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Editorial Board:
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George Klir, Ivan Kramosil, Friedrich Liese,
Jean-Jacques Loiseau, Frantǐsek Matúš,
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A COLLECTOR FOR INFORMATION
WITHOUT PROBABILITY IN A FUZZY SETTING

Doretta Vivona and Maria Divari

In the fuzzy setting, we define a collector of fuzzy information without probability,
which allows us to consider the reliability of the observers. This problem is transformed in
a system of functional equations. We give the general solution of that system for collectors
which are compatible with composition law of the kind “inf”.

Keywords: information measure, system of functional equations

AMS Subject Classification: 93E12, 62A10, 62F15

1. INTRODUCTION

In the subjective theory of information without probability [9, 10, 11, 12, 15] and
in the crisp setting, B. Forte and others [3, 7, 8] have supposed that each group
of observers E provides an amount of information J(A,E) from the same event A.
Moreover they supposed that, for each E, the information is compositive (in the
sense of [13] with the same law with an additive reliability coefficient λ(E).

B. Forte has defined a collector as a function Φ:

J(A,E1 ∪ E2) = Φ

λ(E1), λ(E2), J(A,E1), J(A,E2)




for every event A and disjoint groups E1, E2.
Putting x = λ(E1), y = λ(E2), u = J(A,E1), v = J(A,E2), Aczél, Forte and

Ng in [1, 2] gave the solution in the Shannon case:

Φ(x, y, u, v) = −c log

x e−u/c + y e−v/c

x + y


,

where c is the constant related to the Shannon information; when the information
J is of the kind ∧, Benvenuti, Divari and Pandolfi obtained a more general class of
solutions (see [4]).

In a previous paper [16] we have defined collectors of ∧-compositive information
without probability for fuzzy sets of events, crisp sets of observers with a reliability
coefficient defined in a probabilistic space.
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In this paper we shall introduce fuzzy collectors for crisp groups of observers with
a fuzzy ∨-additive measure of reliability.

Evidently, if we restrict our considerations to crisp sets, the collectors studied in
[4] are recovered. One of the main aim of this paper is also to enlight interesting
ideas from [4] which are not so known in the wider community.

2. PRELIMINARIES

In the setting of fuzzy sets [17], we consider the following model:

1) Ω is an abstract space, F is an algebra of fuzzy sets such that (Ω,F) is a
fuzzy measurable space, the elements of F are the observable events. Recall that for
A and B ∈ F , whose membership functions are fA and fB , respectively, it holds:
fA∪B = fA ∨ fB , fA∩B = fA ∧ fB , fAc = 1− fA;

2) O is another abstract space (space of observers), E is a σ-algebra contained in
P(O), whose elements are groups of observers;

3) a fuzzy ∨-additive measure µ is defined on the measurable space (O, E): µ(∅) =
0, µ(O) = µ ∈]0,+∞], µ is non-decreasing with respect to the inclusion of the
elements of E and µ(E1∪E2) = µ(E1)∨µ(E2) ∀E1, E2 ∈ E ; if E ∈ E , µ(E) is called
fuzzy reliability coefficient;

4) an information measure J , called fuzzy information (see [5, 6]), linked to the
group of observers, is a map J : F ×E → R+

such that, fixed E ∈ E , E 6= ∅, 6= O for
all A,B ∈ F

4i) A ⊂ B ⇒ J(A,E) ≥ J(B,E),

4ii) J(∅, E) = +∞, J(Ω, E) = 0;

5) every information measure J(·, E) is FE-compositive i. e. for every E ∈ E ,E 6= ∅
there exists a map FE : ΓE → R+

, where ΓE = {(x, y) /∃A, B ∈ F with x =
J(A,E), y = J(B, E), fA ∧ fB = 0} such that

J(A ∪B; E) = FE


J(A,E), J(B, E)


. (1)

Evidently FE is commutative, associative and FE(x, +∞) = x , for all x ∈
RanJ(·, E).

Throughout this paper we deal with universal composition rule F = ∧,

J(A ∪B, E) = F [J(A,E), J(B,E)] = J(A,E) ∧ J(B, E). (2)

Note that due the idempotency of the operator ∧ we need not to require the dis-
jontness fA ∧ fB = 0 in the above equality (2).

We call ∧-compositive fuzzy information a fuzzy information J which satisfies (2)
for every E ∈ E .
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3. COLLECTOR OF ∧-COMPOSITIVE FUZZY INFORMATION

In the previous paper [16] we have defined a collector for crisp sets.
Here, in the fuzzy setting, we give the definition of collector which we shall call

fuzzy collector.

Definition 3.1. A fuzzy collector for a given reliability measure µ is a continuous
function Ψ

Ψ : Σ → R+

where Σ ⊂

[0, µ]×R+


2

, µ = µ(O), such that for every pair of two disjoint groups
E1 and E2 of observers with reliability coefficients µ(E1) and µ(E2) it holds

J(A,E1 ∪ E2) = Ψ

µ(E1), J(A,E1), µ(E2), J(A,E2)


. (3)

4. PROPERTIES OF A FUZZY COLLECTOR Ψ

In this section we present the properties if a fuzzy collector is expressed by Ψ. They
are:

(i) (commutativity):

Ψ

µ(E1), J(A,E1), µ(E2), J(A,E2)


 = Ψ


µ(E2), J(A,E2), µ(E1), J(A, E1)


,

∀A ∈ F , E1, E2 ∈ E , as J(A,E1 ∪ E2) = J(A, E2 ∪ E1);

(ii) (associativity):

Ψ

µ(E1) ∨ µ(E2), Ψ


µ(E1), J(A,E1), µ(E2), J(A, E2)


, µ(E3), J(A,E3)




= Ψ

µ(E1), J(A,E1), µ(E2) ∨ µ(E3), Ψ


µ(E2), J(A,E2), µ(E3), J(A, E3)





,

∀A ∈ F , E1, E2, E3 ∈ E , as J(A, (E1 ∪ E2) ∪ E3) = J(A, E1 ∪ (E2 ∪ E3);

(iii) (universal value J(∅, E) = +∞ ):

Ψ

µ(E1), +∞, µ(E2), +∞


 = +∞,

as J(∅, E1 ∪ E2) = +∞;

(iv) (universal value J(Ω, E) = 0)):

Ψ

µ(E1), 0, µ(E2), 0


 = 0,

as J(Ω, E1 ∪ E2) = 0.

If the information of the group of observers is ∧-compositive in the sense of (2)
we can add another property:
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(v) (compatibility condition between the ∧-compositivity of J and the collector
Ψ):

Ψ

µ(E1),

[
J(A,E1) ∧ J(B,E1)

]
, µ(E2),

[
J(A,E2) ∧ J(B,E2)

]


= Ψ

µ(E1), J(A,E1), µ(E2), J(A,E2)


 ∧Ψ


µ(E1), J(B, E1), J(B,E2), µ(E2),




∀A,B ∈ F , E1, E2 ∈ E .

In fact, from (2) it is J(A ∪ B, E1 ∪ E2) = J(A,E1 ∪ E2) ∧ J(B, E1 ∪ E2), and,
on the other hand, from (3), we get J(A ∪B, E1 ∪ E2) =

Ψ

µ(E1), J(A ∪B, E1), µ(E2), J(A ∪B,E2)




= Ψ

µ(E1),

[
J(A, E1) ∧ J(B, E1)

]
, µ(E2),

[
J(A,E2) ∧ J(B, E2)

]
.

5. SYSTEM OF FUNCTIONAL EQUATIONS

Put µ(E1) = x, µ(E2) = y, µ(E3) = z, with x, y, z ∈ [0, 1]. The function Ψ given
in (3) is defined in the domain Σ2 = ([0, µ] × R+

)2. Moreover we set J(A, E1) =
u, J(A,E2) = v, J(B, E1) = u′, J(B, E2) = v′, J(A,E3) = w.

Now we rewrite the conditions [(i)− (v)] in order to obtain a system of functional
equations. The equations are:





(i′) Ψ

x, u, y, v


 = Ψ


y, v, x, u




(ii′) Ψ

x, u, y ∨ z, Ψ(y, v, z, w)


 = Ψ


x ∨ y, Ψ(x, y, u, v), z, w




(iii′) Ψ

x, +∞, y, +∞


 = +∞

(iv′) Ψ

x, 0, y, 0


 = 0

(v′) Ψ

x, u ∧ u′, y, v ∧ v′


 = Ψ


x, u, y, v


 ∧Ψ


x, u′, y, v′


.

In the setting of crisp sets, an analogous system was studied and solved by
Benvenuti–Divari–Pandolfi in [4]. We study the system [(i′) − (v′)] and we give
the general solution step by step.

Theorem 5.1. Main Theorem. The function Ψ

x, u, y, v


 is solution of the

system [(i′)− (v′)] if and only if

Ψ

x, u, y, v


 = g(x, y, u) ∧ g(y, x, v) (4)

where the function g : [0, µ]2 × R→ R fulfills the following properties:
(α) g is non decreasing with respect to u and continuous,
(β) g(x, y, +∞) = +∞,

(γ) g(x, y, 0) ∧ g(y, x.0) = 0,

(δ) g[x ∨ z, y, g(x, z, u)] = g(x, y ∨ z, u).
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P r o o f . Putting g(x, y, u) = Ψ(x, u, y, +∞), from (v′) for u′ = v, we have the
(4). It is easy to verify that every function Ψ with the form (4) and the properties
[(α)− (δ)] is a solution of the system [(i′)− (v′)]. 2

For every function g(x, y, u) which satisfies the properties [(α)−(δ)], we can prove
the following Lemmas.

Lemma 5.2. For every function g(x, y, u) which satisfies the properties [(α)− (δ)],
we have g(x, y, 0) = 0.

P r o o f . From (δ), for u = 0 it is

g(x ∨ z, y, g(x, z, 0)) = g(x, y ∨ z, 0), (5)

and then, changing x with z

g(z ∨ x, y, g(z, x, 0)) = g(z, y ∨ x, 0). (6)

Because of (γ), either g(x, z, 0) = 0 or g(z, x, 0) = 0, from (α), (4) and (5) we get

g(x ∨ z, y, 0) = g(x, y ∨ z, 0) ∧ g(z, y ∨ x, 0), (7)

and from (7) for y = 0
g(x ∨ z, 0, 0) = g(x, z, 0) ∧ g(x, z, 0) (8)

i. e., due to (γ),
g(x ∨ z, 0, 0) = 0 ∀x, z. (9)

Finally, from (8) and (9), for x = z, we get

g(z, z, 0) = 0. (10)

For x ≤ z

g(z, x, 0) = g(x, z, 0) ∧ g(z, x, 0),

so we obtain, due to (γ),
g(z, x, 0) = 0 ∀x ≤ z. (11)

Putting in (7) y = x and for x > z

g(x, x, 0) = g(x, x, 0) ∧ g(z, x, 0),

g(x ∨ z, x, 0) = g(x, x ∨ z, 0) ∧ g(z, x ∨ x, 0).

From (δ), for u = 0
g(x ∨ z, y, g(x, z, 0)) = g(x, y ∨ z, 0).

By contradiction we suppose g(z, x, 0) = λ > 0, i. e. g(x, y, λ) = g(x, y ∨ z, 0). For
y > z, we get g(x, y, λ) = g(x, y, 0): this is impossible as g is non-decreasing with
respect to u, then

g(z, x, 0) = 0 ∀x, z. (12)

2
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Lemma 5.3. For every function g which enjoys [(α)− (δ)], we have

g(x, 0, u) = u in [0, µ]× R+
. (13)

P r o o f . As, from (γ) and (δ), g(x, 0, 0) = 0 and g(x, 0, +∞) = +∞, for every
v ∈ R+

there exists u such that g(x, 0, u) = v.
From (γ), for y = z = 0, we have g(x, 0, g(x, 0, v)) = g(x, 0, u). 2

Lemma 5.4. Every function g which satisfies [(α) − (δ)] has the following repre-
sentation:

g(x, y, u) = h[x ∨ y, h−1(x, u)] (x, y, u) ∈ [0, 1]2 × R+
(14)

with h : [0, 1]×R+ → R+
, continuous, non decreasing with respect to u and h−1 its

pseudo-inverse [14], defined by h−1(x, v) = Inf{ξ / h(x, ξ) = v}.
P r o o f . Putting h(x, u) = g(0, x, u), for (α) and (β) the function h is contin-

uous, monotone and h(x, 0) = 0, h(x, +∞) = +∞, therefore its pseudo-inverse
h−1 is defined on [0, 1] × R+

. From (δ), for x = 0 and u = h−1(z, v), we have
g(z, y, g(0, z, h−1(z, v)) = g(0, y ∧ z, h−1(z, v)), i. e. g(z, y, g(0, z, h−1(z, v)) =
h(y ∧ z, h−1(z, v)). The thesis follows from h(z, h−1(z, v)) = v. 2

Remark. We observe that continuity of g and condition (β) imply that h(x, u) =
g(0, x, u) is not (definitely) null or constant (unless = +∞). Indeed, if we hold the
following situation: g(x, y, u) =

x u

x ∨ y
(with 0 ·+∞ = 0), then we couldn’t find h−1,

but clearly g(0, x, u) = 0, contrary to (β).

This situation corresponds to the following example:
Let O = {1, 2, . . . , n} be the set of observers, µ(E) = max E and J(A,E) =

− log inf fA

µ(E) . So, we have: g(x, y, u) = x u
x∨y , h(x, u) = 0 and the collector is: Ψ(x, u, y, v) =

x u∧y v
x∨y .

Lemma 5.5. For every function g which satisfies [(α) − (δ)], the corresponding
function h given by (14) enjoys the following properties:

h(0, v) = v ∈ R+
(15)

and
h(x, u) = h(x, v) ⇒ h(y, u) = h(y, v) ∀ y > x. (16)

P r o o f . The condition (15) follows from the definition of the function h and from
Lemma 5.4. Now, we shall prove the (16): in (δ) setting x = 0 it is g(z, y, g(0, z, u)) =
g(0, y∧ z, u) and for (14) we get h(z∨y, h−1(z, h(z, h−1(0, u))) = h(y∨ z, h−1(0, u)),
i. e. h(z ∨ y, h−1(z, h(z, u)) = h(y ∨ z, u).

If h(z, v) = h(z, u) with v < u, from definition of h−1, we have h−1(z, h(z, u)) =
Inf{ξ / h(z, ξ) = h(z, u)} = v′ ≤ v and therefore h(y ∧ z, v′) = h(y ∧ z, u).

If v > u, for the monotonicity of the function h and the arbitrary of y, we obtain
the (16). 2
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Lemma 5.6. The expression (14) with the function h(x, u) satisfying the condi-
tions of the Lemmas 5.4 and 5.5 gives the general form of the continuous solutions
of the system [(α)− (δ)].

P r o o f . We shall, now, verify that every function g(x, y, u) defined by (14)

g(x, y, u) = h(x ∨ y, h−1(x, u))

with h(x, u) satisfying the conditions of the Lemmas 5.4 and 5.5 is solution of the
system [(α)− (δ)]. In fact, for the properties of h in Lemma 5.5, the properties (α)
and (β) are verified. The (δ) becomes g(x ∨ z, y, g(x, z, u) = g(x, y ∨ z, u) and then

h

x ∨ z ∨ y, h−1(x ∨ z, h(x ∨ z, h−1(x, u)))


 = h


x ∨ z ∨ y, h−1(x, u)


. (17)

Putting h−1(x, u) = v, the (17) becomes h(x ∨ z ∨ y, h−1(x ∨ z, h(x ∨ z, v))) =
h(x∨ z ∨ y, v). Moreover h−1(x∨ z, h(x∨ z, v)) = Inf{ξ / h(x∨ z, ξ) = h(x∨ z, v)} =
v′ ≤ v, with h(x ∨ z, v′) = h(x ∨ z, v). For the (16), as x ∨ z ∨ y ≥ x ∨ z and
h(x ∨ y ∨ z, v′) = h(x ∨ y ∨ z, v), we have the (δ). 2

Summarizing the previous Lemmas, we obtain the following main result:

Theorem 5.7. The general solution of the system [(i′)− (v′)] is the function

Ψ(x, y, u, v) = h

x ∨ y, h−1(x, u) ∧ h−1(y, v)




where h : [0, 1]× R+ → R+
satisfies the following conditions:

— h(x, ·) is non-decreasing, continuous, h(x, 0) = 0, h(x, +∞) = +∞, ∀x ∈
(0, µ],

— h(x, u) = h(x, v) ⇒ h(y, u) = h(y, v) for every y > x.

Example: Let h(x, u) = ex u, this function satisfies the hypotheses of the Theorem
above; its pseudo-inverse is h−1(x, v) =

v

ex
. Then the function g is

g(x, y, u) = h(x ∨ y, h−1(x, u)) = ex∨y h−1(x, u) = ex∨y u e−x = u e(x∨y)−x.

Then the collector Ψ has the following expression:

Ψ

x, y, u, v


 = g(x, y, u) ∧ g(y, x, v) (18)

= u e(x∨y)−x ∧ v e(y∨x)−y = ex∨y
( u

ex
∧ v

ey

)
.

Let J be an information measure on crisp sets such that J(E) = e−λ(E) with λ a
fuzzy measure ∨-additive and J(A,E) a general information depending on the set
E of observers instead of general conditional information.

From (3) and (18), we get

J(A,E1 ∪ E2) =
J(A, E1)J(E1) ∧ J(A,E2)J(E2)

J(E1 ∪ E2)
.
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