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A SPECTRAL THEOREM FOR SIGMA MV–ALGEBRAS

Sylvia Pulmannová

MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic.
MV stands for “multi-valued” and MV algebras have already occupied an important place
in the realm of nonstandard (mathematical) logic applied in several fields including cy-
bernetics. In the present paper, using the Loomis–Sikorski theorem for σ-MV-algebras,
we prove that, with every element a in a σ-MV algebra M , a spectral measure (i. e. an
observable) Λa : B([0, 1]) → B(M) can be associated, where B(M) denotes the Boolean
σ-algebra of idempotent elements in M . This result is similar to the spectral theorem for
self-adjoint operators on a Hilbert space. We also prove that MV-algebra operations are
reflected by the functional calculus of observables.

Keywords: MV-algebras, Loomis–Sikorski theorem, tribe, spectral decomposition, lattice
effect algebras, compatibility, block

AMS Subject Classification: 81P10, 03G12

1. INTRODUCTION

MV-algebras were introduced in [6] as the Lindenbaum–Tarski algebras for multi-
valued ÃLukaszievicz calculus. Since then MV-algebras have found increasing interest
and become an important tool applied in several fields. For a systematic treatment of
MV-algebras see e. g. [9]. Relations of MV-algebras and the quantum logic approach
to quantum mechanics can be found in [13]. Measure theoretical and probabilistic
aspects of MV-algebras have been developed in [4] and [21].

Effect algebras [14], equivalently D-posets [16] were introduced as algebraic gen-
eralizations of the set of Hilbert space effects, i. e. self-adjoint operators between
the zero and the identity operators on a Hilbert space. Hilbert space effects play
an important role in the theory of unsharp quantum measurements, which take into
account the indeterministic nature of quantum mechanics (see [2] for the theory of
quantum measurement and [11] for logical aspects in quantum theory). It was shown
that MV-algebras can be described as a special subclass of effect algebras [16]. It was
also shown in [5] that Hilbert space effect algebras can be covered by MV-algebras,
consisting of maximal sets of pairwise commuting effects.

The aim of the present paper is to show that to every element a in a σ-MV-algebra
M there is a σ-homomorphism Λa from Borel subsets of the unit interval [0, 1] of
reals to the Boolean σ-algebra B(M) of the idempotent elements of M . Borrowing a
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language from physics, Λa is called an observable associated with B(M). In analogy
with the spectral theory of self-adjoint operators, we call Λa the spectral measure of
the element a. We introduce a notion of a regular representation of a σ-MV-algebra
M , and show that every regular representation gives rise to an injective mapping
a 7→ βa, where βa is a spectral measure of a.

In order to show that a regular representation always exists, we use the recently
proven generalization of the classical Loomis–Sikorski theorem to σ-MV-algebras,
[4, 12, 18]. In general, there can be several regular representations, and hence the
spectral measures need not be uniquely defined. Uniqueness of spectral measures
for elements of σ-MV-algebras is shown in a subsequent paper [20].

The spectral measures associated with elements of σ-MV-algebras enable us to
introduce a functional calculus in the sense of Varadarajan [23]. We show that
MV-algebra operations are reflected by the functional calculus. The Butnariu and
Klement theorem [3] enables us to show that every sigma additive state on B(M)
can be uniquely extended to a σ-additive state on the whole M .

2. DEFINITIONS AND KNOWN RESULTS

An MV-algebra is an algebraic structure (M ;⊕,∗ , 0, 1) consisting of a nonempty set
M , a binary operation ⊕, a unary operation ∗ and two constants 0 and 1 satisfying
the following axioms:

(M1) a⊕ b = b⊕ a;

(M2) a⊕ (b⊕ c) = (a⊕ b)⊕ c;

(M3) a⊕ a∗ = 1;

(M4) a⊕ 0 = a;

(M5) a∗∗ = a;

(M6) 0∗ = 1;

(M7) a⊕ 1 = 1;

(M8) (a∗ ⊕ b)∗ ⊕ b = (a⊕ b∗)∗ ⊕ a.

Boolean algebras coincide with MV-algebras satisfying the additional condition x⊕
x = x. A routine computation [9] shows that the axiomatization is equivalent to
the original one due to Chang [6]. A prototypical MV-algebra is given by the real
unit interval [0, 1] = {x ∈ R : 0 ≤ x ≤ 1} equipped with the operations x∗ = 1− x,
x⊕ y = min{1, x + y}. Chang’s completeness theorem [7] states that if an equation
holds in [0, 1] then the equation holds in every MV-algebra. An MV-algebra is
ordered by the relation x ≤ y iff x∗ ⊕ y = 1. This ordering makes M a distributive
lattice with smallest element 0 and largest element 1. Suprema and infima in M are
given by

x ∨ y = (x∗ ⊕ y)∗ ⊕ y, x ∧ y = (x∗ ∨ y∗)∗.

An additional binary relation ¯ is defined by x¯ y = (x∗ ⊕ y∗)∗.
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Let (G, u) be an Abelian `-group (additively written) with strong unit u. Let

Γ(G, u) := {x ∈ G : 0 ≤ x ≤ u} = [0, u]

be the unit interval of G equipped with the operations x∗ = u−x, x⊕y = u∧(x+y),
x ¯ y = 0 ∨ (x + y − 1). For any morphism λ : (G, u) → (G′, u′), let Γ(λ) be the
restriction of λ to [0, u]. Then Γ is a categorical equivalence between Abelian `-
groups with strong unit and MV-algebras [17].

An MV-algebra is a σ-MV-algebra if it is a σ-lattice. On a σ-MV-algebra the
following equations hold [13, Prop. 7.1.4]:

1. b ∧ (
∨

ai) =
∨

(b ∧ ai);

2. (
∨

i ai)¯ b =
∨

(ai ¯ b);

3. b¯ (
∨

ai)∗ =
∧

(b¯ a∗i ).

A mapping h : M → M ′ between two MV-algebras is a homomorphism of MV-
algebras iff it preserves the operations ⊕, ∗, 0 and 1. An MV-algebra homomorphism
of two σ-MV-algebras is a σ-homomorphism if it preserves countable joins (and
meets).

A state (finitely additive) on M is a mapping m : M → [0, 1] such that for any
a, b ∈ M such that a ≤ b∗ we have m(a ⊕ b) = m(a) + m(b). A state which is
a homomorphism is called a state morphism. State morphisms can be identified
with extremal points in the convex set of states of M [13, Th. 6.1.30]. A state m is
σ-additive if for every sequence (an)n, an ↗ a implies m(an) → m(a).

By definition, ideals of MV-algebras are kernels of homomorphisms. An ideal J of
M is prime iff the quotient M/J is totally ordered. An ideal J is maximal if it is not
properly contained in any ideal of M . Every maximal ideal is prime, the converse
need not hold. Let P(M) denote the set of all prime ideals of M and M(M) the
set of all maximal ideals of M . Chang’s sub-direct representation theorem [7] states
that every MV-algebra is embeddable into the direct product Π{M/I : I ∈ P(M)}.
We say that the MV-algebra M is semisimple if

R(M) :=
⋂
M(M) = {0}.

The set R(M) is called the radical of M . According to [1], every semisimple MV-
algebra is isomorphic to some Bold algebra of fuzzy sets on some set Ω 6= ∅, where
a family F ⊂ [0, 1]Ω is a Bold algebra of fuzzy sets iff

(Bd1) 0Ω ∈ F ;

(Bd2) f ∈ F ⇒ 1Ω − f ∈ F ;

(Bd3) f ⊕ g(ω) = min{f(ω) + g(ω), 1}.
An MV-algebra is Archimedean (in Belluce sense) if for every a, b ∈ M , na ≤ b for
all n ∈ N implies a ¯ b = a, where na := a ⊕ a ⊕ · · · ⊕ a (n-times). It was proved
in [1] that M is Archimedean iff it is semisimple. Moreover, every σ-MV-algebra is
Archimedean.

A relation between MV-algebras and self-adjoint operators on a Hilbert space can
be seen as follows. If we restrict the total operation ⊕ in M to pairs {(a, b) : a ≤ b∗}
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we obtain a partially defined operation +̇ on M , and (M ; +̇, 0, 1) admits a structure
of an effect algebra (equivalently, D-poset) [16]. An effect algebra introduced in [14]
is an algebraic structure (E; +̇, 0, 1), where +̇ is a partially defined binary operation
and 0 and 1 are constants, such that the following axioms hold:

(E1) a+̇b = b+̇a;

(E2) a+̇(b+̇c) = (a+̇b)+̇c;

(E3) for every a ∈ E there is a unique a′ ∈ E such that a+̇a′ = 1;

(E4) a+̇1 is defined iff a = 0.

The equalities in (E1) and (E2) mean that if one side is defined so is the other and
the equality holds. An effect algebra is partially ordered by the relation a ≤ b iff
there is c such that a+̇c = b. The element c is then uniquely defined. This enables
us to introduce another partial binary operation −̇ by b−̇a = c iff a+̇c = b, so that
b−̇a is defined iff a ≤ b. In particular a′ = 1−̇a. In the ordering ≤, 1 is the largest
and 0 is the smallest element in E. We also have that a+̇b exists iff a ≤ b′. We say
that a and b are orthogonal if a ≤ b′, i. e., iff a+̇b is defined. In [8] it is proved that
an effect algebra E can be organized into an MV-algebra (with the same ordering)
iff E is a lattice and for every a, b ∈ E there holds

(a ∨ b)−̇a = b−̇(a ∧ b).

An important example of effect algebras is obtained in the following way. Let (G, u)
be an Abelian group with strong unit u. The unit interval {g ∈ G : 0 ≤ g ≤ u} =
[0, u] endowed with the operation +̇ such that a+̇b is defined iff a + b ≤ u, and then
a+̇b = a + b, and a′ = u− a becomes an effect algebra. Effect algebras arising this
way are called interval effect algebras. In particular, if we take (G, u) as the group
of all self-adjoint operators on a Hilbert space H and u as the identity operator we
obtain the effect algebra of Hilbert space effects. In this context, we may consider
MV-algebras as interval effect algebras of lattice ordered groups.

3. LOOMIS–SIKORSKI THEOREM

In this paragraph, we briefly recall some basic facts that are used in the proof of
the Loomis–Sikorski theorem for σ-MV-algebras [12, 18], see also [4] for a different
proof.

The following notion is a direct generalization of a σ-algebra of sets. A tribe of
fuzzy sets on a set Ω 6= ∅ is a nonempty system T ⊆ [0, 1]Ω such that

(T1) 1Ω ∈ T ;

(T2) if a ∈ T then 1Ω − a ∈ T ;

(T3) (an)∞n=1 ⊆ T entails

min

( ∞∑
n=1

an, 1

)
∈ T .
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Elements of T are called fuzzy subsets of Ω. Elements of T which are characteristic
functions are called crisp subsets of Ω.

The basic properties of tribes are [13, Prop. 7.16]:

Proposition 3.1. Let T be a tribe of fuzzy subsets of Ω. Then

(i) a ∨ b = max{a, b} ∈ T , a ∧ b = min{a, b} ∈ T ;

(ii) b− a ∈ T if a ≤ b, i. e. a(ω) ≤ b(ω) for all ω ∈ Ω;

(iii) if an ∈ T , n ≥ 1, and an ↗ a (point-wise) then a = limn an ∈ T ;

(iv) T is a Bold algebra, in addition a σ-MV-algebra closed under point suprema
of sequences of its elements.

Denote by
B(T ) = {A ⊂ Ω : χA ∈ T },

i. e., B(T ) is the system of all crisp subsets in T . According to [13, Th. 7.1.7], B(T )
is a σ-algebra of crisp subsets of Ω, and if f ∈ T , then f is B(T )-measurable. That
is, for every f ∈ T and every E ∈ B([0, 1]) (where B([0, 1]) denotes the Borel subsets
of [0, 1]), the pre-image f−1(E) belongs to B(T ). Moreover, the mapping

f−1 : B([0, 1]) → B(T )

is a σ-homomorphism of Boolean σ-algebras.

Lemma 3.2. Let T be a tribe of fuzzy subsets of a set Ω 6= ∅. For every f, g ∈ T ,
f = g if and only if f−1(X) = g−1(X) for all X ∈ B([0, 1]).

P r o o f . If f = g, then f−1(X) = g−1(X) for all X is clear. If f 6= g, there is
ω ∈ Ω such that f(ω) 6= g(ω). Assume f(ω) < g(ω), then g(ω) > f(ω) + 1

n for some
integer n. Putting f(ω) = α, we have ω ∈ f−1[0, α], while ω /∈ g−1[0, α]. 2

By the Butnariu–Klement theorem [3], [22, Th. 8.1.12], [4] for every σ-additive
state m on T we have

m(f) =
∫

Ω

f(ω) dµ(ω), (1)

where µ(A) = m(χA), A ∈ B(T ) is a probability measure.
Let M be an MV-algebra. On the set M(M) of all maximal ideals of M a

topology τM is introduced as the collection of all subsets of the form

O(I) := {A ∈M(M) : A 6⊇ I}, I is an ideal of M.

It was shown that τM makes M(M) a compact Hausdorff topological space. For
any a ∈ M , we put

M(a) := {A ∈M(M) : a 6∈ A}.
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Then {M(a) : a ∈ M} is a base of τM , and for a, b ∈ M , (i) M(0) = ∅, (ii) M(a) ⊆
M(b) whenever a ≤ b, (iii) M(a∧ b) = M(a)∩M(b), M(a∨ b) = M(a)∪M(b), (iv)
M(a)c ⊆ M(a∗) (M(a)c is the set-theoretical complement of M(a)).

Recall that an element a ∈ M is idempotent iff a⊕a = a, equivalently, iff a∧a∗ = 0.
Denote by B(M) the set of all idempotent elements of M . We have the following
facts ([13, Prop. 7.1.12]): if a is idempotent then M(a)c = M(a∗), moreover, if M is
semisimple, then M(a)c = M(a∗) iff a is idempotent.

By [6], for every MV-algebra, the set of idempotent elements B(M) is a Boolean
algebra. If M is a σ-MV-algebra, then B(M) is a Boolean σ-algebra [13, Th. 7.1.12].

Let M be a σ-MV-algebra. With the topology τM , the space Ω := M(M) is
basically disconnected, that is, the closure of every Fσ-subset of Ω is open.

Denote by Ext(S(M)) the set of all extremal states on M . There is a one-to-
one correspondence between Ext(S(M)) and M(M) given by the homeomorphism
m 7→ Kerm [13, Th. 7.1.2].

For a ∈ M , define a 7→ ā, where ā ∈ [0, 1]M(M) by

ā := a/A,A ∈M(M),

and a 7→ â, where â ∈ [0, 1]Ext(S(M)) by

â(m) := m(a), m ∈ Ext(S(M)).

In view of the correspondence m 7→ Kerm, we have â(m) = ā(Kerm).
Notice that by [13, Prop. 7.1.20], a ∈ M is idempotent if and only if â is a

characteristic function.
Let f be a real function on Ω 6= ∅. Define

N(f) := {ω ∈ Ω : |f(ω)| > 0}.

Let M be a σ-MV-algebra. Let T be the tribe of fuzzy sets defined on Ω :=
Ext(S(M)) generated by the set {â : a ∈ M}. Denote by T ′ the class of all functions
f ∈ T with the property that for some b ∈ M , N(f − b̂) is a meager set. It can
be shown that if for some b1 and b2 and f ∈ T ′ we have N(f − b̂i) is a meager
set for i = 1, 2, then b1 = b2. Moreover, T ′ = T . Due to the definition of T ′, for
any f ∈ T there is a unique element h(f) := b ∈ M such that N(f − b̂) is meager.
Consequently, the following generalization of the Loomis–Sikorski theorem can be
proved [12, 18].

Theorem 3.3. For every σ-MV-algebra M there exist a tribe T of fuzzy sets and
an MV-σ-homomorphism h from T onto M .

4. SPECTRAL THEOREM FOR σ–MV–ALGEBRAS

Let M be a σ-MV-algebra. A triple (Ω, T , h) where T is a tribe of fuzzy sets on
Ω and h is a σ-homomorphism from T onto M will be called a representation of
M . If Ω = Ext(S(M)) and T and h : M → T are given by the construction in the
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proof of the Loomis–Sikorski Theorem 3.3, then the triple (Ω, T , h) will be called
the canonical representation of M .

Let (Ω, T , h) be any representation of M . Let us identify the elements in B(T )
with their characteristic functions, which are elements of T . Then the restriction of
h to B(T ) is a σ-homomorphism (of Boolean σ-algebras) from B(T ) to B(M).

For every f ∈ T and every X ∈ B([0, 1]) we have

h((f−1(X)) ∈ B(M),

and the map X 7→ h((f−1(X)) from X ∈ B([0, 1]) to B(M) is a σ-homomorphism
of Boolean σ-algebras [10].

The following theorem can be considered as an analogue of a spectral theorem
for self-adjoint Hilbert space operators.

Recall that a symmetric difference on an MV-algebra M is a map ∆ : M×M → M
defined as follows:

a∆b = (a ∨ b)ª (a ∧ b),

and equivalent expressions are a∆b = (aªa∧b)∨(bªa∧b) = ((a∨b)ªb)∨((a∨b)ªa).
We have a∆b = 0 iff a = b.

Theorem 4.1. Let M be a σ-MV-algebra. To every a ∈ M a σ-homomorphism
Λa : B([0, 1]) → B(M) can be constructed such that the map a 7→ Λa is one-to-one
and for every σ-additive state m on M we have

m(a) =
∫ 1

0

λm(Λa(dλ)). (2)

P r o o f . Let (Ω, T , h) be the canonical representation of M .
Choose f ∈ T such that h(f) = a and define, for X ∈ B([0, 1]),

Λa(X) := h(f−1(X)).

Then Λa : B([0, 1]) → B(M) is a σ-homomorphism.
Let g ∈ T be another element such that h(g) = a. Then 0 = h(f)∆h(g) =

h(f∆g). Moreover, f−1(X)∆g−1(X), where ∆ is the set-theoretical symmetric dif-
ference, is a subset of N(f−g) ⊆ N(f−â)∪N(g−â), that is a meager set. Therefore
h(f−1(X)) = h(g−1(X)), which proves that Λa is well defined.

Assume that for a, b ∈ M with a = h(f), b = h(g) we have Λa = Λb. Then for ev-
ery X ∈ B([0, 1]) we have h(f−1(X)) = h(g−1(X)). This implies that f−1(X)∆g−1(X)
is a meager set. For every rational number k ∈ [0, 1] put Dk = [0, k), D′

k = [k, 1].
Then

N(f − g) = {ω ∈ Ω : f(ω) 6= g(ω)}
=

⋃

k

[f−1(Dk) ∩ g−1(D′
k) ∪ f−1(D′

k) ∩ g−1(Dk)]

=
⋃

k

f−1(Dk)∆g−1(Dk),
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which implies that N(f − g) is a meager set, and consequently a = b.
Let m be a σ-additive state on M . Define m̂ : T → [0, 1] by m̂(f) = m(h(f)).

Clearly, m̂(1Ω) = m(h(1Ω)) = 1 and if fi ∈ T , i = 1, 2, . . ., are such that
∑∞

i=1 fi ≤ 1,
then

∑∞
i=1 fi ∈ T and

m̂
( ∞∑

i=1

fi

)
= m

(
h
( ∞∑

i=1

fi

))

= m(⊕∞i=1h(fi)) =
∞∑

i=1

m(h(fi)) =
∞∑

i=1

m̂(fi),

hence m̂ is a σ-additive state on T vanishing on Kerh. For every a ∈ M we have
m(a) = m̂(f), where f ∈ T is such that a = h(f). The mapping m̂◦f−1 : B([0, 1]) →
[0, 1] is a probability measure. By [3] and integral transformation theorem,

m̂(f) =
∫

Ω

f(ω)m̂(dω) =
∫ 1

0

λm̂(f−1(dλ).

That is,

m(a) =
∫ 1

0

λm(h(f−1(dλ)) =
∫ 1

0

λm(Λa(dλ)). 2

The mapping a 7→ Λa will be called the spectral measure of a, or an observable on
B(M) corresponding to a. In the sequel, we will make use of the following definition.

Definition 4.2. Let M be a σ-MV algebra. An injective mapping a 7→ Λa, where
a ∈ M and Λa : B([0, 1]) → B(M) is a σ-homomorphism, will be called a spectral
representation of M . The spectral representation constructed in Theorem 4.1 will
be called the canonical spectral representation of M .

Theorem 4.3. Let M be a σ-MV-algebra. Every probability measure on the
Boolean σ-algebra B(M) of idempotent elements in M uniquely extends to a σ-
additive state on M .

P r o o f . Let T be the tribe and h : T → M the σ-homomorphism from the
Loomis–Sikorski theorem. If m is a σ-additive state (probability measure) on B(M),
then m ◦ h : B(T ) → [0, 1] is a σ-additive state on B(T ).

Without loss of generality, we may write a = h(â) for every a ∈ M . Then we
have for E ∈ B([0, 1]), Λa(E) = h(â−1(E)) ∈ B(M) .

Define a map m̃ : M → [0, 1] by putting

m̃(a) =
∫ 1

0

λm(Λa(dλ))

=
∫ 1

0

λm(h(â−1(dλ)) =
∫

Ω

â(ω)m(h(dω)),

using the integral transformation theorem.
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Let a, b ∈ M be such that a ≤ b∗. Then we have

m̃(a⊕ b) =
∫

Ω

(̂a⊕ b)(ω)m(h(dω)) =
∫ 1

0

(â(ω) + b̂(ω))m(h(dω))

=
∫ 1

0

(â(ω)m(h(dω)) +
∫ 1

0

(b̂(ω)m(h(dω)) = m̃(a) + m̃(b),

as for every ω ∈ Ext(S(M), (̂a⊕ b)(ω) = ω(a⊕b) = ω(a)+ω(b) = â(ω)+ b̂(ω). This
entails that the map m̃ is finitely additive.

Assume that b, bn ∈ M , n = 1, 2, . . ., and bn ↗ b. According to [13], proof of the
Loomis–Sikorski theorem on p. 464, the mapping a → â preserves countable suprema
and infima. Moreover, putting b0 = limn b̂n, we have N(b̂−b0) is a meager set, hence
b = h(b̂) = h(b0). So we have

m̃(bn) =
∫

Ω

b̂n(ω)m(h(dω)),

and limn b̂n = b̂ a.e. m ◦ h on (Ω,B(T )). By [15, §27, Th. B], then

lim
n

∫

Ω

b̂n(ω)m(h(dω)) =
∫

Ω

b̂(ω)m(h(dω)) = m̃(b).

This proves that m̃ is a σ-additive state on M . If a ∈ B(M), then â = χA for some
A ∈ B(T ), and thus m̃(a) =

∫
Ω

χA(ω)m(h(dω)) = m(h(A)) = m(h(χA)) = m(a).
So m̃ extends m.

Let m̃1 be any other σ-additive extension of m. Then for all a ∈ M ,

m̃1(a) =
∫ 1

0

λm̃1(Λ(dλ)) =
∫ 1

0

λm(Λ(dλ) = m̃(a),

so m̃1 = m̃. 2

5. REGULAR REPRESENTATIONS

In this sequel, we introduce the notion of a regular representation and show that
every regular representation gives rise to a spectral representation.

Theorem 5.1. Let M be a σ-MV algebra, and let (Ω, T , h) be a representation of
M . Assume that the σ-homomorphism h : T → M has the following property:

h(f) = 0 if and only if h(χN(f)) = 0. (3)

Define for a ∈ M , βa : B([0, 1]) → B(M) by putting βa(X) = h(f−1(X)), where
f ∈ T is such that h(f) = a. Then βa is a well-defined observable on B(M) and the
map a 7→ βa is one-to-one.

P r o o f . Take a ∈ M and choose its representative f ∈ T . For every X ∈ B([0, 1])
put βa(X) := h(f−1(X)). Clearly, X 7→ βa(X) is a σ-homomorphism (of Boolean
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σ-algebras). Let g be any other representative of a in T . Then h(f∆g) = 0 and by
our hypotheses, h(N(f − g)) = 0, and since f−1(X)∆g−1(X) ⊆ N(f − g), we have
h(f−1(X)) = h(g−1(X)), X ∈ B([0, 1]), hence βa does not depend on the choice of
the representative.

Now assume that for a, b ∈ M we have βa = βb. Then for every X ∈ B([0, 1]) and
any representatives f and g of a and b, respectively, we have h(f−1(X))∆h(g−1(X)) =
0, i. e. f−1(X)∆g−1(X) ∈ Kerh. As Kerh is a σ-ideal, and N(f−g) can be expressed
as in the proof of Theorem 4.1, we get N(f − g) ∈ Kerh, which entails h(f) = h(g),
i. e., a = b. This proves that the map a 7→ βa is one-to-one. 2

A representation (Ω, T , h) of M satisfying the requirement (3) will be called a reg-
ular representation. It is clear by the construction that the canonical representation
is regular.

Theorem 5.2. Let (Ω, T , h) be a regular representation of M . Then h maps B(T )
onto B(M).

P r o o f . Since h maps T onto M , for every a ∈ B(M) there is an element f ∈ T
with h(f) = a. Since h is a homomorphism of MV-algebras, we have

h(f) = a = a⊕ a = h(min(f + f, 1)).

We have {x ∈ Ω : f(x) = min(f + f, 1)(x)} = {x : f(x) = 1} ∪ {x : f(x) = 0}.
By regularity of the representation, {x : f(x) 6= min(f + f, 1)(x)} ∈ Kerh. Put A =
{x : f(x) = 1}. Then {x : f(x) 6= χA(x)} = {x : f(x) 6= 0} ∩ {x : f(x) 6= 1} ∈ Kerh.
This entails h(f) = h(χA) = a, and A ∈ B(T ). 2

It can be easily seen that if (Ω, T , h) is a regular representation, then M is
isomorphic with classes of functions from T modulo h, where we define f = g
modulo h if h({ω ∈ Ω : f(ω) 6= g(ω)}) = 0.

Remark 1. From Theorem 5.1 we see that the spectral representation need not
be unique, in general. In the subsequent paper [20] we prove that the spectral
representation of M does not depend on a regular representation, and that it is
uniquely defined.

6. OBSERVABLES AND FUNCTIONAL CALCULUS

Let M be a σ-MV algebra and let (Y,F) be a measurable space, where F is a
σ-algebra. An observable associated with M is a mapping ξ : F → M such that

(i) ξ(Ω) = 1;

(ii) ξ(A ∪B) = ξ(A)+̇ξ(B) whenever A, B ∈ F , A ∩B = ∅;
(iii) A,Ai ∈ F , Ai ↗ A implies ξ(Ai) ↗ ξ(A).
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The pair (Y,F) is called the value space of ξ. An observable with the value space
(R,B(R)) is called a real observable. If ξ is an observable associated with M and s
is a σ-additive state on M , the mapping s ◦ ξ : F → [0, 1] is a probability measure
on (Y,F).

In the next theorem we show how observables on M are related with regular
representations.

Theorem 6.1. Let (Ω, T , h) be a regular representation of M and let (Y,F) be a
measurable space. The following statements are equivalent:

(i) a mapping ξ : F → M is an observable;

(ii) there is a mapping ν : Ω × F → [0, 1] such that (a) for any fixed X ∈ F ,
ω → ν(ω, X) ∈ T and (b) for every sequence (Xi)∞i=1 of pairwise disjoint
subsets Xi ∈ F , h({ω ∈ Ω :

∑∞
i=1 ν(ω, Xi) 6= ν(ω,

⋃∞
i=1 Xi)}) = 0.

P r o o f . (i)⇒(ii): Let ξ : F → M be an observable. For every X ∈ F we have
ξ(X) ∈ M , and hence there is a function fX ∈ T with h(fX) = ξ(X). Define
ν(ω,X) := fX(ω). Then (a) is satisfied. To prove (b), let (Xi)i be a sequence
of pairwise disjoint elements of F . Then ξ(

⋃
Xi) = ⊕iξ(Xi), which entails that

h(fSXi)) = ⊕ih(fXi
) = h

(
min(

∑
i fXi

, 1)
)

, and we can choose representatives fXi

such that
∑

i fXi ≤ 1. The proof of the converse implication is similar. 2

Let R(ξ) denote the range of ξ, i. e. R(ξ) = {ξ(X) : X ∈ F}.
An observable ξ is called sharp if its range consists of idempotent (sharp) elements.

A sharp observable ξ : F → B(M) can be considered as an observable associated
with the Boolean σ-algebra B(M). It is well known that such an observable is a σ-
homomorphism of Boolean σ-algebras and the range of ξ is a Boolean sub-σ-algebra
of B(M) ([23, 19]).

A spectrum of a sharp observable ξ : B(Rn) → B(M) is defined as the smallest
closed subset C of B(Rn) such that ξ(C) = 1. Let σ(ξ) denote the spectrum of ξ.
Then we have [23, 19],

σ(ξ) = ∩{C closed : ξ(C) = 1}.

Remark 2. If ξ is a sharp observable with spectrum σ(ξ), then for every X ∈
B(Rn) we have ξ(X) = ξ(X ∩σ(ξ)). Therefore ξ can be considered as an observable
from B(σ(ξ)) to B(M). Conversely, if ξ is a sharp observable defined on B([0, 1]n),
the prescription ξ̃(X) = ξ(X ∩ [0, 1]n) for all X ∈ B(Rn) defines an observable from
B(Rn) to B(M).

Let (Y1,F1) and (Y2,F2) be measurable spaces, and let ξi : Fi → B(M), i = 1, 2
be sharp observables. We say that ξ2 is a function of ξ1 if there is a measurable
function f : Y1 → Y2 such that for every X ∈ F2, ξ2(X) = ξ1 ◦f−1(X). If (Y2,F2) =
(R,B(R)), then according to [23, Th. 1.4], ξ2 is a function of ξ1 iff R(ξ2) ⊆ R(ξ1).
Moreover, the function f is essentially unique in the sense that if g : Y1 → R
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is another measurable function such that ξ2(X) = ξ1 ◦ g−1(X), X ∈ B(R), then
ξ1({x ∈ Y1 : f(x) 6= g(x)}) = 0.

Theorem [23, Th. 1.6] (i) and (ii) enables us to define functions of real observables
associated with a Boolean σ-algebra. For the convenience of readers, we repeat this
important theorem below. We recall that a Boolean σ-algebra is separable if it has
a countable generator.

Theorem 6.2. (i) Let L be a Boolean σ-algebra and u a real observable associ-
ated with L. Then the range R(u) of u is a separable Boolean sub-σ-algebra of L.
Conversely, if L1 is a separable Boolean sub-σ-algebra of L, then there exists a real
observable u associated with L such that L1 is the range of u.

(ii) Let L be a Boolean σ-algebra, and let ui i = 1, 2, . . . , n be real observables
associated with L, and Li i = 1, 2, . . . , n their respective ranges. Suppose that L0

is the smallest sub-σ-algebra containing all the Li. Then there exists a unique σ-
homomorphism u of B(Rn) (the σ-algebra of Borel subsets of Rn) onto L0 such
that for any Borel set E of R1, ui(E) = u(p−1

i (E)), where pi is the projection
(t1, t2, . . . , tn) → ti of Rn to R1. If φ : Rn → R1 is any Borel function, the map
E 7→ u(φ−1(E)) (E ∈ B(R1)) is an observable associated with L whose range is
contained in L0. Conversely, if v is any observable associated with L such that the
range of v is contained in L0, there exists a real valued Borel function φ on Rn such
that v(E) = u(φ−1(E)) for all E.

The observable u : B(Rn) → L from (ii) of the above theorem is called the joint
observable of the observables ui, i = 1, 2, . . . , n. The observable u ◦ φ−1 is called the
φ-function of ui, i = 1, 2, . . . , n, and is denoted by φ(u1, . . . , un).

Let B be a Boolean σ-algebra, and ξn, ξ (n ∈ N) be real observables associated
with B. According to [19, Def. 6.1.2], we say that ξn converge to ξ everywhere if for
every ε > 0 we have lim inf((ξn − ξ)(−ε, ε)) = 1.

Assume that for some observable z and measurable functions fn, f we have ξn =
z ◦ f−1

n , ξ = z ◦ f−1. Then according to [19, Th. 6.1.3], ξn converge to ξ everywhere
iff there is a subset Z ∈ B(R) such that z(Z) = 1 and fn → f everywhere on Z.

Using the above theorem, we can prove the following statement.

Theorem 6.3. Let (Ω, T , h) be a regular representation of a σ-MV algebra M ,
and let a 7→ βa be the corresponding spectral representation of M . The following
statements hold.

(i) For every a, b ∈ M , the observable βa⊕b is a φ-function of the observables βa

and βb, where φ(t1, t2) = min(t1 + t2, 1), t1, t2 ∈ [0, 1] ⊂ R;

(ii) for every a, b ∈ M , the observable βa∨b (βa∧b) is a φ-function of the observables
βa and βb, where φ(t1, t2) = max(t1, t2) (φ(t1, t2) = min(t1, t2));

(iii) the observable βa∗ is the function φ of the observable βa, where φ(t) = 1− t;

(iv) for any sequence ai ∈ M , i = 1, 2, . . ., ai ↗ a implies βai → βa everywhere.
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P r o o f . (i) Put L = B(M), S = B(T ). Then h maps S onto L. Let fa, fb ∈ T be
such that h(fa) = a, h(fb) = b. Then βa(X) = h(f−1

a (X)), βb(X) = h(f−1
b (X)) for

all X ∈ B([0, 1]). In view of Remark 2, we may consider observables βa and βb as
σ-homomorphisms from B(R1) to B(M). Starting with (Ω,B(T ), h), we will follow
the construction in the proof of Theorem 1.6 (ii) in [23].1 Let L0 denote the smallest
sub-σ-algebra of L which contains the ranges of βa and βb. Define f̃ : Ω → R2 by
f̃(x) = (fa(x), fb(x)). Then f̃ is S-measurable. Let u = h◦f̃−1. Then u : B(R2) → L
is a σ-homomorphism such that βa(X) = u(p−1

1 (X)), βb(X) = u(p−1
2 (X)) for all

X ∈ B(R). Since B(R2) is the smallest σ-algebra of subsets of R2 containing all the
sets p−1

i (X), i = 1, 2, the range of u is L0. The uniqueness of u is obvious. For
any Borel function φ : R2 → R, the mapping u ◦ φ−1 is an observable on L whose
range is contained in L0. In particular, we may put φ(t1, t2) = min(t1 + t2, 1), and
we obtain the function φ(βa, βb).

On the other hand, we have βa⊕b = h ◦ f−1
a⊕b, where fa⊕b ∈ T is any function

such that h(fa⊕b) = a ⊕ b. Since h : T → M is a σ-homomorphism, we have
h(min(fa + fb, 1)) = a⊕ b = h(fa⊕b). Hence βa⊕b = h ◦ f−1

a⊕b = h ◦min(fa + fb, 1)−1.
Therefore R(βa⊕b) ⊂ L0. Now we have for every X ∈ B(R),

φ(βa, βb)(X) = u ◦ φ−1(X) = h ◦ f̃−1(φ−1(X))
= h((φ ◦ f̃)−1(X)) = h(min(fa + fb, 1)−1(X))
= βa⊕b(X).

(ii), (iii) Similarly we can prove the corresponding functional relations between
βa, βb and βa∨b, βa∧b and also that βa∗ = φ(βa), where φ(t) = 1− t, t ∈ [0, 1].

(iv) Let ai, i = 1, 2, . . . be a nondecreasing sequence of elements of M such that∨
i ai = a and let βai = h ◦ f−1

ai
i = 1, 2, . . . and βa = h ◦ f−1

a be the corresponding
observables.

Put fn = sup{fai : i ≤ n}, then (fn)n is a nondecreasing sequence of functions in
T with h(fn) =

∨
i≤n h(fai) = an for every n. Put Vn = {x ∈ Ω : fn(x) 6= fan(x)},

then h(Vn) = 0
Let f = limn fn = supn fn be their pointwise limit. Then f ∈ T , and by the

properties of h, h(f) = h(supn fn) =
∨

n h(fn) =
∨

n an = a. Put V = {x ∈ Ω :
f(x) 6= fa(x)}, then h(V ) = 0.

So we have h({x ∈ Ω : f(x) 6= fa(x)}) = 0, and hence fan → fa pointwise on the
set Ω \ V ∪ (

⋃
n Vn), which entails that ξan → ξa everywhere. 2
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1 Notice that the function of observables does not depend on the choice of a triple (X,S, h).
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[16] F. Kôpka and F. Chovanec: D-posets. Math. Slovaca 44 (1994), 21–34.
[17] D. Mundici: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. J.

Funct. Anal. 65 (1986), 15–63.
[18] D. Mundici: Tensor products and the Loomis–Sikorski theorem for MV-algebras. Adv.

Appl. Math. 22 (1999), 227–248.
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