 1

γ2K
TK − δ0

γ2 In

)
P0

+ε0
(

γ2

δ0
A1A

T
1 + EET +Q0

)
= 0

(25)
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have symmetric positive definite solutions Pc and P0 for some positive constants γ,
εc, δc, ε0 and δ0, some positive-definite matrices Qc and Q0, and with the control
parameters:

K = − 1
εc
BTPc, G =

1
γ2εc

ETPc

then, for all h:

1. Observer (24) is asymptotically stable and the observer gain is:

L =
1
ε0
P0C

T

2. the closed-loop system is asymptotically stable and such that: ‖y‖2 ≤ γ ‖w‖2.

Let us illustrate this result on the following example which will be considered
along all the designed methods of H∞ observers.

Example 2.

ẋ(t) =
[ −3 4

2 0

]
x(t) +

[
0 0
1 0

]
x(t− h) +

[
1
1

]
w(t)

y(t) =
[

0 7
]
x(t) + w(t)

x(t) = φ(t); t ∈ [−h, 0].

The observability matrix is given by:
〈
C(∇)
A(∇)

〉
=

[
0 7

7∇+ 14 0

]
.

The above system is weakly observable as rank
〈

C(∇)
A(∇)

〉
= 2. However, it is not

strongly observable as
〈

C(∇)
A(∇)

〉
is not invertible over R[∇]. Now

rank
[
sI2 −A(e−sh)
C(e−sh)

]
= rank




s+ 3 −4
−e−sh − 2 s

0 7




which is always of rank 2. Then the system is spectrally observable.

Using the method of Choi and Chung [2] we can obtain the following result. Let
us choose the following parameters: εc = 0.01, ε0 = 0.01, δc = 2, δ0 = 2 and
Q0 = Qc = I2. For γ = 1.5 (for the closed-loop system), the ARE (25) have the
following solution and the corresponding observer gain:

Pc =
[

0.0054 0.0042
0.0042 0.0404

]
, K =

[ −1.3831 −8.5082
]
, G =

[
0.4283 1.9839

]
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P0 =
[

0.0901 0.0748
0.0748 0.0648

]
, L =

[
52.3402
45.3570

]
.

The estimated error responses are shown in Figure 2 for h = 0.3 sec.
For simulation purpose an initial value at time t = 0 sec. is used to generate a

functional initial condition on t ∈ [0,−0.3]. The observer acts at t = 1 sec. A step
disturbance is applied at t = 3 sec.

Moreover the maximum singular value of Tew(jω) is traced versus the frequency
on Figure 2. It shows that ‖Tew(jω)‖∞ ≤ γ for all ω ∈ R.
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Fig. 2. Maximum SV of Tew(jw) and state estimation errors – Choi and Chung [2].

Note that, even if no robust property is guaranteed for the observer in this case,
one can see that the disturbance attenuation for the state estimation error is quite
good. However the gain L in the observer is large and the convergence of the observer
is guaranteed only for state feedback controlled-loop systems.

6.1.2. Fattouh et al [12]’s method

This method allows to design an observer independently of the control. The following
result ensures some H∞ disturbance attenuation level for the observer.
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Theorem 4. Consider the time-delay system (21) and the observer (22). If the
following algebraic Riccati equation

AT
0 P + PA0 + 2P

(
γ2A1A

T
1 + EET

)
P − 2

ε
CT

(
Ip − 1

ε
FFT

)
C +

2
γ2

= 0 (26)

has symmetric positive definite solution P for some positive constants γ, and ε
then, for all h, system (22) is an H∞ observer according to Definition 7 with the
disturbance attenuation level γ and the observer gain:

L =
1
ε
P−1CT .

This method only concerns H∞ observer design. First the dynamical system (22)
has a more usual form than the previous one in (24). Then only 2 parameters are
here necessary to obtain an observer for which stability as well as H∞ performance
are guaranteed.

Let us illustrate these results.

Example 3. In order to construct an observer of the form (22) for the system given
previously in Example 2, the algorithm allows to solve one ARE (26). For ε = 2.5 and
γ = 0.45, the ARE (26) has the following solution and the corresponding observer
gain:

P =
[

26.6201 −23.7295
−23.7295 22.1317

]
, L =

[
15.9351
17.8763

]

The estimated error responses are shown in Figure 3 for h = 0.3 sec. For simulation
purpose an initial value at time t = 0 sec. is used to generate a functional initial
condition on t ∈ [0,−0.3]. The observer acts at t = 1 sec. A step disturbance is
applied at t = 3 sec.

In this case some fixed disturbance attenuation level is guaranteed (here γ = 0.45)
and the convergence of the observer is similar to the previous case (see Figures 3
and 2). Moreover, in Figure 3, the disturbance attenuation is better in a frequential
representation. Note that state estimation error on x1 has less important steady-
state error due to the disturbance than in Choi and Chung’s case (−0.0386 instead
of −0.0540).

Note that a sufficient condition in terms of some observability property can be
given for the resolution of the ARE (26). However this condition does not depend
only on the system matrices but also on the parameters (ε, γ) that appear in (26).

As a conclusion it appears that the recent results obtained in the design of ob-
servers are more usable than those obtained previously (for observer-based controller
design) although they are easier to obtain. In Fattouh et al [12] only one Riccati
equation has to be solved (with two parameters) than in [2] two coupled Riccati
equations have to be solved, including seven parameters. Furthermore the observer
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Fig. 3. Maximum SV of Tew(jw) and state estimation errors – Fattouh et al [12].

designed by Fattouh et al [12] can then be used to performed advanced robust con-
trol laws. The one developed by [2] is linked to a state feedback controlled loop
system where the state feedback is obtained by solving the Riccati equation given
in Theorem 3 (see (25)).

Of course the result in [2] guarantees some H∞ disturbance attenuation level for
the output of the closed-loop system which was not tackled in Fattouh et al [12].

6.2. Lyapunov–Razumikhin approach

Apart the delay-independent methods, some results have been obtained using the
Razumikhin theorem. We present here the contribution of Fattouh et al [11] where
some design procedure is provided as well as a weak sufficient condition for the
existence of the observer. The results of this part are based on stabilization results
which can be found in Li and de Souza [28], Niculescu et al [32], Su [44].

In order to design the observer, the equation (23) can be rewritten as follows:

ė(t) = (A0 − LC) e(t) +A1e(t− h) + D̄w̄(t) (27)

where w̄(t) := [wT (t) γ̄wT (t)]T , γ̄ is some positive constant and D̄ := [E − 1
γ̄LF ].
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Consider now the following output:

z(t) := Pe(t) (28)

where P is a n × n symmetric positive definite (i. e. P = PT > 0) matrix to be
determined.

After some algebraic manipulations, one can easily find that: if ‖z‖2 ≤ ‖w̄‖2,
then ‖e‖2 ≤ ‖P−1‖

√
1 + γ̄2‖w‖2.

Let us now consider the following Lemma which is obtained through some slight
modification of [44]’s result.

Lemma 3. Consider the system:
{

ẋ(t) = Ax(t) +A1x(t− h) +Dw(t)

z(t) = Cx(t).
(29)

Given a scalar δ > 0, system (29) is asymptotically stable and ‖z‖2 ≤ δ‖w‖2 for any
constant time-delay 0 ≤ h < h̄ if there exist two positive definite matrices P and Q
satisfying the following algebraic Riccati equation:

(A+A1)TP + P (A+A1) + CTC +
1
δ2
PDDTP +Q = 0

where h̄ is given by:

h̄ = ‖Q− 1
2 [β1PA1AP

−1ATAT
1 P + β2A1A1P

−1AT
1 A

T
1 P + (β1

−1 + β2
−1)P ]Q−

1
2 ‖−1

for any positive real numbers β1 and β2.

Applying the above Lemma on the modified system (27) – (28) for δ = 1 leads to
the following Theorem.

Theorem 5. Consider the time-delay system (21) and the observer (22). If the
following algebraic Riccati equation

(A0+A1)TP+P (A0+A1)+P (EET +(1+ε)In)P−(C)T {2Ip− 1
γ̄2
FFT }(C) = 0 (30)

has a positive definite solution P for some positive constants γ̄ and ε, then, for
all 0 ≤ h < h̄, system (22) is an H∞ observer according to Definition 7 with the
disturbance attenuation level γ:

γ = ‖P−1‖
√

1 + γ̄2,

the maximal delay

h̄ =
∥∥∥(εPP )−

1
2

[
β1PA1Ā0P

−1ĀT
0 A

T
1 P + β2PA1A1P

−1AT
1 A

T
1 P

+
( 1
β1

+
1
β2

)
P

]
(εPP )−

1
2

∥∥∥
−1

,
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with Ā0 = A0 −LC0 and for any positive real numbers β1 and β2, and the observer
gain:

L = P−1(C0 + C1)T

In [11], an algorithm is proposed in order to minimize γ and the following sufficient
condition is provided.

Proposition 2. For a given time-delay system of the form (21), if the pair [(C), (A0+
A1)] is detectable, then there exists an H∞ observer of the form (22) with certain
constants ε, γ̄ and certain disturbance attenuation level. This corresponds to spec-
tral detectability for zero-value delay.

It should be noted that the results in [11] are, at our knowledge, the only ones
provided using the Razumikhin theorem. Moreover, as in Theorem 4, only 2 param-
eters are required to solve the H∞ observer design problem. Note also that β1 and
β2 may allow to obtain a suboptimal bound of h̄ [31].

Example 4. Consider the same example as in the previous part.
Note that the pair [(C0), (A0 +A1)] is detectable as

[
sI2 −A(z)
C(z)

]
=




s+ 3 −4
−z − 2 s

0 7




is of rank 2 for z = 1 and all s ∈ C+, Re(s) ≥ 0.
In order to construct an observer of the form (22) for the above system, our

algorithm allows to solve the ARE (30) by iteration on γ̄ in order to get a minimal
γ. For ε = 1 and γ̄ = 0.67, the ARE (30) has the following solution and the
corresponding observer gain:

P =
[

2.4128 −1.5548
−1.5548 4.9996

]
, L =

[
1.1284
1.7510

]

with the maximal delay h̄ = 0.366 sec (for β1 = 0.2 and β2 = 0.6) and the minimal
attenuation level γmin = 1.0701.

The estimated error responses are shown in Figure 4 for h = 0.3 sec. For simula-
tion purpose an initial value at time t = 0 sec is used to generate a functional initial
condition on t ∈ [0,−0.3]. The observer acts at t = 1 sec. A step disturbance is
applied at t = 3 sec.

Moreover the maximum singular value of Tew(jω) is traced versus the frequency.
It shows that ‖Tew(jω)‖∞ ≤ γmin for all ω ∈ R.

In this particular case where h = 0.3 sec, the results obtained using a Lyapunov–
Razumikhin approach are better than those obtained using a Lyapunov–Krasovskii
one.
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Fig. 4. Maximum SV of Tew(jw) and state estimation errors.

It should also be noted that the maximum delay h̄ obtained above for which one
guarantees the asymptotic stability of the observer and the H∞ norm bound is quite
conservative and simulation results point out that the observer retains its properties
for some values of h larger than h̄.

7. ROBUST OBSERVERS FOR TIME–DELAY SYSTEMS

The design of robust observers for time-delay systems has received few attention
in the past ten years. We present here two approaches to solve this problem: H∞
approach and factorization one.

7.1. H∞ approach

In this section the case of uncertain time-delay systems is considered. We consider
here three contributions using the Lyapunov–Krasovskii approach. In all of them,
the observer is a delay free system. In Choi and Chung [3, 46] the case of norm-
bounded uncertainties on each of the system matrices has been tackled. In both
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papers, the uncertainties on each system matrix M are assumed to be of the form:

∆M(.) = HF (.)N

where (.) means that this could be time-varying uncertainties, H and N are known
constant matrices, and F , which may be time-varying, is unknown and meets:

FTF ≤ I.

In [3] the design of robust observer-based H∞ control is obtained through the reso-
lution of two coupled Riccati equations, which extends the results of [2] to uncertain
systems. Of course both Riccati equations are then more complicated in [3] than
in [2]. In the same way, in [46], the solution is constructed by solving two Riccati
equations. In fact, if both contributions are interesting, numerical problems may
arise in solving these complicated Riccati equations.

In order to overcome this problem the paper of de Souza et al [6] provides an
interesting solution in terms of LMIs.

In [6], linear continuous-time systems with multiple time-varying state delays are
considered. In the single delay case these are given by:

{
ẋ(t) = A0x(t) +A1x(t− h(t)) +Bw(t)

y(t) = C0x(t) + C1x(t− h(t)) +Dw(t)

z(t) = L0x(t) + L1x(t− h(t)) + Tw(t)

x(t) = φ(t), ∀t ∈ [−h, 0)

(31)

where x(t) ∈ Rn is the state, y(t) ∈ Rr is the measurement, w(t) ∈ Rm is the noise
signal and z(t) ∈ Rp is the signal to be estimated, and h(t) is the time-varying
bounded delay satisfying:

0 < h(t) ≤ h, 0 ≤ ḣ(t) ≤ τ < 1.

The systems matrices are assumed to be unknown but belonging to a known complex
compact set of polytopic type D where

(A0, A1, B,C0, C1, D, L0, L1, T ) =
l∑

i=1

αi(A0i, A1i, Bi, C0i, Ci1, Di, L0i, L1i, Ti)

with αi ≥ 0;
∑l

i=1 αi = 1.

The robust filtering problem consists in obtaining an estimate ẑ(t) of the signal
z(t) such that a prespecified H∞ performance is guaranteed in a filtering error sense.
In [6] the filter is assumed to be a linear time-invariant system of the form:

{ ˙̂x(t) = Af x̂(t) +Bfy(t)

ẑ(t) = Cf x̂(t) +Dfy(t).
(32)
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The robust H∞ filtering problem with time-varying state delays is: determine a
linear asymptotically stable filter (32) such that the filtering error system, with
x̃(t) = [xT (t) x̂T (t)]T as augmented state vector, is stable independently of de-
lays and ensures a prescribed level γ of H∞ attenuation, namely, under zero-initial
conditions and for any non-zero w(t) ∈ L2 :

‖z̃‖2 ≤ γ‖w‖2
where z̃(t) = z(t)− ẑ(t).

In [6], this problem has been solved by a sufficient condition in terms of LMIs,
and the matrices in (32) depend on the solution of these LMIs.

7.2. The factorization approach

In this section, we consider the parametrization of observers given previously (Sec-
tion 4.2.2). Our aim is here to design the parametrization matrix Q(s, z) such that
the problem can be solved for the real plant, i. e. the model including uncertainties.
This problem has been solved by Fattouh et al [16] but some minor changes are here
provided. We are interested here in the following forms of uncertainties:

G(s,z)

W∆

+
yyou

Real Plant

uo
G(s,z)I+W∆

yyo

Real Plant

uou

Multiplicative uncertaintiesAdditive uncertainties

G(s,z)
~

G(s,z)
~

Fig. 5. Uncertainties.

where
– W (s) is a fixed stable transfer function matrix and ∆(s, z) is assumed to be

variable stable transfer function matrices with ‖∆(s, z)‖∞ ≤ 1,
– The real plant is denoted by G̃(s, z) and the nominal model by G(s, z),
– u0 and y0 are the input and the output of the nominal plant respectively, u

and y are the input and the output of the real plant respectively, where u and
u0 are assumed to be norm-bounded.

The aim of the proposed method is to design a robust observer among the set
of observers (7) – (8), by selecting a parameterized matrix Q(s, z) such that the
difference between the real estimation and the nominal one is minimal (see Figure 6,
i. e.:
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G(s,z)

U(s,z) V(s,z)+

G(s,z)

+U(s,z) V(s,z)

u(s) y(s)

uo(s) yo(s)

e(s)r(s)

ro(s)

+

-

++

+ +

~
~

^

^

Fig. 6. Estimated error e(s) due to system uncertainty.

(i) limt→∞(r(t)− r̂0(t)) = 0,

(ii) ‖e(s)‖2 := ‖r̂(s)− r̂0(s)‖2 is minimized,

where r(t) is the variable to be estimated, r̂0(t) is the nominal estimation given by:

r̂0(s) = U(s, z)u0(s) + V (s, z) y0(s),

and r̂(t) is the estimation obtained when applying the observer (7) – (8) on the real
plant.
This problem is now formulated as an optimization problem.

7.2.1. Additive uncertainty

In this case G̃ = G+W∆ and y(s) = y0(s)+W∆u0(s). The real estimation is given
by

r̂(s) = U(s, z)u0(s) + V (s, z) y(s)
= (U + VW∆)u0(s) + V y0(s).



New Trends in Design of Observers for Time–Delay Systems 455

From the above equation,

e(s) = r̂(s)− r̂0(s) = VW∆u0(s)
= (PXW +QM̄W )∆u0(s).

Now, as W and ∆ are stable then e(s) is stable. Moreover, as u0(s) is bounded then
e(s) is bounded.

To minimize the difference between both estimation r̂(s) and r̂0(s), i. e. in order
to guarantee that r̂(t) is a good estimation of Ex(t) in the real configuration, one
has to solve:

min
Q
‖(PXW +QM̄)∆‖∞.

As ‖∆(s, z)‖∞ ≤ 1, then the following optimization problem has to be solved:

min
Q
‖T1 +QT2‖∞

where {
T1(s, z) = P (s, z)X(s, z)W (s)

T2(s, z) = M̄(s, z)W (s).
(33)

7.2.2. Input multiplicative uncertainty

In this case G̃ = G(I+W∆) and u0(s) = (I+W∆)u(s). In a same way as previously,

e(s) = r̂(s)− r̂0(s) = −UW∆u(s)
= −(PYW −QN̄W ) ∆u(s).

Now, as W and ∆ are stable then e(s) is stable. Moreover, as u(s) is bounded then
e(s) is bounded.

To get a good estimations one has to solve minQ ‖T1 +QT2‖∞ where

{
T1(s, z) = P (s, z)Y (s, z)W (s)

T2(s, z) = −N̄(s, z)W (s).
(34)

From both above cases one can conclude that in order to minimize the effect of
the model uncertainty on the estimated states one has to solve the optimization
problem:

Finding Q(s, z) such that:

min
Q
‖T1(s, z) +Q(s, z)T2(s, z)‖∞ (35)

where T1(s, z) and T2(s, z) are given by (33) or (34) according to the model uncer-
tainty.
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7.2.3. A suboptimal solution

Here the following suboptimal problem is solved:

‖T1(s, z) +Q(s, z)T2(s, z)‖∞ ≤ γ

where γ is some positive scalar.
This problem is tackled as a model matching problem.
First, any matrix T (s, z) over F can be written as T (s, z) =

∑m
i=0 Ti(s)zi where

Ti(s) are proper stable rational transfer function matrices and m ∈ N+.
Let

T1(s, z) =
m1∑

i=0

T1i(s)zi and T2(s, z) =
m2∑

j=0

T2j(s)zj (36)

where T1i(s) and T2j(s) are proper stable transfer function matrices and m1, m2 ∈
N+.

Since degz(T1(s, z)) ≥ degz(T2(s, z)) (see part 4.2) then m1 ≥ m2.
Let the parametrized matrix Q be of the form:

Q(s, z) :=
(m1−m2)∑

k=0

Qk(s)zk.

This means that (m1 − m2 + 1) Qk(s)-matrices have to be obtained. Now the
(m1 + 1) equations given in T1(s, z) +Q(s, z)T2(s, z) can always be reduced to a set
of (m1 −m2 + 1) model matching problems to be solved, which leads to

‖T1 +QT2‖∞ ≤
(m1−m2)∑

i=0

:= γ

where γ is the suboptimal uncertainties attenuation level.

Remark 5. To illustrate this suboptimal problem, and the way to reduce m1 + 1
equations to (m1 −m2 + 1) ones, let us consider both following simple examples.

– Let:
T1(s, z) = T10(s) + zT11(s) and T2(s, z) = T20(s) + zT21(s).

Now Q(s, z) = Q0(s). Therefore one can solve:

‖T1(s, z) +Q(s, z)T2(s, z)‖∞
≤ ‖ [

T10(s) T11(s)
]−Q0(s)

[
T20(s) T21(s)

] ‖∞.
– Let:

T1(s, z) = T10(s) + zT11(s) and T2(s, z) = T20(s).

Now Q(s, z) = Q0(s) + zQ1(s). Therefore one can solve:

‖T1(s, z)+Q(s, z)T2(s, z)‖∞ ≤ ‖T10(s)−Q0(s)T20(s)‖+‖T11(s)−Q1(s)T20(s)‖∞.

A suboptimal solution has then been proposed for both cases of unstructured
uncertainties.
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8. AND THE FUTURE?

In this paper, the recent methods available for observers design have been presented.
We have focused our attention on three methods that are efficient for this objective.
First a method has been presented to obtain unknown input observers for time-delay
systems: it appears that the use of dynamic feedback allows to solve the problem
which is not necessary for systems without delays. Then the H∞ approach has
been presented in the Lyapunov–Krasovskii and Lyapunov–Razumikhin frameworks;
in these cases the results obtained by the authors allows to get robust observers
that guarantee good disturbance attenuation properties. Finally the factorization
approach (i. e. parametrization of the observers) solved in a robust framework allows
to obtain robust observers for spectrally co-canonical time-delay systems including
unstructured uncertainties (additive and input multiplicative uncertainties). This
result has recently been improved in Fattouh et al [15] where the use of LMI allows
relaxes the spectrally co-canonical assumption.

An interesting (and natural) extension of these works concern systems with point
and distributed time-delays. In this more general case, different approaches have
been used to some control problems. It clearly appears today that using LMI allows
to get a solution to some control problems, which was almost impossible five years
ago. In the case of observer design some preliminary and interesting works have
been done by Fattouh et al [14].

(Received November 22, 2000.)
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[45] A. Tornambè: Simple observer-based control law for time lag systems. Internat. J.
Systems Sci. 23 (1992), 9, 1463–1473.

[46] Z. Wang, B. Huang, and H. Unbehauen: Robust H∞ observer design for uncertain
time-delay systems: (i) the continuous-time case. In: IFAC 14th World Congress,
Beijing 1999, pp. 231–236.

[47] K. Watanabe: Finite spectrum assignment and observer for multivariable systems with
commensurate delays. IEEE Trans. Automat. Control AC-31 (1986), 6, 543–550.

[48] K. Watanabe and T. Ouchi: An observer of systems with delays in state variables.
Internat. J. Control 41 (1985), 1, 217–229.

[49] W.M. Wonham: Linear Multivariable Control: A Geometric Approach. Springer Ver-
lag, New York 1979.

[50] Y.X. Yao, Y.M. Zhang, and R. Kovacevic: Parameterization of observers for time
delay systems and its application in observer design. IEE Proc. – Control Theory
Appl. 143 (1996), 3, 225–232.

[51] Y.X. Yao, Y.M. Zhang, and R. Kovacevic: Functional observer and state feedback for
input time-delay systems. Internat. J. Control 66 (1997), 4, 603–617.

Dr. Olivier Sename, Laboratoire d’Automatique de Grenoble, INPG–CNRS UMR 5528,

ENSIEG-BP 46, 38402 Saint Martin d’Heres Cedex. France.

e-mail: Olivier.Sename@inpg.fr


	INTRODUCTION
	MODELING OF TIME--DELAY SYSTEMS
	OBSERVABILITY OF TIME--DELAY SYSTEMS OVER RINGS
	OBSERVERS FOR TIME--DELAY SYSTEMS
	Strongly observable systems
	Spectrally canonical realizations: the factorization approach
	Spectrally observable systems
	A delay dependent method for spectrally observable systemsfor any delay 
	Finite spectrum assignment method

	Weakly observable systems

	UNKNOWN INPUT OBSERVERS (UIO) FOR TIME--DELAY SYSTEMS
	Problem statement
	A partial solution to the design of UIO for time-delay systems
	Dynamic UIO

	H OBSERVERS FOR TIME--DELAY SYSTEMS
	Lyapunov--Krasovskii approach
	Choi and Chung ChoiC:96's method
	Fattouh et al FattouhSDkybernetika:98's method

	Lyapunov--Razumikhin approach

	ROBUST OBSERVERS FOR TIME--DELAY SYSTEMS
	H approach
	The factorization approach
	Additive uncertainty
	Input multiplicative uncertainty
	A suboptimal solution


	AND THE FUTURE?

