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NONLINEAR BOUNDED CONTROL
FOR TIME–DELAY SYSTEMS

Germain Garcia and Sophie Tarbouriech

A method to derive a nonlinear bounded state feedback controller for a linear continuous-
time system with time-delay in the state is proposed. The controllers are based on an
e-parameterized family of algebraic Riccati equations or on an e-parameterized family of
LMI optimization problems. Hence, nested ellipsoidal neighborhoods of the origin are de-
termined. Thus, from the Lyapunov–Krasovskii theorem, the uniform asymptotic stability
of the closed-loop system is guaranteed and a certain performance level is attained through
a quadratic cost function.

1. INTRODUCTION

When dealing with the control design problem, several constraints have to be taken
into account in order to obtain a control which operates in practice. Among them,
the limitations of actuators are particularly important because they have a direct
incidence on the closed-loop system stability and it is not surprising that this prob-
lem concentrated the attention of many researchers. See for example [1, 14] and
bibliography therein.

The presence of delays in the system is also a source of closed-loop system insta-
bility. Some recent results on the control of linear systems with delayed state and
bounded inputs have been obtained, see [3, 6, 7, 10] (for independent delay size) or
[4, 15] (for dependent delay size). To derive these results, matrix measures, complex
Lyapunov equations or Razumikhin-type theorems were used. To have an overview
of the more recent results, see [4, 9, 11, 12] or the papers published in this field in
the last international conferences as Conference on Decision and Control 2000 or
American Control Conference 2000.

This paper presents a method to derive a nonlinear bounded state feedback con-
troller for a linear continuous-time system with time-delay in the state. The idea
is based on the existence, under some conditions, of an e-parameterized family of
bounded linear state feedbacks which asymptotically stabilize the closed-loop sys-
tem. These controllers are designed from the solutions to an e-parameterized family
of algebraic Riccati equations or an e-parameterized family of LMI optimization
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problems. From these solutions, it is possible to define invariant ellipsoidal neigh-
borhoods of the origin such that inside them, the control does not saturate. For
a Riccati equation approach, when e = 1, the ellipsoid corresponds to a region for
which the system exhibits a satisfactory behavior. When e → +∞, the ellipsoid
tends to a subset of <n. Then it is possible to build a state dependent function e(x),
which is used to derive the controller. For the LMI approach, when e = 1 we obtain
an ellipsoid in which the system has a good behavior, and when e = 0 we obtain a
subset of <n in which the size of the control gain is low.

It is important to note that this approach is based on a Lyapunov–Krasovskii
theorem for analyzing the uniform asymptotic stability of solutions to functional
differential equations. A certain performance level for the closed-loop system is taken
into account through a quadratic cost function. Modifying slightly the obtained
results, it is also possible to deal with model uncertainties. The paper is organized
as follows. In the next section, the problem is stated. Section 3 introduces some
preliminaries used in Section 4 which addresses the case of the Riccati equation
approach. Section 5 presents the Linear Matrix Inequalities method and Section 6
proposes an illustrative example. Finally, a conclusion ends the paper.

Notations. < denotes the set of real numbers, <+ is the set of non-negative real
numbers, <n denotes the n dimensional Euclidean space, and <n×m denotes the set
of all n×m real matrices. The notation X ≥ Y (respectively, X > Y ), where X and
Y are symmetric matrices, means that the matrix X − Y is positive semi-definite
(respectively, positive definite). For any real matrix A, A′ and A(i) denote the
transpose and the ith row of matrix A, respectively. I denotes the identity matrix of
appropriate dimensions. λmax(P ) and λmin(P ) denote respectively the maximal and
minimal eigenvalue of matrix P . Cτ = C([−τ, 0], <n) denotes the Banach space of
continuous vector functions mapping the interval [−τ, 0] into <n with the topology
of uniform convergence. The following norms will be used: ‖· ‖ refers to either the
Euclidean vector norm or the induced matrix 2-norm. ‖φ ‖c= sup−τ≤t≤0 ‖φ(t) ‖
stands for the norm of a function φ ∈ Cτ . When the delay is finite then “sup” can
be replaced by “max”. Moreover, we denote by Cv

τ the set defined by Cv
τ = {φ ∈

Cτ ; ‖φ‖c ≤ v}, where v is a positive real number.

2. PROBLEM STATEMENT

Consider the time-delay linear system described by:

ẋ(t) = Ax(t) + Adx(t− τ) + Bu(t) (1)

with the initial condition

x(t0 + θ) = φ(θ), ∀ θ ∈ [−τ, 0], (t0, φ) ∈ <+ × Cv
τ

x(t0) = x0

(2)

where x(t) ∈ <n is the state, u(t) ∈ <m is the control input, τ is the time-delay of
the system. A, Ad and B are constant matrices of appropriate dimensions and pair
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(A,B) is supposed to be stabilizable. We assume now that the control takes values
in a compact set:

U =
{
u ∈ <m;−u0(i) ≤ u(i) ≤ u0(i), u0(i) > 0, i = 1, . . . , m

}
. (3)

Associated with system (1)-(2), let us define the following quadratic cost function
which defines a performance criterion:

J =
∫ +∞

0

(x(t)′Qx(t) + u(t)′Ru(t)) dt

Q = Q′ > 0, R = R′ > 0.

(4)

The problem addressed in this paper is to find a control u(x) such that for all t,
u(x) ∈ U and such that system (1) is asymptotically stable. Moreover, among
all possible controls satisfying these properties, we want to select a control which
minimizes J . In order to solve this problem, some preliminaries are introduced in
the following section.

3. PRELIMINARY RESULTS

In [17], the problem of designing a linear state feedback which stabilizes system (1)
is addressed. An important result stated in this paper is presented in the following
lemma.

Lemma 1. Given symmetric and positive definite matrices Q and R, if there exist
two symmetric and positive definite matrices P and S solutions to

A′P + PA + PAdS
−1A′dP − PBR−1B′P + S + Q = 0 (5)

then system (1) closed by the state feedback

u = Kx = −R−1B′Px (6)

is asymptotically stable for all initial conditions φ ∈ B(σ) where B(σ) is defined by:

B(σ) = {φ ∈ Cv
τ ; ‖φ ‖2c≤ σ}

with σ =
γ

λmax(P ) + τλmax(S)
(7)

γ > 0 corresponds to the largest ellipsoid

D(P, γ) = {x ∈ <n; x′Px ≤ γ} (8)

contained in U .

The p r o o f is obtained by showing that

V (xt) = x(t)′Px(t) +
∫ t

t−τ

x(θ)′Sx(θ) dθ

P = P ′ > 0 , S = S′ > 0

(9)
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where xt, ∀ t ≥ t0, denotes the restriction of x to the interval [t− τ , t] translated to
[−τ , 0], that is,

xt(θ) = x(t + θ), ∀ θ ∈ [−τ , 0],

is a Lyapunov functional for the closed-loop system.
If the system satisfies Lemma 1, it is asymptotically stable and as described above,

V (xt) defined by (9) is a Lyapunov functional for the closed-loop system. We can
write:

dV (xt)
dt

= x(t)′[(A + BK)′P + P (A + BK)]x(t) + 2x(t)′PAdx(t− τ)

+x(t)′Sx(t)− x(t− τ)′Sx(t− τ)

≤ x(t)′[(A + BK)′P + P (A + BK)]x(t) + x(t)′Sx(t)

+x(t)′PAdS
−1A′dPx(t)

≤ −x(t)′[Q + K ′RK]x(t) by Lemma 1.

Then:

J =
∫ +∞

0

x(t)′[Q + K ′RK]x(t) dt

≤ −
∫ +∞

0

dV (xt) = V (x(0)) because the system is stable.

We have:

J ≤ x′0Px0 +
∫ 0

−τ

x(θ)′Sx(θ) dθ.

This inequality suggests the following optimization problem in order to minimize J .

(P1)





min
{

trace(Px0x
′
0) + trace

(
S

∫ 0

−τ

x(θ)x(θ)′dθ

)}

under P = P ′ > 0, S = S′ > 0, and (5).

We can note that the criterion is linear with respect to P and S. But P and S
appears nonlinearly in (5).

A possibility to solve (5) by standard algorithms consists in fixing S or by using
LMI formulation (see Section 5). In fact, a compromise has to be found between the
value of J and the size of the initial condition domains (7) and (8). 2

As pointed out in the introduction, we can consider model uncertainties. For
simplicity, consider uncertainty on matrix A such that

∆A = A0 + DFE (10)
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where A0, D and E are constant matrices of appropriate dimensions and F ′F ≤ I.
In this case the Riccati equation (5) is replaced by [13]:

A′0P +PA0 +PAdS
−1A′dP + εPDD′P −PBR−1B′BP +S + ε−1E′E +Q = 0 (11)

where the unknowns are P , S and ε > 0.

4. RICCATI EQUATION APPROACH

4.1. Single input case

Recall that the control is constrained to belong to U . For the sake of simplicity,
consider in a first time, the single-input case, i. e., u ∈ [−u0, u0] and B ∈ <n.

Define:

E =
{

x ∈ <n; x′Px ≤ u2
0

R−1B′PBR−1
= c

}
. (12)

Thus, we have the following result.

Lemma 2. E is the maximal ellipsoid defined by the quadratic form x′Px where
the feedback u = −R−1B′Px is bounded by u0.

P r o o f . See [5]. 2

The idea in this paper is to fully use the capabilities of actuators without allowing
the control saturation. If that is possible, it is hoped that the performance of the
system in terms of a speed response will be better. For that, suppose the optimization
problem (P1) has been solved obtaining a good compromise between performances
and size of initial conditions domains. Then there exist symmetric positive definite
matrices P and S solutions to Riccati equation (5):

A′P + PA + PAdS
−1A′dP − PBR−1B′P + S + Q = 0 (13)

where R and Q are symmetric positive definite matrices. Now the idea is to param-
eterize Riccati equation (13) in the following way:

A′P (e) + P (e)A + P (e)AdS
−1A′dP (e)− P (e)BR−1B′P (e) + S +

Q

e
= 0 (14)

with 1 ≤ e < ∞. It is to be noted that S is maintained as constant, only P varies
with e. For e = 1, we recover Riccati equation (13). The first step is to verify that
if (14) has a positive definite solution for e = 1, it has also a solution for e > 1.

Lemma 3. Suppose that P (1) = P (1)′ > 0 and S = S′ > 0 satisfy Riccati
equation (13). Then for all e > 1, Riccati equation (14) has a positive definite
symmetric solution P (e) > 0 and P (1) ≥ P (e).

P r o o f . See [5]. 2
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When e → +∞, Riccati equation (14) reads

A′P (∞) + P (∞)A + P (∞)AdS
−1A′dP (∞)− P (∞)BR−1B′P (∞) + S = 0.

Recall that S is fixed. Then it follows that [5]:

P (1) ≥ P (∞) > 0.

Define:
E(e) = {x ∈ <n;x′P (e)x ≤ c(e)}

with c(e) =
u2

0

R−1B′P (e)BR−1
.

(15)

Lemma 4. E(e) is the maximal ellipsoid defined by the quadratic function x′P (e) x
where the feedback u = −R−1B′P (e)x is bounded by u0.

In the sequel, we normalize the ellipsoids (15) defining the positive definite matrix
X (e) = P (e)

c(e) , 1 ≤ e < ∞,

Ξ(e) = {x ∈ <n;x′X (e) x ≤ 1}. (16)

Lemma 5. dX (e)
de is negative definite and dc(e)

de ≥ 0.

P r o o f . See [5]. 2

Following the same lines as in [16], we can prove the following lemmas.

Lemma 6. Ξ(e1) ⊂ Int(Ξ(e2)) whenever e1 < e2, where Int(Ξ(e2)) denotes the
interior of the set Ξ(e2).

Lemma 7. The e-parameterized family of ellipsoids Ξ(e) is a nested family set,
that is,

Ξ(e1) ⊂ Int(Ξ(e2)) whenever e1 < e2

with a maximal element Ξ =
⋃

e Ξ(e).

Define the following set:

B(e) = {φ ∈ Cv
τ ; ‖φ ‖2c≤ c̃(e)}

with c̃(e) =
c(e)

λmax(P (e)) + τλmax(S)
.

(17)

It is clear that we have the following result.
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Lemma 8. The e-parameterized family of sets B(e) has the following property:

B(e1) ⊆ B(e2) whenever e1 < e2.

P r o o f . The proof follows from the fact that c(e) is an increasing function and
that P (e) is a decreasing function of e. 2

In order to derive the controller, we introduce the function e(x) which is the
positive solution to the equation given by

x(t)′P (e) x(t) +
∫ t

t−τ

x(θ)′Sx(θ) dθ − c(e) = 0 (18)

where P (e) is the positive definite symmetric solution to Riccati equation (14). First
observe that for a fixed e, E(e) is the largest ellipsoid where the control is bounded
by u0, and for all φ ∈ B(e), x(t) ∈ E(e).

On the other hand if we define:

f(x, e) = x(t)′P (e)x(t) +
∫ t

t−τ

x(θ)′Sx(θ) dθ − c(e),

one gets ∂f
∂e = x(t)′ dP (e)

de x(t) − dc(e)
de 6= 0 and this is a sufficient condition for the

differentiability of e(x). The idea behind the definition of e(x) is to have a state
dependent function e(x) which takes large values when the system trajectory is far
from the origin and small values when the system trajectory is close to the origin.
e(x) continuously changes for all x ∈ <n\{0}. e(x) can be interpreted as a distance
from the origin. The condition e(x) ≤ µ, µ > 0 defines a set such that x satisfies

x(t)′P (µ)x(t) +
∫ t

t−τ

x(θ)′Sx(θ) dθ ≤ c(µ)

if φ ∈ B(µ). Also, if φ ∈ B(µ) we can conclude that x(t) ∈ Ξ(µ).

We are now in position to introduce the controller. It is defined by:

u(x) =

{ −R−1B′P (e(x)) x(t) if x(t) ∈ Ξ\Ξ(1)

−R−1B′P (1)x(t) if x(t) ∈ Ξ(1).
(19)

Theorem 1. Suppose that Riccati equation (13) has positive symmetric solutions
P = P ′ > 0 and S = S′ > 0. Let P (e) the positive definite symmetric solution
to Riccati equation (14) and Ξ(e) the ellipsoid defined by (16). Then the controller
defined in (19) satisfies the constraint −u0 ≤ u(x) ≤ u0 and stabilizes asymptotically
the system (1) for all initial conditions φ ∈ B(1).

P r o o f . To prove that system (1) is asymptotically stable, we have to show that
Ξ(1) is a finite attractor in Ξ for the closed-loop system. For this, it suffices to show
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that for all x in the closure of Ξ\Ξ(1), the time-derivative ė is negative along the
closed-loop vector fields. We have from (18)

2x(t)′P (e)ẋ(t)+x(t)′
dP (e)

de
x(t)ė(t)− dc(e)

de
ė(t)+x(t)′Sx(t)−x(t− τ)′Sx(t− τ) = 0

and therefore

ė(t) = −2x(t)′P (e)ẋ(t) + x(t)′Sx(t)− x(t− τ)′Sx(t− τ)

x(t)′ dP (e)
de x(t)− dc(e)

de

.

But one gets 2x(t)′P (e)ẋ(t) + x(t)′Sx(t) − x(t − τ)′Sx(t − τ) = −x(t)′Qx(t) −
x(t)′PBR−1B′Px(t)−[x(t−τ)−S−1A′dPx(t)]′S[x(t−τ)−S−1A′dPx(t)] < 0. Noting
that dP (e)

de < 0 and dc(e)
de > 0, it follows that ė(t) < 0. Now if e(x) ≤ µ, we have

x(t)′P (µ)x(t) +
∫ t

t−τ

x(θ)′Sx(θ) dθ ≤ c(µ)

provided that the initial condition φ ∈ B(µ) and x(t) ∈ Ξ(µ). But from Lemma 8,
one gets:

B(1) ⊆ B(µ), ∀µ > 1.

And then this fact with ė(t) < 0 complete the proof of the theorem. 2

4.2. The multi-inputs case

In this section, we move to the multi-inputs case. Matrix B ∈ <n×m is written
as B =

[
B1 . . . Bm

]
with Bi ∈ <n, i = 1, . . . , m, and we take for simplicity

R = ρ−1I > 0.

Define also

ci(e) =
u2

0(i)

ρ2B′
iP (e)Bi

, ∀ i = 1, . . . , m

and
C(e) = min

i
ci(e).

Note from the previous section that ci(e), i = 1, . . . , m, are increasing functions of
e. Hence C(e) is also an increasing function of e. Nevertheless, C(e) is not necessarily
differentiable for any e > 0, but its right-hand side derivative is well-defined as

DC(e) = lim
ξ→0+

C(e + ξ)− C(e)
ξ

.

Using this definition and the previous notations, it is possible to extend the results
of the previous section as follows.



Nonlinear Bounded Control for Time–Delay Systems 389

Theorem 2. Let P (e) and S be the positive definite symmetric solutions to Riccati
equation (14). Define the function e(x) in the following way:

— For x(t) ∈ Ξ(1) and φ ∈ B(1) as the positive solution e(x) = 1.

— For x(t) ∈ Ξ\Ξ(1) and φ ∈ B(1) as the positive solution to the equation

x(t)′P (e) x(t) +
∫ t

t−τ

x(θ)′Sx(θ) dθ − C(e) = 0.

Then the control u(x) defined by

u(x) =

{ −R−1B′P (e(x)) x(t) if x(t) ∈ Ξ\Ξ(1)

−R−1B′P (1)x(t) if x(t) ∈ Ξ(1)
(20)

satisfies the constraints −u0(i) ≤ u(i)(x) ≤ u0(i), i = 1, . . . ,m, and drives any point
of Ξ to the origin.

Suppose now that e → +∞, Riccati equation (14) becomes:

A′P (∞) + P (∞)A + P (∞)AdS
−1A′dP (∞)− P (∞)BR−1B′P (∞) + S = 0.

If the pair (S
1
2 , A) is observable and if (A,B) is stabilizable, then P (∞) is positive

definite. Hence the set Ξ is characterized by the following theorem.

Theorem 3. Suppose that pair (A,B) is stabilizable. Then

Ξ =

{
x ∈ <n;max

i

[
ρ2B′

iP (∞)Bi

u2
0(i)

]
x′P (∞)x < 1

}
, i = 1, . . . , m.

P r o o f . The proof is a direct consequence of assumptions and elementary results
on the behavior of the solutions to a Riccati equation. 2

From a practical point of view, it is not possible to solve equation (18). In
practice, to implement the control it is possible to use the following algorithm.

— Step 0. Choose N values of e such that e0 = 1 < e1 < e2 < . . . < eN < ∞.
For e = eN , solve Riccati equation (5). We obtain the corresponding ellipsoid
Ξ(eN ), the set B(eN ) and the control K(eN ). Set

Ξ = {Ξ(eN )}, B = {B(eN )}, K = {K(eN )}.
— Step i. Take e = eN−i. Solve Riccati equation (5) for e = eN−i. We obtain

Ξ(eN−i), B(eN−i) and K(eN−i). Set

Ξ = {Ξ, Ξ(eN−i)}, B = {B,B(eN−i)}, K = {K, K(eN−i)}.
Go to step i+1.

At the end of the algorithm, we obtain a nested family of ellipsoids Ξ, sets B and
corresponding control gains. To apply the control, we measure x(t) and identify the
outer ellipsoid in Ξ, which contains x(t), and the corresponding control is applied.
With this method, a piecewise control is obtained.
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5. LMI APPROACH

Another parameterization of the control gain matrix is possible using an LMI for-
mulation. From (5), it is easy to see that condition of Lemma 1 can be expressed as
follows:

Find matrices K and P = P ′ > 0, S = S′ > 0 such that

(A + BK)′P + P (A + BK) + PAdS
−1A′dP + S < 0.

Multiplying on the left and the right by P−1 = W and denoting Y =
KW , we obtain rearranging some terms

AW + WA′ + BY + Y ′B′ +
[

AdS
−1 W

] [
S 0
0 S

] [
S−1A′d

W

]
< 0.

Introducing U = S−1 we arrive at



AW + WA′ + BY + Y ′B′ AdU W
UA′d −U 0
W 0 −U


 < 0

We can deduce the following lemma which is similar to Lemma 1 in the context
of the LMI formulation.

Lemma 9. If there exist a solution W = W ′ > 0, U = U ′ > 0 and Y matrices of
appropriate dimensions such that




AW + WA′ + BY + Y ′B′ AdU W
UA′d −U 0
W 0 −U


 < 0 (21)

[
W Y ′

(i)

Y(i) u2
0(i)

]
≥ 0, i = 1, . . . , m (22)

then system (1) closed by the state feedback

u = Kx = Y W−1 (23)

is asymptotically stable for all initial conditions φ ∈ B(σ) where B(σ) is defined by:

B(σ) = {φ ∈ Cv
τ ; ‖φ ‖2c≤ σ}

with σ =
1

λmax(W−1) + τλmax(U−1)

(24)

and
D(W−1, 1) = {x ∈ <n;x′W−1x ≤ 1} (25)
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is contained in U .

The p r o o f follows from the previous manipulations and from Lemma 1. D(W−1, 1)
is contained in U from inequalities (22) [18]. 2

If the model is affected by norm bounded uncertainties, supposing that only
matrix A is affected, we can replace (21) by:




AW + WA′ + BY + Y ′B′ + εDD′ AdU W WE′

UA′d −U 0 0
W 0 −U 0

EW 0 0 −εI


 < 0.

Now to deal with a quadratic cost as defined in (4), a similar development as
previously leads to inequality




AW + WA′ + BY + Y ′B′ AdU W Y ′ W
UA′d −U 0 0 0
W 0 −U 0 0
Y 0 0 −R−1 0
W 0 0 0 −Q−1




< 0 (26)

with K = Y W−1 and

J ≤ trace(W−1x0x
′
0) + trace

(
U−1

∫ 0

−τ

x(θ)x(θ)′dθ

)
. (27)

While (26) is linear with respect to the unknowns, it is not easy to minimize J
because it is nonlinear in the unknowns. A way to obtain a linear problem consists
in minimizing the following problem:

(P2)





min
W,U,Y,γ,δ

H(γ, δ) = γ trace(x0x
′
0) + δ trace

(∫ 0

−τ

x(θ)x(θ)′dθ

)

under relations (26), (22)
[

γI I
I W

]
≥ 0,

[
δI I
I U

]
≥ 0.

The main advantage is now that the problem is linear. Conditions
2
4 γI I

I W

3
5≥0

and
2
4 δI I

I U

3
5≥0 ensure that trace(W−1) ≤ nγ and trace(U−1) ≤ nδ, respectively.

Problem (P2) is solvable by an LMI solver when a solution exists. We have the
following lemma.
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Lemma 10. If Problem (P2) is solvable. Then for all initial condition belonging to
B(σ) defined in (24), the system is asymptotically stable by the control u = Y W−1x,
which belongs to U .

The idea is to parameterize problem (P2) in order to obtain nested family of
ellipsoids and sets B(σ) as in the case of Riccati equation approach. For that,
introduce the following optimization problem:

(P3)





min
W,U,Y,γ

{eH(γ, δ) + (1− e) log(det(W−1))}

under

[
W Y ′

(i)

Y(i) u2
0(i)

]
≥ 0, i = 1, . . . , m




AW + WA′ + BY + Y ′B′ AdU W eY ′ eW
UA′d −U 0 0 0
W 0 −U 0 0
eY 0 0 −R−1 0
eW 0 0 0 −Q−1




< 0

0 ≤ e ≤ 1

[
γI I
I W

]
≥ 0,

[
δI I
I U

]
≥ 0.

When e = 0, Problem (P3) reduces to the following problem:

min
W,U,Y

{log(det(W−1))}

under

[
W Y ′

(i)

Y(i) u2
0(i)

]
≥ 0, i = 1, . . . , m




AW + WA′ + BY + Y ′B′ AdU W
UA′d −U 0
W 0 −U


 < 0.

This problem, when a solution exists, solves the stabilization problem by a control
belonging to U and maximizes the size of D(W−1, 1) .

When e = 1, we obtain Problem (P2) in which performances are taken into
account by minimizing H(γ, δ), the size of D(W−1, 1) being not a priori maximized.

When 0 < e < 1, we obtain a problem which gives a compromise between the size
of D(W−1, 1) and performances taken into account through H(γ, δ). The control
gain depends on the parameter e and is written

K(e) = Y (e)W (e)−1 (28)

where Y (e) and W (e) are the solutions obtained by solving (P3).
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Now the idea is to let e vary from 0 to 1. When e1 < e2, since constraints (22)
are satisfied, the size of K(e1) is lower than the one of K(e2). To be sure that the
domains D(W−1, 1) and B(σ) are nested, for two values of e, e1 and e2 such that

0 ≤ e1 < e2 ≤ 1

we have to impose that
W (e1) < W (e2)

U(e1) ≤ U(e2).
(29)

As in the Riccati equation approach, since W , U and Y are e-depending, we
denote in the sequel the sets D(W−1, 1) and B(σ) by D(e) and B(e), respectively.

All these remarks suggest the following algorithm to build a piecewise linear
control law.

— Step 0. Choose N values of e such that eN = 0 < eN−1 < eN−2 < . . . < e0 = 1.
Solve LMI problem (P3) for e = e0. We obtain the corresponding ellipsoid
D(e0), the set B(e0) and the control K(e0) = Y (e0)W (e0)−1. Set

D = {D(e0)}, B = {B(e0)}, K = {K(e0)}

— Step i. Take e = ei. Solve LMI problem (P3) for e = ei by adding the
constraints:

W (ei) < W (ei−1)

U(ei) ≤ U(ei−1)

We obtain Ξ(ei), B(ei) and K(ei). Set

D = {D,D(ei)}, B = {B,B(ei)}, K = {K, K(ei)}
Go to step i+1.

At the end of the algorithm we obtain a nested family of ellipsoids D, sets B,
with the corresponding control gains. To implement this control, we proceed as for
the Riccati equation approach.

5.1. Decentralized control

The interest of a solution based on a LMI formulation lies on the possibility of
adding some structural constraints provided they do not destroy the linearity of
the optimization problem. Among the problems which is possible to investigate, we
present in what follows the decentralized state feedback design problem [2]. If the
system is formed from geographically separated subsystems, the control is composed
of q channels i. e. ui ∈ <mi , i = 1, . . . , q and the decentralised state feedback design
consists in finding matrices Ki ∈ <mi×ni where:

q∑

i=1

mi = m,

q∑

i=1

ni = n.
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A solution to solve this problem is to add to problem (P3) the constraints

W = diag(W1, . . . , Wq), Wi ∈ <ni×ni , Y = diag(Y1, . . . , Yq), Si ∈ <mi×ni

which are convex and do not destroy the linearity. The control gain can be written:

K = Y W−1 = diag(Y1W
−1
1 , . . . , YqW

−1
q )

and has a diagonal structure.

6. ILLUSTRATIVE EXAMPLE

Let us consider system (1) described by the following data:

A =
[

0 1
0 0

]
; Ad =

[
0 0
0 1

]
; B =

[
0
1

]

with τ = 0.5s and u0 = 2.
By selecting

S = I2; R = 1;Q = I2

the solution to Riccati equation (5) writes:

P (e) =




1
2

√
4 + 2

e

√
4 + 2

e + 4
√

4 + 2
e

√
4 + 2

e

√
4 + 2

e

√
4 + 2

e + 4
√

4 + 2
e




and
c(e) =

4√
4 + 2

e + 4
√

4 + 2
e

.

When e →∞ one gets:

lim P (e) =
[

2
√

3 2
2 2

√
3

]

lim c(e) = 2√
3
.

The set of initial conditions is defined as

B(1) =
{

φ ∈ C 1
2
; ‖φ‖2c ≤

c(1)
λmax(P (1)) + 0.5λmax(S)

= 0.136
}

which implies that

‖φ‖2c =
[

sup
0.5≤θ≤0

‖φ(θ)‖
]2

≤ 0.136 ⇒ sup
0.5≤θ≤0

φ∈C 1
2

‖φ(θ)‖ ≤ 0.369.
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7. CONCLUSION

In this paper, a nonlinear bounded state feedback controller design for a linear
continuous-time system with state delayed is proposed. The controller is designed
from the solutions to an e-parameterized family of algebraic Riccati equations or
linear matrix inequalities which allow to define invariant ellipsoidal neighborhoods
of the origin.

From the Lyapunov–Krasovskii theorem, it is possible to show that uniform
asymptotic stability is ensured and a certain performance level is attained using
a quadratic cost function. In this paper, feedback control is addressed. For practical
reasons, the output feedback design problem have to be considered in a near future.

(Received November 22, 2000.)
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